APPENDIX C: PROBE AND DIPOLE CALIBRATION CERTIFICATES # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Certificate No: D750V3-1034_May21 # CALIBRATION CERTIFICATE Object D750V3 - SN:1034 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 11, 2021 12/7/2022 YW 5/22/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | | | | | |---------------------------------|--------------------|-----------------------------------|------------------------| | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | | • | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | 1/2 | | | | | O. Kom | | Approved by: | Katja Pokovic | Technical Manager | 111/10/ | | | | | | Issued: May 12, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1034_May21 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1034_May21 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.6 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.64 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.61 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.8 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | NO. 177 TO THE | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.24 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.91 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.48 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.88 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1034_May21 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.5 Ω - 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.2 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.0 Ω - 4.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.4 dB | #### **General Antenna Parameters and Design** | Flootring Dolov (one discotion) | | [· · · · · · · · · · · · · · · · · · · | |---|----------------------------------|---| | Electrical Delay (one direction) 1.034 ns | Electrical Delay (one direction) | 1.034 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| #### **DASY5
Validation Report for Head TSL** Date: 11.05.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1034 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.90 \text{ S/m}$; $\varepsilon_r = 42.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11,2020 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.83 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.28 W/kg #### SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 18.9 mm Ratio of SAR at M2 to SAR at M1 = 65.8% Maximum value of SAR (measured) = 2.90 W/kg 0 dB = 2.90 W/kg = 4.62 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 11.05.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1034 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.97 \text{ S/m}$; $\varepsilon_r = 55.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.23, 10.23, 10.23) @ 750 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.93 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.38 W/kg SAR(1 g) = 2.24 W/kg; SAR(10 g) = 1.48 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 2.99 W/kg 0 dB = 2.99 W/kg = 4.75 dBW/kg # Impedance Measurement Plot for Body TSL # Element Materials Technology Morgan Hill Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D750V3 – SN: 1034 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 11, 2022 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 12/17/2021 | Annual | 12/17/2022 | MY40000670 | | Agilent | E4438C | ESG Vector Signal Generator | 3/24/2022 | Annual | 3/24/2023 | MY45093678 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 3/17/2022 | Annual | 3/17/2023 | 0941001 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2022 | Annual | 3/2/2023 | 1126066 | | Anritsu | MA2411B | Pulse Power Sensor | 3/28/2022 | Annual | 3/28/2023 | 1339007 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670633 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/7/2021 | Annual | 7/7/2022 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 3/19/2022 | Annual | 3/19/2023 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 10/7/2021 | Annual | 10/7/2022 | 1045 | | SPEAG | EX3DV4 | SAR Probe | 12/10/2021 | Annual | 12/10/2022 | 7490 | | SPEAG | EX3DV4 | SAR Probe | 4/22/2022 | Annual | 4/22/2023 | 7532 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 8/17/2022 | Annual | 8/17/2023 | 1683 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/13/2022 | Annual | 4/13/2023 | 501 | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------------|-----------| | Calibrated By: | Arturo Oliveros | Associate Compliance
Engineer | 10 | | Approved By: | Kaitlin O'Keefe | Managing Director | XDK_ | | Object: | Date Issued: | Page 1 of 5 | |-------------------|--------------|-------------| | D750V3 - SN: 1034 | 05/11/2022 | rage rors | | Object: | Date Issued: | Page 2 of 5 | |-------------------|--------------|--------------| | D750V3 – SN: 1034 | 05/11/2022 | l age 2 of 3 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Head (1g)
W/kg @ 23.0
dBm | Measured Head
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Head (10g)
W/kg @ 23.0
dBm | Measured Head
SAR (10g) W/kg
@ 23.0 dBm | Deviation
10g (%) | Certificate
Impedance Head
(Ohm) Real | Measured
Impedance Head
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Head
(Ohm) Imaginary | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation
(%) | PASS/FAIL | |---------------------|-------------------|---|---|--|---------------------|--|---|----------------------|---|--|--------------------------|--|---|----------------------------------|---|--------------------------------------|------------------|-----------| | 5/11/2021 | 5/11/2022 | 1.034 | 1.728 | 1.64 | -5.09% | 1.122 | 1.08 | -3.74% | 54.5 | 55.8 | 1.3 | -0.7 | -4.2 | 3.5 | -27.2 | -23.3 | 14.40% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Body (1g)
W/kg @ 23.0
dBm | Measured Body
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Body (10g)
W/kg @ 23.0
dBm | Measured Body
SAR (10g) W/kg
@ 23.0 dBm | Deviation
10g (%) | Certificate
Impedance Body
(Ohm) Real | Measured
Impedance Body
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Body
(Ohm) Imaginary | Measured
Impedance Body
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Retuin Loss | Deviation
(%) | PASS/FAIL | | 5/11/2021 | 5/11/2022 | 1.034 | 1.782 | 1.77 | -0.67% | 1.176 | 1.17 | -0.51% | 50 | 47.9 | 2.1 | -4.3 | -6 | 1.7 | -27.4 | -23.8 | 13.10% | PASS | | Object: | Date Issued: | Page 3 of 5 | |-------------------|--------------|-------------| | D750V3 - SN: 1034 | 05/11/2022 | rage 3 or 3 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 4 of 5 | |-------------------|--------------|--------------| | D750V3 - SN: 1034 | 05/11/2022 | 1 age 4 of 5 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 5 of 5 | |-------------------|--------------|--------------| | D750V3 - SN: 1034 | 05/11/2022 | 1 age 3 of 3 | # Element Materials Technology Morgan Hill Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D750V3 – SN: 1034 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 11, 2023 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde &
Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106562 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106559 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/16/2022 | Annual | 5/16/2023 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 2/13/2023 | Annual | 2/13/2024 | 7427 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/15/2023 | Annual | 2/15/2024 | 1403 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|-------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer I | 10 | | Approved By: | Greg Snyder | Executive VP of Operations | Lugg M. Syl | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1034 | 05/11/2023 | rage 1014 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Head (1g)
W/kg @ 23.0
dBm | Measured Head
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Head (10g)
W/kg @ 23.0
dBm | Measured Head | Deviation
10g (%) | | Measured
Impedance Head
(Ohm) Real | | Certificate
Impedance Head
(Ohm) Imaginary | Measured
Impedance Head
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation
(%) | PASS/FAIL | |---------------------|-------------------|---|---|--|---------------------|--|---|----------------------|---|--|--------------------------|--|---|----------------------------------|---|--------------------------------------|------------------|-----------| | 5/11/2021 | 5/11/2023 | 1.034 | 1.73 | 1.71 | -1.04% | 1.12 | 1.14 | 1.60% | 54.5 | 52.5 | 2.0 | -0.7 | -2.3 | 1.6 | -27.2 | -30.0 | -10.20% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | | Measured Body
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Body (10g)
W/kg @ 23.0
dBm | Measured Body
SAR (10g) W/kg
@ 23.0 dBm | Deviation
10g (%) | Certificate
Impedance Body
(Ohm) Real | Measured
Impedance Body
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Body
(Ohm) Imaginary | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation
(%) | PASS/FAIL | | 5/11/2021 | 5/11/2023 | 1.034 | 1.78 | 1.66 | -6.85% | 1.18 | 1.13 | -3.91% | 50.0 | 48.4 | 1.6 | -4.3 | -5.5 | 1.2 | -27.4 | -24.6 | 10.10% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1034 | 05/11/2023 | rage 2 01 4 | # Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1034 | 05/11/2023 | rage 3 of 4 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | | |-------------------|--------------|-------------|--| | D750V3 – SN: 1034 | 05/11/2023 | Page 4 of 4 | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 12/9/2022 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Calibration date: **PC Test** Certificate No: D750V3-1097_Sep20 # CALIBRATION CERTIFICATE Object D750V3 - SN:1097 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz $\sqrt{A7M}$ 9/8/2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. September 08, 2020 Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | | | | | | 192 | | | | } | | | Approved by: | Katja Pokovic | Technical Manager | | | | | 是是是是是是是是是是是是是是是一个人的。 | | Issued: September 9, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at
the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured; SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.21 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.34 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.3 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | <u> </u> | | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.41 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.60 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1097_Sep20 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.0 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.3 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.3 Ω - 3.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.9 dB | #### **General Antenna Parameters and Design** | | 4.004 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.034 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | 0.000 | l' | |-----------------------|----| | Manufactured by SPEAG | } | Certificate No: D750V3-1097_Sep20 ### **DASY5 Validation Report for Head TSL** Date: 08.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.97, 9.97, 9.97) @ 750 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.27 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.13 W/kg #### SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.35 W/kg Smallest distance from peaks to all points 3 dB below = 20.6 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 2.78 W/kg 0 dB = 2.78 W/kg = 4.45 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 08.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.97 \text{ S/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.98, 9.98, 9.98) @ 750 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17.5 mm Ratio of SAR at M2 to SAR at M1 = 67% Maximum value of SAR (measured) = 2.82 W/kg 0 dB = 2.82 W/kg = 4.50 dBW/kg # Impedance Measurement Plot for Body TSL #### **PCTEST** 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V3 – SN: 1097 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: September 8, 2021 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 4/14/2021 | Annual | 4/14/2022 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 9/29/2020 | Annual | 9/29/2021 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 1/18/2021 | Annual | 1/18/2022 | 0941001 | | Anritsu | MA2411B | Pulse Power Sensor | 3/9/2021 | Annual | 3/9/2022 | 1207470 | | Anritsu | MA2411B | Pulse Power Sensor | 3/8/2021 | Annual | 3/8/2022 | 1339007 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 3/12/2021 | Biennial | 3/12/2023 | 210201956 | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670653 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/7/2021 | Annual | 7/7/2022 | MY53402352 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2021 | Annual | 5/12/2022 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 4/19/2021 | Annual | 4/19/2022 | 7532 | | SPEAG | DAE4 | Data Acquisition Electronics | 4/13/2021 | Annual | 4/13/2022 | 501 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|--------------------|--------------| | Calibrated By: | Parker Jones | Team Lead Engineer | Parker Jones | | Approved By: | Kaitlin O'Keefe | Managing Director | 20K | | Object: | Date Issued: | Page 1 of 4 | | |-------------------|--------------|-------------|--| | D750V3 – SN: 1097 | 09/08/2021 | rage 1014 | | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained
stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | W//kg @ 22.0 | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 23.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|---|--|---|---------------------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 9/8/2020 | 9/8/2021 | 1.034 | 1.64 | 1.70 | 3.53% | 1.07 | 1.11 | 3.93% | 54.0 | 54.0 | 0 | -0.5 | 1.2 | 1.7 | -28.3 | -27.8 | 1.90% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 23.0
dBm | /9/ \ | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 9/8/2020 | 9/8/2021 | 1.034 | 1.68 | 1.75 | 4.04% | 1.12 | 1.16 | 3.57% | 49.3 | 51.4 | 2.1 | -3.9 | -0.7 | 3.2 | -27.9 | -31.0 | -11.20% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1097 | 09/08/2021 | Fage 2 01 4 | # Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | | |-------------------|--------------|-------------|--| | D750V3 – SN: 1097 | 09/08/2021 | Page 3 01 4 | | # $Impedance \,\&\, Return-Loss \,Measurement \,Plot \,for \,Body \,TSL$ | Object: | Date Issued: | Page 4 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1097 | 09/08/2021 | rage 4 01 4 | # Element Materials Technology Morgan Hill Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D750V3 – SN: 1097 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: September 08, 2022 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 12/17/2021 | Annual | 12/17/2022 | MY40000670 | | Agilent | E4438C | ESG Vector Signal Generator | 3/24/2022 | Annual | 3/24/2023 | MY45093678 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 3/17/2022 | Annual | 3/17/2023 | 0941001 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2022 | Annual | 3/2/2023 | 1126066 | | Anritsu | MA2411B | Pulse Power Sensor | 3/28/2022 | Annual | 3/28/2023 | 1339007 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670633 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 3/19/2022 | Annual | 3/19/2023 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 10/7/2021 | Annual | 10/7/2022 | 1045 | | SPEAG | EX3DV4 | SAR Probe | 1/19/2022 | Annual | 1/19/2023 | 3837 | | SPEAG | EX3DV4 | SAR Probe | 4/22/2022 | Annual | 4/22/2023 | 7532 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/13/2022 | Annual | 1/13/2023 | 793 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/13/2022 | Annual | 4/13/2023 | 501 | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------------|-----------| | Calibrated By: | Arturo Oliveros | Associate Compliance
Engineer | 10 | | Approved By: | Kaitlin O'Keefe | Managing Director | 20K | | Object: | Date Issued: | Page 1 of 4 | | |-------------------|--------------|-------------|--| | D750V3 - SN: 1097 | 09/08/2022 | rage ror4 | | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Head (1g)
W/kg @ 23.0
dBm | Measured Head
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Head (10g)
W/kg @ 23.0
dBm | Measured Head
SAR (10g) W/kg
@ 23.0 dBm | Deviation
10g (%) | Certificate
Impedance Head
(Ohm) Real | Measured
Impedance Head
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Head
(Ohm) Imaginary | Measured
Impedance Head
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation
(%) | PASS/FAIL | |---------------------|-------------------|---|---|--|---------------------|--|---|----------------------|---|--|--------------------------|--|---|----------------------------------|---|--------------------------------------|------------------|-----------| | 9/8/2020 | 9/8/2022 | 1.034 | 1.642 | 1.67 | 1.71% | 1.068 | 1.11 | 3.93% | 54 | 56.8 | 2.8 | -0.5 | -2.6 | 2.1 | -28.3 | -23.1 | 18.30% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Body (1g)
W/kg @ 23.0
dBm | Measured Body
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Body (10g)
W/kg @ 23.0
dBm | Measured Body
SAR (10g) W/kg
@ 23.0 dBm | Deviation
10g (%) | Certificate
Impedance Body
(Ohm) Real | Measured
Impedance Body
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Body
(Ohm) Imaginary | Measured
Impedance Body
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Return Loss | Deviation
(%) | PASS/FAIL | | 9/8/2020 | 9/8/2022 | 1.034 | 1.682 | 1.79 | 6.42% | 1.120 | 1.19 | 6.25% | 49.3 | 48.9 | 0.4 | -3.9 | -4.4 | 0.5 | -27.9 | -26.9 | 3.70% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D750V3 – SN: 1097 | 09/08/2022 | raye 2 01 4 | # Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |-------------------|--------------|-------------| | D750V3 – SN: 1097 | 09/08/2022 | raye 3 01 4 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |-------------------|--------------|--------------| | D750V3 - SN: 1097 | 09/08/2022 | 1 age 4 of 4 | ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration
Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Certificate No: D835V2-460_May22 # CALIBRATION CERTIFICATE Object D835V2 - SN:460 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 16, 2022 YW 5/22/202B This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--|--------------------|-----------------------------------|---------------------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | | | | | description of the second t | Name | Function | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Technician | At 1 | | | | | MEP | | | | | · · · · · · · · · · · · · · · · · · · | | Approved by: | Sven Kühn | Technical Manager | C , | | , | | | 24_ | | | | | | Issued: May 17, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland G C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | | |---|-----------------|--------------|------------------|--| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 0.92 mho/m ± 6 % | | | Head TSL temperature change during test | < 0.5 °C | | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.72 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.34 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.9 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.79 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.46 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-460_May22 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.9 Ω - 0.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 40.7 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.9 Ω - 5.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.1 dB | ## **General Antenna Parameters and Design** | | , |
----------------------------------|----------| | Electrical Delay (one direction) | 1.381 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | , | | | |---|-----------------|-------| | | Manufactured by | SPEAG | Page 4 of 8 Certificate No: D835V2-460_May22 #### **DASY5 Validation Report for Head TSL** Date: 16.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:460** Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.51 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.61 W/kg Smallest distance from peaks to all points 3 dB below = 17.1 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 3.28 W/kg 0 dB = 3.28 W/kg = 5.16 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 16.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:460 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.85, 9.85, 9.85) @ 835 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.16 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kg Smallest distance from peaks to all points 3 dB below = 15 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 3.25 W/kg 0 dB = 3.25 W/kg = 5.12 dBW/kg ## Impedance Measurement Plot for Body TSL ## Element Materials Technology Morgan Hill Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D835V2 – SN: 460 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 16, 2023 Description: SAR Validation Dipole at 835 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106562 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106559 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/15/2022 | Annual | 8/15/2023 | 1041 | | SPEAG | EX3DV4 | SAR Probe | 2/13/2023 | Annual | 2/13/2024 | 7427 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/15/2023 | Annual | 2/15/2024 | 1403 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|---------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer I | 10 | | Approved By: | Greg Snyder | Executive VP of Operations | Sugge M. Syla | | Object: | Date Issued: | Page 1 of 4 | |------------------|--------------|-------------| | D835V2 - SN: 460 | 05/16/2023 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Head (1g)
W/kg @ 23.0
dBm | Measured Head
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Head (10g)
W/kg @ 23.0
dBm | Measured Head | Deviation
10g (%) | | Measured
Impedance Head
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Head
(Ohm) Imaginary | Measured
Impedance Head
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation
(%) | PASS/FAIL | |---------------------|-------------------|---|---|--|---------------------|--|---|----------------------|---|--|--------------------------|--|---|----------------------------------|---|--------------------------------------|------------------|-----------| | 5/16/2022 | 5/16/2023 | 1.381 | 1.94 | 1.99 | 2.37% | 1.27 | 1.31 | 3.31% | 50.9 | 50.3 | 0.6 | -0.3 | -2.4 | 2.1 | -40.7 | -35.4 | 13.10% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | | Measured Body
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Body (10g)
W/kg @ 23.0
dBm | Measured Body
SAR (10g) W/kg
@ 23.0 dBm | Deviation
10g (%) | Certificate
Impedance Body
(Ohm) Real | Measured
Impedance Body
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Body
(Ohm) Imaginary | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation
(%) | PASS/FAIL | | 5/16/2022 | 5/16/2023 | 1.381 | 1.96 | 1.96 | 0.10% | 1.29 | 1.33 | 2.94% | 46.9 | 46.6 | 0.3 | -5.2 | -4.8 | 0.4 | -24.1 | -24.2 | -0.50% | PASS | | Object: | Date Issued: | Page 2 of 4 | |------------------|--------------|-------------| | D835V2 - SN: 460 | 05/16/2023 | rage 2 01 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |------------------|--------------|-------------| | D835V2 - SN: 460 | 05/16/2023 | rage 3 01 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |------------------|--------------|-------------| | D835V2 - SN: 460 | 05/16/2023 | Page 4 of 4 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client
Element Certificate No: D835V2-4d040_May22 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN:4d040 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 6/1/28 Calibration date: May 16, 2022 YW 5/24/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--|---|--| | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | | ************************************** | | ID# | Check Date (in house) | Scheduled Check | | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | in house check: Oct-22 | | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | | | | Name | Function | Signature | | Aldonia Georgiadou | Laboratory Technician | 1- | | | | 1 1 5 1 | | and the second s | | - Andrewson Communication and the Communicat | | Sven Kühn | Technical Manager | 0/ | | | | P. L. | | | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou | SN: 104778 | Issued: May 17, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d040 May22 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | PRIO 16-40 | W 45 W 45 | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.79 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition |
*************************************** | |---|--------------------|---| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.38 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.9 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | TO BE SEE | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.79 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.63 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.50 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d040_May22 Pa ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 34.9 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.7 Ω - 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.2 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.393 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | L | 1 | #### **DASY5 Validation Report for Head TSL** Date: 16.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.68 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.80 W/kg SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.62 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 65.8% Maximum value of SAR (measured) = 3.32 W/kg 0 dB = 3.32 W/kg = 5.21 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 16.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040** Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.97$ S/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.85, 9.85, 9.85) @ 835 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05,2022 • Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.41 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.63 W/kg Smallest distance from peaks to all points 3 dB below = 15 mm Ratio of SAR at M2 to SAR at M1 = 68% Maximum value of SAR (measured) = 3.24 W/kg 0 dB = 3.24 W/kg = 5.11 dBW/kg ## Impedance Measurement Plot for Body TSL ## **Element Materials Technology** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D835V2 – SN: 4d040 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 16, 2023 Description: SAR Validation Dipole at 835 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106562 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106559 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/15/2022 | Annual | 8/15/2023 | 1041 | | SPEAG | EX3DV4 | SAR Probe | 2/13/2023 | Annual | 2/13/2024 | 7427 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/15/2023 | Annual | 2/15/2024 | 1403 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|-------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer I | 1 | | Approved By: | Greg Snyder | Executive VP of Operations | Lugg M. Syl | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D835V2 - SN: 4d040 | 05/16/2023 | rage 1014 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Head (1g)
W/kg @ 23.0
dBm | Measured Head
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Head (10g)
W/kg @ 23.0
dBm | | Deviation
10g (%) | Certificate
Impedance Head
(Ohm) Real | Measured
Impedance Head
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Head
(Ohm) Imaginary | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation
(%) | PASS/FAIL | |---------------------|-------------------|---|---|--|---------------------|--|---|----------------------|---|--|--------------------------|--|---|----------------------------------|---|--------------------------------------|------------------|-----------| | 5/16/2022 | 5/16/2023 | 1.393 | 1.958 | 1.99 | 1.63% | 1.28 | 1.31 | 2.66% | 50.8 | 48.8 | 2.0 | -1.6 | 3.0 | 4.6 | -34.9
 -28.2 | 19.20% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Body (1g)
W/kg @ 23.0
dBm | Measured Body
SAR (1g) W/kg
@ 23.0 dBm | Deviation
1g (%) | Certificate SAR
Target Body (10g)
W/kg @ 23.0
dBm | Measured Body
SAR (10g) W/kg
@ 23.0 dBm | Deviation
10g (%) | Certificate
Impedance Body
(Ohm) Real | Measured
Impedance Body
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Body
(Ohm) Imaginary | Measured
Impedance Body
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Retuin Loss | Deviation
(%) | PASS/FAIL | | 5/16/2022 | 5/16/2023 | 1.393 | 1.958 | 2.00 | 2.15% | 1.30 | 1.36 | 4.62% | 46.7 | 44.2 | 2.5 | -6.8 | -2.1 | 4.7 | -22.2 | -26.1 | -17.50% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D835V2 - SN: 4d040 | 05/16/2023 | raye 2 01 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D835V2 - SN: 4d040 | 05/16/2023 | Page 3 of 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D835V2 - SN: 4d040 | 05/16/2023 | Page 4 of 4 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Accreditation No.: SCS 0108 Certificate No: D1750V2-1083 May22 ## CALIBRATION CERTIFICATE Object D1750V2 - SN:1083 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 10, 2022 ✓ YW 5/24/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|---|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | | | · | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | | | | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | | | | | | Allery | | | in the second control of | | CMI | | Approved by: | Sven Kühn | Technical Manager | | | | | | 80 | | | 144-5-14-14-14-14-14-14-14-14-14-14-14-14-14- | | | Issued: May 11, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W |
19.2 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.44 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.99 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.2 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.7 Ω - 0.2 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 42.3 dB | | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.5 Ω - 0.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.6 dB | | ## **General Antenna Parameters and Design** | | *************************************** | |----------------------------------|---| | Electrical Delay (one direction) | 1.220 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | , my per a my | |-----------------|---------------| | Manufactured by | SPEAG | | , | 0, 2, 0 | | | | ## **DASY5 Validation Report for Head TSL** Date: 10.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ S/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.7 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.07 W/kg; SAR(10 g) = 4.79 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 10.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.44 \text{ S/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.3 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.23 W/kg; SAR(10 g) = 4.99 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 56.9% Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg ## Impedance Measurement Plot for Body TSL ## **Element Materials Technology** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D1750V2 – SN: 1083 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 10, 2023 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Description Cal Date | | | Serial Number | |--------------------|---------------|-------------------------------------|----------------------|----------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106562 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106559 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/15/2022 | Annual | 8/15/2023 | 1041 | | SPEAG | EX3DV4 | SAR Probe | 2/13/2023 | Annual | 2/13/2024 | 7427 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/15/2023 | Annual | 2/15/2024 | 1403 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|-------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer I | 10 | | Approved By: | Greg Snyder | Executive VP of Operations | Lugg M. Syl | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|--------------| | D1750V2 - SN: 1083 | 05/10/2023 | 1 age 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Head (1g)
W/kg @ 20.0
dBm | Measured Head
SAR (1g) W/kg
@ 20.0 dBm | Deviation
1g (%) | Certificate SAR
Target Head (10g)
W/kg @ 20.0
dBm | Measured Head
SAR (10g) W/kg
@ 20.0 dBm | Deviation
10g (%) | Certificate
Impedance Head
(Ohm) Real | Measured
Impedance Head
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Head
(Ohm) Imaginary | Measured
Impedance Head
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation
(%) | PASS/FAIL | |---------------------|-------------------|---|---|--|---------------------|--|---|----------------------|---|--|--------------------------|--|---|----------------------------------|---|--------------------------------------|------------------|-----------| | 5/10/2022 | 5/10/2023 | 1.22 | 3.65 | 3.71 | 1.64% | 1.92 | 1.99 | 3.65% | 50.7 | 49.5 | 1.2 | -0.2 | -4.9 | 4.7 | -42.3 | -42.1 |
0.50% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical Delay
(ns) | Certificate SAR
Target Body (1g)
W/kg @ 20.0
dBm | Measured Body
SAR (1g) W/kg
@ 20.0 dBm | Deviation
1g (%) | Certificate SAR
Target Body (10g)
W/kg @ 20.0
dBm | Measured Body
SAR (10g) W/kg
@ 20.0 dBm | Deviation
10g (%) | Certificate
Impedance Body
(Ohm) Real | Measured
Impedance Body
(Ohm) Real | Difference
(Ohm) Real | Certificate
Impedance Body
(Ohm) Imaginary | Measured
Impedance Body
(Ohm) Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation
(%) | PASS/FAIL | | 5/10/2022 | 5/10/2023 | 1.22 | 3.76 | 3.88 | 3.19% | 2.02 | 2.05 | 1.49% | 46.5 | 45.0 | 1.5 | -0.9 | -3.0 | 2.1 | -28.6 | -23.7 | 17.10% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1750V2 - SN: 1083 | 05/10/2023 | raye 2 01 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1083 | 05/10/2023 | rage 3 of 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D1750V2 - SN: 1083 | 05/10/2023 | raye 4 01 4 |