Submittal Application Report ### **FOR GRANT OF CERTIFICATION** **FOR** Model: CRS125-24G-1S-2HnD-IN 2412-2462 MHz Multiple Input Multiple Output (MIMO) **Broadband Digital Transmission System** FCC ID: TV7CRS125-24G2HND FOR ### MIKROTIKLS SIA Pernavas 46 Riga, Latvia LV-1009 Test Report Number: 140127 Authorized Signatory: Sot DRogers Scot D. Rogers Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 1 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 ## ROGERS LABS, INC. 4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214 ## **Engineering Test Report for** Grant of Certification Application **FOR** CFR 47, PART 15C - Intentional Radiators CFR 47 Paragraph 15.247 License Exempt Intentional Radiator For ### **MIKROTIKLS SIA** Pernavas 46 Riga, Latvia LV-1009 MIMO Broadband Digital Transmission System Model: CRS125-24G-1S-2HnD-IN Frequency Range 2412-2462 MHz FCC ID#: TV7CRS125-24G2HND Test Date: January 27, 2014 Scot DRogers Certifying Engineer: > Scot D. Rogers Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Telephone/Facsimile: (913) 837-3214 This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 2 of 35 #### **Table Of Contents** | TABLE OF CONTENTS | 3 | |--|----| | REVISIONS | 4 | | FORWARD | 5 | | OPINION / INTERPRETATION OF RESULTS | 5 | | EQUIPMENT TESTED | 5 | | APPLICATION FOR CERTIFICATION | 6 | | EQUIPMENT FUNCTION AND CONFIGURATION | 7 | | Equipment Configuration | 7 | | APPLICABLE STANDARDS & TEST PROCEDURES | 8 | | EQUIPMENT TESTING PROCEDURES | 8 | | AC Line Conducted Emission Test Procedure | 8 | | Radiated Emission Test Procedure | 8 | | Diagram 1 Test arrangement for Conducted emissions | 9 | | Diagram 2 Test arrangement for radiated emissions of tabletop equipment | 10 | | Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS) | 11 | | TEST SITE LOCATIONS | 11 | | LIST OF TEST EQUIPMENT | 12 | | UNITS OF MEASUREMENTS | 13 | | ENVIRONMENTAL CONDITIONS | 13 | | INTENTIONAL RADIATORS | 13 | | Antenna Requirements | 13 | | Restricted Bands of Operation | 13 | | Table 1 Radiated Emissions in Restricted Bands Data | 14 | | Summary of Results for Radiated Emissions in Restricted Bands | 14 | | AC Line Conducted Emissions Procedure | 15 | | Figure 1 AC Line Conducted Emissions Line 1 | 16 | Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Model: CRS125-24G-1S-2HnD-IN Louisburg, KS 66053 Test #: 140127 Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247) Revision 1 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 3 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 | Figure 2 AC Line Conducted Emissions Line 2 | 16 | |---|----| | Table 2 AC Line Conducted Emissions Data (Highest Emissions Line L1) | 17 | | Table 3 AC Line Conducted Emissions Data (Highest Emissions Line L2) | 17 | | Summary of Results for AC Line Conducted Emissions | 17 | | General Radiated Emissions Procedure | 18 | | Table 4 General Radiated Emissions from EUT Data (Highest Emissions) | 19 | | Summary of Results for General Radiated Emissions | 19 | | Operation in the Band 2400-2483.5 MHz | 20 | | Figure 3 Plot of Transmitter Emissions (Across Operational Band, 20 MHz Channel, Chain 1) | | | Figure 4 Plot of Transmitter Emissions (Across Operational Band, 20 MHz Channel, Chain 2) | | | Figure 5 Plot of Transmitter Emissions (Across Operational Band, 40 MHz Channel Chain 1) | | | Figure 6 Plot of Transmitter Emissions (Across Operational Band, 40 MHz Channel Chain 2) | 22 | | Figure 7 Plot of Transmitter Low Band Edge (20 MHz Channel Chain 1) | 23 | | Figure 8 Plot of Transmitter Low Band Edge (20 MHz Channel Chain 2) | 23 | | Figure 9 Plot of Transmitter High Band Edge (20 MHz Channel Chain 1) | 24 | | Figure 10 Plot of Transmitter High Band Edge (20 MHz Channel Chain 2) | 24 | | Figure 11 Plot of Transmitter Low Band Edge (40 MHz Channel Chain 1) | 25 | | Figure 12 Plot of Transmitter Low Band Edge (40 MHz Channel Chain 2) | 25 | | Figure 13 Plot of Transmitter High Band Edge (40 MHz Channel Chain 1) | 26 | | Figure 14 Plot of Transmitter High Band Edge (40 MHz Channel Chain 2) | 26 | | Transmitter Emissions Data | 27 | | Table 5 Transmitter Antenna port Conducted Emissions Data (Total Highest) | 27 | | Table 6 Transmitter Antenna Conducted Emissions Data (per Chain) | 27 | | Table 7 Transmitter Radiated Emission | 28 | | Summary of Results for Transmitter Radiated Emissions of Intentional Radiator | 29 | | STATEMENT OF MODIFICATIONS AND DEVIATIONS | 29 | | ANNEX | 30 | | Annex A Measurement Uncertainty Calculations | 31 | | Annex B Rogers Labs Test Equipment List | | | Annex C Rogers Qualifications | | | | | | Annex D FCC Site Registration Letter | | | Annex E Industry Canada Site Registration Letter | 35 | #### **Revisions** Revision 1 Revision 1 Issued February 26, 2014 Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Mikrotikls SIA Model: CRS125-2 Test #: 140127 Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Test to: CFR47 (15.247) Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 4 of 35 #### **Forward** The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Digital Transmission System Intentional Radiator operating under CFR 47 Paragraph 15.247 modular equipment. Name of Applicant: Mikrotikls SIA FRN: 0014 43 1100 Pernavas 46 Riga, Latvia LV-1009 Model: CRS125-24G-1S-2HnD-IN FCC ID: TV7CRS125-24G2HND Frequency Range: 2412-2462 MHz (20 MHz channel operation), 2422-2452 MHz (40 MHz channel operation) Operating Power: 0.5-watt per chain, 1-Watt combined (20 MHz operation), 0.4-watt per chain, 0.8-Watt combined (40 MHz operation), utilizing permanently attached 2-dBi Gain antennas #### **Opinion / Interpretation of Results** | Tests Performed | Margin (dB) | Results | |---|-------------|----------| | Emissions as per CFR 47 paragraphs 2 and 15.205 | -0.9 | Complies | | Emissions as per CFR 47 paragraphs 2 and 15.207 | -11.6 | Complies | | Emissions as per CFR 47 paragraphs 2 and 15.209 | -0 | Complies | | Harmonic Emissions per CFR 47 15.247 | -13.5 | Complies | | Peak Power Spectral Density per CFR 47 15.247 | -2.8 | Complies | #### **Equipment Tested** Equipment Model FCC I.D. EUT CRS125-24G-1S-2HnD-IN TV7CRS125-24G2HND AC Adapter FLD301-240120-U N/A Laptop Computer Dell Latitude 6CD35Q1 #### Antenna/Type Permanently Attached 2-dBi dipole antennas Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Louisburg, KS 66053 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247) Date: February 26, 2014 Revision 1 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 5 of 35 #### **Application for Certification** (1) Manufacturer: Mikrotikls SIA Pernavas 46 Riga, Latvia LV-1009 (2) Identification: Model: CRS125-24G-1S-2HnD-IN FCC I.D.: TV7CRS125-24G2HND (3) Instruction Book: Refer to Exhibit for Instruction Manual. (4) Description of Circuit Functions: Refer to Exhibit of Operational Description. (5) Block Diagram with Frequencies: Refer to Exhibit of Operational Description. (6) Report of Measurements: Report of measurements follows in this Report. (7) Photographs: Construction, Component Placement, etc.: Refer to Exhibit for photographs of equipment. - (8) List of Peripheral Equipment Necessary for operation. The equipment operates from power received from authorized AC/DC power adapter. The EUT provides 24 Ethernet ports for communications, network switch, and power. During testing, the EUT was connected to CPU through network cable. The EUT received power supplied from external AC/DC supply. - (9) Transition Provisions of CFR47 15.37 are not requested - (10) Not Applicable. The unit is not a scanning receiver. - (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band. - (12) The equipment is not software defined and this section is not applicable. Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Louisburg, KS 66053 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247) Date: February 26, 2014 Revision 1 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 6 of 35 #### **Equipment Function and Configuration** The EUT is a 2412-2462 MHz MIMO Digital Transmission System used to transmit data in applications offering broadband wireless connectivity. The design utilizes two permanently attached 2-dBi gain antennas. The device operates in a 2x2 Spatial Multiplexing MIMO Configuration providing network connection ports for up to 24 network devices. For testing purposes, the CRS125-24G-1S-2HnD-IN transceiver was connected to the manufacturer supplied AC/DC power supply and communicating to the laptop computer through the Ethernet network interface. This configuration offered operational control of the transmitter and communications over the network interface between
the EUT and supporting computer system. The CRS125-24G-1S-2HnD-IN offers 24 Ethernet ports for connection with the network, USB and SPI interface ports, and power input port. No other interfacing options are provided. For testing purposes, the CRS125-24G-1S-2HnD-IN received powered from the AC/DC adapter and was configured to transmit in available modes. The antenna system complies with requirements for unique antenna connection port. #### **Equipment Configuration** Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 7 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 #### Applicable Standards & Test Procedures In accordance with the Federal Communications Code of Federal Regulations Title 47, dated October 1, 2013, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247 the following information is submitted. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2009, KDB 558074 D01 v03r1, KDB 662911 D02 MIMO v02, and KDB 913591. Testing for the AC line-conducted and radiated emissions testing were performed as defined in section 6 of ANSI C63.10-2009. #### **Equipment Testing Procedures** #### AC Line Conducted Emission Test Procedure Testing for the AC line-conducted emissions was performed as defined in ANSI C63.10-2009. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50-µHy choke. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram 1 showing typical test arrangement and photographs in exhibits for EUT placement used during testing. #### Radiated Emission Test Procedure The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. Radiated emissions testing were performed as required in CFR47 paragraph 15C, RSS-210 and as specified in sections 6 and 7 of ANSI C63.10-2009. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. The frequency spectrum from 9 kHz to 25,000 MHz was searched for during preliminary investigation. Refer to diagrams 2 and 3 showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 8 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 - 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1). - 2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2). - 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3). - 3.1 All other equipment powered from additional LISN(s). - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment. - 3.3 LISN at least 80 cm from nearest part of EUT chassis - 4. Non-EUT components of EUT system being tested - 5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1). - 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options). - 7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test. #### Diagram 1 Test arrangement for Conducted emissions Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 9 of 35 - 1. A LISN is optional for radiated measurements between 30 MHz to 1000 MHz, but not allowed for measurements below 30 MHz and above 1000 MHz (See 6.4.3, 6.5.1, and 6.6.3). If used, connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω . LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3.1). - 1.1 LISN spaced at least 80 cm from nearest part of EUT chassis. - 2. The EUT shall be placed in the center of the table to the extent possible (See 6.2.3.1 and 6.3.4). - 3. A vertical conducting plane, if used for conducted tests per 6.2.2, shall be removed for radiated emission tests. - 4. Antenna may be integral or detachable, depending on the EUT. - 5. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. #### Diagram 2 Test arrangement for radiated emissions of tabletop equipment Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 10 of 35 | Frequency: 9 kHz-30 MHz | Frequency: 30 MHz- 1 GHZ | Frequency: Above 1 GHz | |-------------------------|--------------------------|------------------------| | Loop Antenna | Broadband Biconilog | Horn | | RBW = 9 kHz | RBW = 120 kHz | RBW = 1 MHz | | VBW = 30 kHz | VBW = 120 kHz | VBW = 1 MHz | | Sweep time = Auto | Sweep time = Auto | Sweep time = Auto | | Detector = PK, QP | Detector = PK, QP | Detector = PK, AV | Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS) #### **Test Site Locations** Conducted EMI The AC power line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS Site Registration Refer to Annex for Site Registration Letters NVLAP Accreditation Lab code 200087-0 Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Louisburg, KS 66053 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247) Date: February 26, 2014 Revision 1 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 11 of 35 #### **List of Test Equipment** A Rohde and Schwarz ESU40 and/or Hewlett Packard 8591EM was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde and Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment. | AC Line Conducted Emissions (0.150 -30 MHz) | | | | | | |---|-----------------------------------|-------------------|--|--|--| | RBW | AVG. BW | Detector Function | | | | | 9 kHz | 30 kHz | Peak / Quasi Peak | | | | | | Emissions (30-1000 MHz) | | | | | | RBW | AVG. BW | Detector Function | | | | | 120 kHz | 120 kHz 300 kHz Peak / Quasi Peak | | | | | | | Emissions (Above 1000 MHz) | | | | | | RBW | Video BW | Detector Function | | | | | 1 MHz | Peak | | | | | | 1 MHz | 1 MHz / 10 kHz | Peak / Average | | | | | <u>Manufacturer</u> | Model (SN) | Band | Cal Date | <u>Due</u> | |---------------------
--|--|---|---| | Comp. Design FC | C-LISN-2-MOD.CD(126) |).15-30MHz | 10/13 | 10/14 | | Time Microwave | 750HF290-750 (L10M) | 9kHz-40 GHz | 10/13 | 10/14 | | Belden | RG-58 (L1-CAT3-11509 | 9)9kHz-30 MH | z10/13 | 10/14 | | Belden | RG-58 (L2-CAT3-11509 | 9)9kHz-30 MH | z10/13 | 10/14 | | ARA | BCD-235-B (169) | 20-350MHz | 10/13 | 10/14 | | EMCO | 3147 (40582) | 200-1000MHz | 210/13 | 10/14 | | Com Power | AH-118 (10110) | 1-18 GHz | 10/13 | 10/14 | | Com Power | AH-840 (101046) | 18-40 GHz | 5/13 | 5/14 | | EMCO | 6509 (9502-1374) | $.001-30~\mathrm{MHz}$ | 10/13 | 10/14 | | Sunol | JB-6 (A100709) | 30-1000 MHz | 10/13 | 10/14 | | Standard | FXRY638A (621786) | 10-18 GHz | 5/13 | 5/14 | | EMCO | 3143 (9607-1277) | 20-1200 MHz | 5/13 | 5/14 | | HP | 8591EM (3628A00871) | 9kHz-1.8GHz | 5/13 | 5/14 | | HP | 8562A (3051A05950) | 9kHz-110GHz | 25/13 | 5/14 | | Rohde & Schwarz | ESU40 (100108) | 20Hz-40GHz | 5/13 | 5/14 | | Com-Power | PA-010 (171003) | 100Hz-30MH | z 10/13 | 10/14 | | Com-Power | CPPA-102 (01254) | 1-1000 MHz | 10/13 | 10/14 | | Com-Power | PAM-118A (551014) | 0.5-18 GHz | 10/13 | 10/14 | | | Comp. Design FComp. FCo | Comp. Design FCC-LISN-2-MOD.CD(126) Time Microwave 750HF290-750 (L10M) Belden RG-58 (L1-CAT3-11509) Belden RG-58 (L2-CAT3-11509) ARA BCD-235-B (169) EMCO 3147 (40582) Com Power AH-118 (10110) Com Power AH-840 (101046) EMCO 6509 (9502-1374) Sunol JB-6 (A100709) Standard FXRY638A (621786) EMCO 3143 (9607-1277) HP 8591EM (3628A00871) HP 8562A (3051A05950) Rohde & Schwarz ESU40 (100108) Com-Power PA-010 (171003) Com-Power CPPA-102 (01254) | Comp. Design FCC-LISN-2-MOD.CD(126).15-30MHz Time Microwave 750HF290-750 (L10M) 9kHz-40 GHz Belden RG-58 (L1-CAT3-11509)9kHz-30 MH Belden RG-58 (L2-CAT3-11509)9kHz-30 MH ARA BCD-235-B (169) 20-350MHz EMCO 3147 (40582) 200-1000MHz Com Power AH-118 (10110) 1-18 GHz Com Power AH-840 (101046) 18-40 GHz EMCO 6509 (9502-1374) .001-30 MHz Sunol JB-6 (A100709) 30-1000 MHz Standard FXRY638A (621786) 10-18 GHz EMCO 3143 (9607-1277) 20-1200 MHz HP 8591EM (3628A00871) 9kHz-1.8GHz HP 8562A (3051A05950) 9kHz-110GHz Rohde & Schwarz ESU40 (100108) 20Hz-40GHz Com-Power PA-010 (171003) 100Hz-30MH Com-Power CPPA-102 (01254) 1-1000 MHz | Comp. Design FCC-LISN-2-MOD.CD(126).15-30MHz 10/13 Time Microwave 750HF290-750 (L10M) 9kHz-40 GHz 10/13 Belden RG-58 (L1-CAT3-11509)9kHz-30 MHz10/13 Belden RG-58 (L2-CAT3-11509)9kHz-30 MHz10/13 ARA BCD-235-B (169) 20-350MHz 10/13 EMCO 3147 (40582) 200-1000MHz 10/13 Com Power AH-118 (10110) 1-18 GHz 10/13 Com Power AH-840 (101046) 18-40 GHz 5/13 EMCO 6509 (9502-1374) .001-30 MHz 10/13 Sunol JB-6 (A100709) 30-1000 MHz 10/13 Standard FXRY638A (621786) 10-18 GHz 5/13 EMCO 3143 (9607-1277) 20-1200 MHz 5/13 HP 8591EM (3628A00871) 9kHz-1.8GHz5/13 HP 8562A (3051A05950) 9kHz-110GHz 5/13 Rohde & Schwarz ESU40 (100108) 20Hz-40GHz 5/13 Com-Power PA-010 (171003) 100Hz-30MHz 10/13 | Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Louisburg, KS 66053 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247) Date: February 26, 2014 Revision 1 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 12 of 35 #### **Units of Measurements** Conducted EMI Data is in dBµV; dB referenced to one microvolt Radiated EMI Data is in dBµV/m; dB/m referenced to one microvolt per meter Sample Calculation: RFS = Radiated Field Strength, FSM = Field Strength Measured A.F. = Receive antenna factor, Gain = amplification gains and/or cable losses RFS $(dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB) - Gain (dB)$ #### **Environmental Conditions** Ambient Temperature 20.6° C Relative Humidity 35% Atmospheric Pressure 1015.3 mb #### Intentional Radiators As per CFR47, Subpart C, paragraph 15.247 the following information is submitted. #### Antenna Requirements The EUT utilizes permanently attached whip antennas mounted to the side of the enclosure and offers no provision for antenna replacement. The antenna connection point complies with the unique antenna connection requirements. The requirements of 15.203 are fulfilled; there are no deviations or exceptions to the specification. #### Restricted Bands of Operation Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2009 paragraph 6 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Louisburg, KS 66053 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247) Date: February 26, 2014 Revision 1 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 13 of 35 emission values take into account the received and measured radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses. **Table 1 Radiated Emissions in Restricted Bands Data** | Frequency in MHz | Horizontal
Peak
(dBµV/m) | Horizontal
Quasi-Peak
(dBµV/m) | Horizontal
Average
(dBµV/m) | Vertical
Peak
(dBµV/m) | Vertical
Quasi-Peak
(dBµV/m) | Vertical
Average
(dBµV/m) | Limit @ 3m
(dBµV/m) | |------------------|--------------------------------|--------------------------------------|-----------------------------------|------------------------------|------------------------------------|---------------------------------|------------------------| | 2390.0 | 62.2 | N/A | 46.4 | 64.0 | N/A | 49.7 | 54.0 | | 2483.5 | 64.4 | N/A | 50.6 | 66.3 | N/A | 53.1 | 54.0 | | 4824.0 | 46.1 | N/A | 33.8 | 45.0 | N/A | 38.1 | 54.0 | | 4874.0 | 48.3 | N/A | 34.1 |
45.8 | N/A | 33.7 | 54.0 | | 4924.0 | 54.0 | N/A | 16.6 | 16.1 | N/A | 40.5 | 54.0 | | 7236.0 | 48.8 | N/A | 36.4 | 49.1 | N/A | 37.0 | 54.0 | | 7311.0 | 48.9 | N/A | 36.4 | 55.6 | N/A | 36.3 | 54.0 | | 7386.0 | 54.0 | N/A | 16.6 | 16.1 | N/A | 36.1 | 54.0 | | 12060.0 | 50.9 | N/A | 37.3 | 49.9 | N/A | 37.2 | 54.0 | | 12185.0 | 49.0 | N/A | 36.6 | 49.6 | N/A | 37.0 | 54.0 | | 12310.0 | 50.8 | N/A | 37.9 | 50.8 | N/A | 38.7 | 54.0 | | 14472.0 | 49.3 | N/A | 36.8 | 49.3 | N/A | 36.7 | 54.0 | Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz. #### Summary of Results for Radiated Emissions in Restricted Bands The EUT demonstrated compliance with the radiated emissions requirements of CFR 47 Part 15C Intentional Radiators. The EUT demonstrated a worst-case minimum margin of -0.9 dB below the radiated emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 14 of 35 #### AC Line Conducted Emissions Procedure The EUT was arranged in a typical equipment configuration and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. The manufacturer supplied AC power adapter for the EUT was connected to the LISN. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing were carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequency of each emission displaying the highest amplitude. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then the data was recorded with maximum conducted emissions levels. Refer to figures one and two for plots of the EUT AC Line Conducted emissions while operating with the manufacturer supplied AC/DC adapter. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 15 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 **Figure 1 AC Line Conducted Emissions Line 1** Figure 2 AC Line Conducted Emissions Line 2 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 SN: 49C702384413/352 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 16 of 35 **Table 2 AC Line Conducted Emissions Data (Highest Emissions Line L1)** | Trace | Frequenc | y | Level (dBµV) | Detector | Delta Limit/dB | |-------|---------------|-----|--------------|------------|----------------| | 1 | 150.000000000 | kHz | 45.25 | Quasi Peak | -20.75 | | 2 | 170.000000000 | kHz | 32.96 | Average | -22.00 | | 2 | 198.000000000 | kHz | 25.75 | Average | -27.94 | | 1 | 418.000000000 | kHz | 43.55 | Quasi Peak | -13.94 | | 2 | 422.000000000 | kHz | 35.74 | Average | -11.66 | | 2 | 486.000000000 | kHz | 29.57 | Average | -16.67 | | 1 | 514.000000000 | kHz | 30.08 | Quasi Peak | -25.92 | | 1 | 1.426000000 | MHz | 34.24 | Quasi Peak | -21.76 | | 2 | 1.454000000 | MHz | 28.91 | Average | -17.09 | | 1 | 1.602000000 | MHz | 34.72 | Quasi Peak | -21.28 | | 2 | 1.610000000 | MHz | 27.89 | Average | -18.11 | | 1 | 2.374000000 | MHz | 33.72 | Quasi Peak | -22.28 | Other emissions present had amplitudes at least 20 dB below the limit. **Table 3 AC Line Conducted Emissions Data (Highest Emissions Line L2)** | Trace | Frequenc | y | Level (dBµV) | Detector | Delta Limit/dB | |-------|---------------|-----|--------------|------------|----------------| | 1 | 154.000000000 | kHz | 40.86 | Quasi Peak | -24.92 | | 2 | 170.000000000 | kHz | 33.22 | Average | -21.74 | | 1 | 194.000000000 | kHz | 41.21 | Quasi Peak | -22.65 | | 2 | 198.000000000 | kHz | 27.81 | Average | -25.88 | | 1 | 226.000000000 | kHz | 35.71 | Quasi Peak | -26.89 | | 2 | 318.000000000 | kHz | 28.37 | Average | -21.39 | | 1 | 318.000000000 | kHz | 36.19 | Quasi Peak | -23.57 | | 2 | 374.000000000 | kHz | 25.98 | Average | -22.43 | | 1 | 378.000000000 | kHz | 35.20 | Quasi Peak | -23.12 | | 2 | 422.000000000 | kHz | 32.45 | Average | -14.96 | | 1 | 422.000000000 | kHz | 43.76 | Quasi Peak | -13.65 | | 2 | 474.000000000 | kHz | 29.60 | Average | -16.84 | Other emissions present had amplitudes at least 20 dB below the limit. #### Summary of Results for AC Line Conducted Emissions The EUT demonstrated compliance to the conducted emissions requirements of CFR47 Part 15C equipment. The EUT demonstrated minimum margin of -11.6 dB below the limit. Measurements were taken using the peak, quasi peak, and average, measurement function for each emissions amplitude and were below the limits stated in the specification. Other emissions were present with recorded data representing worst-case amplitudes. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Test to: CFR47 (15.247) Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 17 of 35 NVLAP Lab Code 200087-0 #### General Radiated Emissions Procedure The EUT was arranged in a typical equipment configuration and operated through all available modes with worst-case data recorded. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or Double Ridge or pyramidal horns and mixers above 1 GHz, notch filters, and appropriate amplifiers and external mixers were utilized. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 18 of 35 **Table 4 General Radiated Emissions from EUT Data (Highest Emissions)** | Frequency in MHz | Horizontal
Peak
(dBµV/m) | Horizontal
Quasi-Peak
(dBµV/m) | Horizontal
Average
(dBµV/m) | Vertical
Peak
(dBµV/m) | Vertical
Quasi-Peak
(dBµV/m) | Vertical
Average
(dBµV/m) | Limit @ 3m
(dBµV/m) | |------------------|--------------------------------|--------------------------------------|-----------------------------------|------------------------------|------------------------------------|---------------------------------|------------------------| | 96.7 | 31.6 | 26.5 | N/A | 34.5 | 28.8 | N/A | 43.5 | | 106.0 | 36.1 | 30.1 | N/A | 33.1 | 27.9 | N/A | 43.5 | | 125.0 | 39.5 | 37.3 | N/A | 37.6 | 35.3 | N/A | 43.5 | | 137.8 | 34.4 | 29.6 | N/A | 25.9 | 21.1 | N/A | 43.5 | | 146.6 | 34.2 | 28.9 | N/A | 27.9 | 21.3 | N/A | 43.5 | | 250.0 | 52.1 | 44.5 | N/A | 46.8 | 39.9 | N/A | 46.0 | | 262.5 | 43.5 | 38.0 | N/A | 41.8 | 35.4 | N/A | 46.0 | | 265.6 | 40.6 | 37.8 | N/A | 41.5 | 38.8 | N/A | 46.0 | | 271.4 | 49.1 | 45.1 | N/A | 33.6 | 26.0 | N/A | 46.0 | | 285.0 | 29.0 | 21.3 | N/A | 25.6 | 23.9 | N/A | 46.0 | | 300.0 | 50.7 | 46.0 | N/A | 47.6 | 43.6 | N/A | 46.0 | | 385.7 | 38.1 | 33.1 | N/A | 41.2 | 37.4 | N/A | 46.0 | Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz. #### Summary of Results for General Radiated Emissions The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C paragraph 15.209 Intentional Radiators. The EUT demonstrated a minimum margin of -0 dB below the requirements. Other emissions were present with amplitudes at least 20 dB
below the Limits. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 19 of 35 #### Operation in the Band 2400-2483.5 MHz Radiated emissions were measured on the Open Area Test Site (OATS) at a three-meter distance. The EUT utilizes integral antenna system and provides not provision for alternate antenna system. The EUT was placed on a wooden turntable 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna located on the OATS. The peak and quasi-peak amplitude of the frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of emissions above 1000 MHz were measured using a spectrum analyzer. Emissions data was recorded from the measurement results. Data presented reflects measurement result corrected to account for measurement system gains and losses. This product utilizes permanently attached antenna system on the enclosure offering no provision for end user antenna replacement. Antenna port conducted emission measurements were performed by test personnel at the antenna port for each chain. Plots were made of transmitter performance for reference purposes. Refer to figures three through fourteen showing plots of the EUT performance displaying compliance with the specifications. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Prione/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125 Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 SN: 49C702384413/352 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 20 of 35 Figure 3 Plot of Transmitter Emissions (Across Operational Band, 20 MHz Channel, Chain 1) Figure 4 Plot of Transmitter Emissions (Across Operational Band, 20 MHz Channel, Chain 2) Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) Date File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 21 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 Figure 5 Plot of Transmitter Emissions (Across Operational Band, 40 MHz Channel Chain 1) Figure 6 Plot of Transmitter Emissions (Across Operational Band, 40 MHz Channel Chain 2) Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 FCC ID#: TV7CRS125-24G2HND Test to: CFR47 (15.247) Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 22 of 35 SN: 49C702384413/352 Figure 7 Plot of Transmitter Low Band Edge (20 MHz Channel Chain 1) Figure 8 Plot of Transmitter Low Band Edge (20 MHz Channel Chain 2) Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 SN: 49C702384413/352 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 23 of 35 Figure 9 Plot of Transmitter High Band Edge (20 MHz Channel Chain 1) Figure 10 Plot of Transmitter High Band Edge (20 MHz Channel Chain 2) Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 24 of 35 Figure 11 Plot of Transmitter Low Band Edge (40 MHz Channel Chain 1) Figure 12 Plot of Transmitter Low Band Edge (40 MHz Channel Chain 2) Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 25 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Figure 13 Plot of Transmitter High Band Edge (40 MHz Channel Chain 1) Figure 14 Plot of Transmitter High Band Edge (40 MHz Channel Chain 2) Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 FCC ID#: TV7CRS125-24G2HND Test to: CFR47 (15.247) Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 26 of 35 SN: 49C702384413/352 #### Transmitter Emissions Data **Table 5 Transmitter Antenna port Conducted Emissions Data (Total Highest)** | Channel Mode Total Output Power (dBm / Watts) | | Total Power Spectral Density (dBm) | |---|----------------------|------------------------------------| | 20 MHz | 30.0 dBm / 1.0 Watts | 5.2 | | 40 MHz | 29.0 dBm / 0.8 Watts | -1.7 | **Table 6 Transmitter Antenna Conducted Emissions Data (per Chain)** | Frequency
MHz | Antenna Conducted
Output Power dBm | 6-dB Occupied
Bandwidth kHz | Power Spectral
Density dBm | | | | | | |-----------------------|---------------------------------------|--------------------------------|-------------------------------|--|--|--|--|--| | | 20 MHz Mode (Chain 0) | | | | | | | | | 2412.0 | 26.70 | 16,725 | 1.95 | | | | | | | 2437.0 | 26.93 | 16,725 | 0.95 | | | | | | | 2462.0 | 26.88 | 16,725 | 1.61 | | | | | | | | 20 MHz Moo | de (Chain 1) | | | | | | | | 2412.0 | 27.03 | 16,703 | 2.48 | | | | | | | 2437.0 | 26.99 | 16,705 | 1.22 | | | | | | | 2462.0 | 26.97 | 16,703 | 2.44 | | | | | | | | 40 MHz Moo | de (Chain 0) | | | | | | | | 2422.0 | 25.97 | 36,460 | -5.71 | | | | | | | 2447.0 | 25.94 | 36,420 | -5.17 | | | | | | | 2452.0 | 25.90 | 36,300 | -5.31 | | | | | | | 40 MHz Mode (Chain 1) | | | | | | | | | | 2422.0 | 26.01 | 36,380 | -3.95 | | | | | | | 2447.0 | 26.01 | 36,460 | -4.41 | | | | | | | 2452.0 | 26.07 | 36,440 | -4.09 | | | | | | Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 27 of 35 SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND **Table 7 Transmitter Radiated Emission** | Frequency in MHz | Horizontal
Peak (dBµV/m) | Horizontal
Average (dBµV/m) | Vertical Peak
(dBµV/m) | Vertical Average (dBμV/m) | Limit @ 3m
(dBµV/m) | |------------------|-----------------------------|--------------------------------|---------------------------|---------------------------|------------------------| | 2412.0 | | | | | | | 4824.0 | 46.1 | 33.8 | 45.0 | 38.1 | 54.0 | | 7236.0 | 48.8 | 36.4 | 49.1 | 37.0 | 54.0 | | 9648.0 | 48.7 | 36.1 | 48.7 | 37.5 | 54.0 | | 12060.0 | 50.9 | 37.3 | 49.9 | 37.2 | 54.0 | | 14472.0 | 49.3 | 36.8 | 49.3 | 36.7 | 54.0 | | 16884.0 | 50.3 | 37.5 | 50.1 | 37.5 | 54.0 | | 2437.0 | | | | | | | 4874.0 | 48.3 | 34.1 | 45.8 | 33.7 | 54.0 | | 7311.0 | 48.9 | 36.4 | 55.6 | 36.3 | 54.0 | | 9748.0 | 47.8 | 36.0 | 48.6 | 35.9 | 54.0 | | 12185.0 | 49.0 | 36.6 | 49.6 | 37.0 | 54.0 | | 14622.0 | 48.3 | 36.0 | 48.9 | 36.5 | 54.0 | | 17059.0 | 50.6 | 38.2 | 50.8 | 38.1 | 54.0 | | 2462.0 | | | | | | | 4924.0 | 47.8 | 34.4 | 46.0 | 40.5 | 54.0 | | 7386.0 | 49.7 | 35.7 | 51.0 | 36.1 | 54.0 | | 9848.0 | 49.4 | 37.1 | 49.7 | 37.3 | 54.0 | | 12310.0 | 50.8 | 37.9 | 50.8 | 38.7 | 54.0 | | 14772.0 | 50.5 | 37.2 | 51.0 | 37.3 | 54.0 | | 17234.0 | 53.5 | 39.9 | 53.1 | 39.9 | 54.0 | Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 28 of 35 #### Summary of Results for Transmitter Radiated Emissions of Intentional Radiator The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Part 15.247. The peak antenna port conducted power was 0.5 watts (27 dBm) per chain. The combined peak power spectral density presented a minimum margin of -2.8 dB below the requirements. The EUT demonstrated a minimum margin of -13.5 dB below the harmonic emissions requirements. There were no other significantly measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. There were no other deviations or exceptions to the requirements. #### Statement of Modifications and Deviations No modifications to the EUT were required for the unit to demonstrate compliance with the CFR47 Part 15C emissions standards. There were no deviations or modifications to the specifications. Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fay: (913) 837-321/ Phone/Fax: (913) 837-3214 Revision 1 2214 Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Mikrotikls SIA Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 29 of 35 #### Annex - Annex A Measurement Uncertainty Calculations - Annex B Rogers Labs Test Equipment List - Annex C Rogers Qualifications - Annex D FCC Site Registration Letter - Annex E Industry Canada Site Registration Letter Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Phone/Fax: (913) 837-321 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 30 of 35 #### Annex A Measurement Uncertainty Calculations Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements. | Measurement Uncertainty | U _(E) | $U_{(lab)}$ | |---|------------------|-------------| | 3 Meter Horizontal 30-200 MHz Measurements | 2.08 |
4.16 | | 3 Meter Vertical 30-200 MHz Measurements | 2.16 | 4.33 | | 3 Meter Vertical Measurements 200-1000 MHz | 2.99 | 5.97 | | 10 Meter Horizontal Measurements 30-200 MHz | 2.07 | 4.15 | | 10 Meter Vertical Measurements 30-200 MHz | 2.06 | 4.13 | | 10 Meter Horizontal Measurements 200-1000 MHz | 2.32 | 4.64 | | 10 Meter Vertical Measurements 200-1000 MHz | 2.33 | 4.66 | | 3 Meter Measurements 1-6 GHz | 2.57 | 5.14 | | 3 Meter Measurements 6-18 GHz | 2.58 | 5.16 | | AC Line Conducted | 1.72 | 3.43 | Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 SN: 49C702384413/352 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 31 of 35 #### Annex B Rogers Labs Test Equipment List | Equipment (Serial Number) | Calibration Due | |---|-----------------| | Spectrum Analyzer: Rohde & Schwarz ESU40 (100108) | 5/14 | | Spectrum Analyzer: HP 8562A, 11518, 11519, and 11520 (3051A05950) | | | Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W | | | Spectrum Analyzer: HP 8591EM (3628A00871) | 5/14 | | Antenna: EMCO Biconilog Model: 3143 (9607-1277) | 5/14 | | Antenna: Sunol Biconilog Model: JB6 (A100709) | 10/14 | | Antenna: EMCO Log Periodic Model: 3147 (40582) | 10/14 | | Antenna: Com Power Model: AH-118 (10110) | 10/14 | | Antenna: Com Power Model: AH-840 (101046) | 10/14 | | Antenna: Antenna Research Biconical Model: BCD 235 (169) | 10/14 | | Antenna: EMCO 6509 (9502-1374) | 10/14 | | LISN: Compliance Design Model: FCC-LISN-2.Mod.cd (126) | 10/14 | | R.F. Preamp Com-Power Model: CPPA-102 (01254) | 10/14 | | Cable: Belden RG-58 (L1-CAT3-11590) | 10/14 | | Cable: Belden RG-58 (L2-CAT3-11590) | 10/14 | | Cable: Belden 8268 (L3) | 10/14 | | Cable: Time Microwave: 4M-750HF290-750 (L4M) | 10/14 | | Cable: Time Microwave: 10M-750HF290-750 (L10M) | 10/14 | | Frequency Counter: Leader LDC825 | 2/14 | | Oscilloscope Scope: Tektronix 2230 | 2/14 | | Wattmeter: Bird 43 with Load Bird 8085 | 2/14 | | Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140 | 2/14 | | R.F. Generators: HP 606A, HP 8614A, HP 8640B | 2/14 | | R.F. Power Amp 65W Model: 470-A-1010 | 2/14 | | R.F. Power Amp 50W M185- 10-501 | 2/14 | | R.F. Power Amp A.R. Model: 10W 1010M7 | 2/14 | | R.F. Power Amp EIN Model: A301 | 2/14 | | LISN: Compliance Eng. Model 240/20 | 2/14 | | LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08 | 2/14 | | Antenna: EMCO Dipole Set 3121C | 2/14 | | Antenna: C.D. B-101 | 2/14 | | Antenna: Solar 9229-1 & 9230-1 | 2/14 | | Audio Oscillator: H.P. 201CD | 2/14 | | ELGAR Model: 1751 | 2/14 | | ELGAR Model: TG 704A-3D | 2/14 | | ESD Test Set 2010i | 2/14 | | Fast Transient Burst Generator Model: EFT/B-101 | 2/14 | | Field Intensity Meter: EFM-018 | 2/14 | | KEYTEK Ecat Surge Generator | 2/14 | Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Model: CRS125-24G-1S-2HnD-IN SN: 49C702384413/352 Louisburg, KS 66053 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247) Date: February 26, 2014 Revision 1 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 32 of 35 NVLAP Lab Code 200087-0 #### Annex C Rogers Qualifications Scot D. Rogers, Engineer #### Rogers Labs, Inc. Mr. Rogers has approximately 17 years' experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment. #### Positions Held Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years Electrical Engineer: Rogers Labs, Inc. Current #### **Educational Background** - 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University. - 2) Bachelor of Science Degree in Business Administration Kansas State University. - 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming. Scot D. Rogers Scot DRogers Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test #: 140127 FCC ID#: TV7CRS125-24G2HND Test to: CFR47 (15.247) Date: February 26, 2014 SN: 49C702384413/352 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 33 of 35 #### Annex D FCC Site Registration Letter #### FEDERAL COMMUNICATIONS COMMISSION **Laboratory Division** 7435 Oakland Mills Road Columbia, MD 21046 June 28, 2013 Registration Number: 90910 Rogers Labs, Inc. 4405 West 259th Terrace, Louisburg, KS 66053 Attention: Scot Rogers, Re: Measurement facility located at Louisburg 3 & 10 meter site Date of Renewal: June 28, 2013 #### Dear Sir or Madam: Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years. Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms. **Industry Analyst** Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 Test to: CFR47 (15.247) SN: 49C702384413/352 FCC ID#: TV7CRS125-24G2HND Date: February 26, 2014 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 34 of 35 #### Annex E Industry Canada Site Registration Letter Industry Industrie June 19, 2013 OUR FILE: 46405-3041 Submission No: 168037 Rogers Labs Inc. 4405 West 259th Terrace Louisburg KS, USA 66053 Attention: Mr. Scot D. Rogers Dear Sir: The Bureau has received your application for the renewal of 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 3041A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information; - The company address code associated to the site(s) located at the above address is: 3041A Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted. The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to **exceed three years**. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h tt00052e.html. If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence. Yours sincerely, Bill Payn Revision 1 For: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Ave., Building 94 P.O. Box 11490, Station "H" Ottawa, Ontario K2H 8S2 Email: Bill.Payn@ic.gc.ca Tel. No. (613) 990-3639 Fax. No. (613) 990-4752 Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Mikrotikls SIA Model: CRS125-24G-1S-2HnD-IN Test #: 140127 FCC ID#: TV7CRS125-24G2HND Test to: CFR47 (15.247) Date: February 26, 2014 SN: 49C702384413/352 File: Mikrotikls CRS125_24G2HND TstRpt 140127 Page 35 of 35