

Report Sea

Report No. : EED32Q81556402 Page 1 of 71

# TEST REPORT

Product : H2D

Trade mark : bambulab

Model/Type reference : PF003-D, PF003-M

Serial Number : N/A

Report Number : EED32Q81556402

FCC ID : 2A6J8-PF003D Date of Issue : Mar. 13, 2025

Test Standards : 47 CFR Part 15 Subpart E

Test result : PASS

## Prepared for:

Shenzhen Tuozhu Technology Co., Ltd. Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen

### Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Zhenxia Wen

Zhenxia Wen

Zhenxia Wen

Approved by:

Approved by:

Aaron Ma

Reviewed by:

Frazer Li

Mar. 13, 2025

Check No.: 8913300924



Page 2 of 71

# Content

| 1 CONTENT                                                                                                                                                                                                                                                     | •••••         | ••••• | ••••••••• |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-----------|
| 2 VERSION                                                                                                                                                                                                                                                     | •••••         | ••••• |           |
| 3 TEST SUMMARY                                                                                                                                                                                                                                                |               |       |           |
| 4 GENERAL INFORMATION                                                                                                                                                                                                                                         |               |       |           |
| 4.1 CLIENT INFORMATION                                                                                                                                                                                                                                        |               |       |           |
| 5 EQUIPMENT LIST                                                                                                                                                                                                                                              |               |       | 9         |
| 6 RADIO TECHNICAL REQUIREMENTS                                                                                                                                                                                                                                | SPECIFICATION |       | 12        |
| 6.1 ANTENNA REQUIREMENT 6.2 AC POWER LINE CONDUCTED EMISSI 6.3 MAXIMUM CONDUCTED OUTPUT POW 6.4 6DB EMISSION BANDWIDTH 6.5 26DB EMISSION BANDWIDTH AND 99% 6.6 MAXIMUM POWER SPECTRAL DENSITY 6.7 FREQUENCY STABILITY 6.8 RADIATED EMISSION WHICH FALL IN THE | IONS          |       |           |
| 7 APPENDIX 5G WI-FI                                                                                                                                                                                                                                           |               |       | 60        |
| PHOTOGRAPHS OF TEST SETUP                                                                                                                                                                                                                                     |               |       | 6         |
| PHOTOGRAPHS OF EUT CONSTRUCT                                                                                                                                                                                                                                  | IONAL DETAILS |       | 70        |
|                                                                                                                                                                                                                                                               |               |       |           |

































# 2 Version

| Version No. | Date          | Description  |     |
|-------------|---------------|--------------|-----|
| 00          | Mar. 13, 2025 | <br>Original | _0~ |
| (,          |               |              |     |
|             |               |              |     |











































































Report No.: EED32Q81556402 Page 4 of 71

3 Test Summary

| 1.20 %                                                |                                                | 1 20 % |
|-------------------------------------------------------|------------------------------------------------|--------|
| Test Item                                             | Test Requirement                               | Result |
| Antenna Requirement                                   | 47 CFR Part 15 Subpart C Section 15.203        | PASS   |
| AC Power Line Conducted<br>Emission                   | 47 CFR Part 15 Subpart E Section 15.407 (b)(6) | PASS   |
| Duty Cycle                                            | 47 CFR Part 15 Subpart E Section 15.407        | PASS   |
| Maximum Conducted Output Power                        | 47 CFR Part 15 Subpart E Section 15.407 (a)    | PASS   |
| 26dB emission bandwidth                               | 47 CFR Part 15 Subpart E Section 15.407 (a)    | PASS   |
| 99% Occupied bandwidth                                | (6,)                                           | PASS   |
| 6dB emission bandwidth                                | 47 CFR Part 15 Subpart E Section 15.407 (e)    | PASS   |
| Maximum Power Spectral Density                        | 47 CFR Part 15 Subpart E Section 15.407 (a)    | PASS   |
| Frequency stability                                   | 47 CFR Part 15 Subpart E Section 15.407 (g)    | PASS   |
| Radiated Emissions                                    | 47 CFR Part 15 Subpart E Section 15.407 (b)    | PASS   |
| Radiated Emissions which fall in the restricted bands | 47 CFR Part 15 Subpart E Section 15.407 (b)    | PASS   |

Remark:

Model No.: PF003-D, PF003-M

Both models have been tested, but reflect the worst model data (PF003-D), Product H2D (product name)with its model PF003-D (model no.) is identical with the model PF003-M (model no.) on circuitry design, PCB layout, electrical components used, internal wiring of main frame parts, and only different are PF003-M contains below accessories more than PF003-D:

- 1. One laser module (Bambu Lab Laser Module 10W/ SL001, Bambu Lab Laser Module 40W/ SL002);
- 2. One cutting module (Bambu Lab Cutting Module/ SC001);
- One pump module (Builtin Air Pump/ FAC124); 3.
- 4. One emergency stop switch;
- Different enclosure materials, F003-M uses laser protection material while PF003-D uses transparent glass.















Page 5 of 71 Report No. : EED32Q81556402

# **General Information**

# 4.1 Client Information

| Applicant:                                  | Shenzhen Tuozhu Technology Co., Ltd.                                                                                  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Address of Applicant:                       | Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen                           |  |  |
| Manufacturer:                               | Shenzhen Tuozhu Technology Co., Ltd.                                                                                  |  |  |
| Address of Manufacturer:                    | Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen                           |  |  |
| Factory: Shenzhen Zhuhe Technology Co.,Ltd. |                                                                                                                       |  |  |
| Address of Factory:                         | Building M, No.28 Dayang Road, Rentian Community, Fuhai Street,<br>Bao'an District, Shenzhen City, Guangdong Province |  |  |

4.2 General Description of EUT

| Product Name:         | H2D                                                                                                                             |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Model No.(EUT):       | PF003-D, PF003-M                                                                                                                |  |  |  |
| Test Model No.:       | PF003-D, PF003-M                                                                                                                |  |  |  |
| Trade mark:           | bambulab                                                                                                                        |  |  |  |
| Product Type:         | ☐ Mobile ☐ Portable ☒ Fixed Location                                                                                            |  |  |  |
| Type of Modulation:   | IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM)                          |  |  |  |
| Operating Frequency   | U-NII-1: 5150-5250MHz<br>U-NII-2A: 5250-5350MHz<br>U-NII-2C: 5500-5700MHz<br>U-NII-3: 5745-5825MHz                              |  |  |  |
| Sample Type:          | ☐ Mobile ☐ Portable ☒ Fixed Location                                                                                            |  |  |  |
| Antenna Type:         | Internal Antenna                                                                                                                |  |  |  |
| Antenna Gain:         | U-NII-1: 5150-5250MHz 0.3dBi<br>U-NII-2A: 5250-5350MHz 0.82dBi<br>U-NII-2C:5500-5700MHz -0.5dBi<br>U-NII-3:5745-5825MHz -1.6dBi |  |  |  |
| Function              | SISO □ 2x2 MIMO □ 3x3 MIMO □ 4x4MIMO                                                                                            |  |  |  |
| Power Supply:         | AC 120V, 60Hz                                                                                                                   |  |  |  |
| Test Voltage:         | AC 120V, 60Hz                                                                                                                   |  |  |  |
| Sample Received Date: | Nov. 22, 2024                                                                                                                   |  |  |  |
| Sample tested Date:   | Nov. 22, 2024 to Dec. 30, 2024                                                                                                  |  |  |  |













Page 6 of 71

## Operation Frequency each of channel

802.11a/802.11n(20MHz) Frequency/Channel Operations:

|         | U-NII-1        | U        | J-NII-2A       | Į       | U-NII-2C       |         | U-NII-3        |
|---------|----------------|----------|----------------|---------|----------------|---------|----------------|
| Channel | Frequency(MHz) | Channel  | Frequency(MHz) | Channel | Frequency(MHz) | Channel | Frequency(MHz) |
| 36      | 5180           | 52       | 5260           | 100     | 5500           | 149     | 5745           |
| 40      | 5200           | 56       | 5280           | 104     | 5520           | 153     | 5765           |
| 44      | 5220           | 60       | 5300           | 108     | 5540           | 157     | 5785           |
| 48      | 5240           | 64       | 5320           | 112     | 5560           | 161     | 5805           |
| -       | -              | -        | -              | 116     | 5580           | 165     | 5825           |
| -       | -              | -        | -              | 132     | 5660           | -       |                |
| ) -     | - (-11)        | <u> </u> | (17-)          | 136     | 5680           | -       |                |
| _       |                | -        |                | 140     | 5700           | _       |                |

802.11n(40MHz) Frequency/Channel Operations:

| U-NII-1 |                | /3      | J-NII-2A       | U-NII-2C |                | U-NII-3 |                |
|---------|----------------|---------|----------------|----------|----------------|---------|----------------|
| Channel | Frequency(MHz) | Channel | Frequency(MHz) | Channel  | Frequency(MHz) | Channel | Frequency(MHz) |
| 38      | 5190           | 54      | 5270           | 102      | 5510           | 151     | 5755           |
| 46      | 5230           | 62      | 5310           | 110      | 5550           | 159     | 5795           |
| - (     | - (3)          | -       |                | 134      | 5670           | 1       |                |
|         |                | -       |                | 142      | 5710           | -       |                |

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:





Report No.: EED32Q81556402 Page 7 of 71

# **Test Configuration**

| <b>EUT Test Software Settings:</b> |         |     |     |
|------------------------------------|---------|-----|-----|
| Software:                          | ADB     |     |     |
| EUT Power Grade:                   | Default | -0- | -5% |

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

#### **Test Mode:**

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode          | Data rate |
|---------------|-----------|
| 802.11a       | 6 Mbps    |
| 802.11n(HT20) | MCS0      |
| 802.11n(HT40) | MCS0      |

# 4.3 Test Environment

| Operating Environment:      |                         |            |        |
|-----------------------------|-------------------------|------------|--------|
| Radiated Spurious Emission  | s:                      |            |        |
| Temperature:                | 22~25.0 °C              | 57)        | (0,)   |
| Humidity:                   | 50~55 % RH              |            |        |
| Atmospheric Pressure:       | 1010mbar                |            |        |
| Conducted Emissions:        |                         |            |        |
| Temperature:                | 22~25.0 °C              | (6,7.)     | (6,7,) |
| Humidity:                   | 50~55 % RH              |            |        |
| Atmospheric Pressure:       | 1010mbar                |            |        |
| RF Conducted:               |                         |            |        |
| Humidity:                   | 50~55 % RH              | (1)        |        |
| Atmospheric Pressure:       | 1010mbar                | 3)         |        |
|                             | NT (Normal Temperature) | 22~25.0 °C |        |
| Temperature:                | LT (Low Temperature)    | 10 °C      |        |
|                             | HT (High Temperature)   | 30 °C      |        |
|                             | NV (Normal Voltage)     | 110V       | (6,)   |
| Working Voltage of the EUT: | LV (Low Voltage)        | 99V        |        |
|                             | HV (High Voltage)       | 132V       |        |





Report No. : EED32Q81556402 Page 8 of 71

# 4.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

| Description | Manufacturer | Model No.     | Certification | Supplied by |
|-------------|--------------|---------------|---------------|-------------|
| Netbook     | Asus         | FL8700JP1065- | FCC&CE        | СТІ         |
|             |              | 0D8GXYQ2X10   |               |             |
| Netbook     | Lenovo       | ThinkPad S2   | FCC&CE        | СТІ         |

# 4.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

# 4.6 Measurement Uncertainty (95% confidence levels, k=2)

| No.  | ltem                            | Measurement Uncertainty |
|------|---------------------------------|-------------------------|
| 1    | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2    | DE nover conducted              | 0.46dB (30MHz-1GHz)     |
| 2    | RF power, conducted             | 0.55dB (1GHz-40GHz)     |
|      |                                 | 3.3dB (9kHz-30MHz)      |
| 3    | Dadiated Spurious emission test | 4.5dB (30MHz-1GHz)      |
| ა    | Radiated Spurious emission test | 4.8dB (1GHz-18GHz)      |
| 10.5 |                                 | 3.4dB (18GHz-40GHz)     |
| 37   | Conduction emission             | 3.5dB (9kHz to 150kHz)  |
| 4    | Conduction emission             | 3.1dB (150kHz to 30MHz) |
| 5    | Temperature test                | 0.64°C                  |
| 6    | Humidity test                   | 3.8%                    |
| 7    | DC power voltages               | 0.026%                  |





Report No.: EED32Q81556402 Page 9 of 71

5 Equipment List

|                                       |                        | RF te      | st system                  |                           |                               |
|---------------------------------------|------------------------|------------|----------------------------|---------------------------|-------------------------------|
| Equipment                             | Manufacturer           | Model No.  | Serial Number              | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| Communication test set                | R&S                    | CMW500     | 107929                     | 06-26-2024                | 06-25-2025                    |
| Signal<br>Generator                   | R&S                    | SMBV100A   | 1407.6004K02-<br>262149-CV | 09-02-2024                | 09-01-2025                    |
| Spectrum<br>Analyzer                  | R&S                    | FSV40      | 101200                     | 07-18-2024                | 07-17-2025                    |
| RF control unit(power unit)           | MWRF-test              | MW100-RFCB | MW220620CTI-42             | 06-25-2024                | 06-24-2025                    |
| High-low temperature test chamber     | Dong Guang<br>Qin Zhuo | LK-80GA    | QZ20150611879              | 11-12-2023<br>11-30-2024  | 12-10-2024<br>11-29-2025      |
| Temperature/<br>Humidity<br>Indicator | biaozhi                | HM10       | 1804186                    | 05-29-2024                | 05-28-2025                    |
| BT&WI-FI Automatic test software      | MWRF-test              | MTS 8310   | V2.0.0.0                   | (cit)                     | - (1                          |
| Spectrum<br>Analyzer                  | R&S                    | FSV3044    | 101509                     | 01-17-2024                | 01-16-2025                    |

| Conducted disturbance Test      |              |           |                  |            |                               |  |
|---------------------------------|--------------|-----------|------------------|------------|-------------------------------|--|
| Equipment                       | Manufacturer | Model No. | Serial<br>Number | Cal. date  | Cal. Due date<br>(mm-dd-yyyy) |  |
| Receiver                        | R&S          | ESCI      | 100435           | 04-18-2024 | 04-17-2025                    |  |
| Temperature/ Humidity Indicator | Defu         | TH128     | /                | 04-25-2024 | 04-24-2025                    |  |
| LISN                            | R&S          | ENV216    | 100098           | 09-19-2024 | 09-18-2025                    |  |
| Barometer                       | changchun    | DYM3      | 1188             |            | <u> </u>                      |  |
| Test software                   | Fara         | EZ-EMC    | EMC-CON<br>3A1.1 |            |                               |  |
| Capacitive voltage probe        | Schwarzbeck  | CVP 9222C | 00124            | 06-18-2024 | 06-17-2025                    |  |



Report No.: EED32Q81556402 Page 10 of 71

| ION | TESEO | ICM TOOO | 20207 | 12/14/2023 12/13 | 12/13/2024 |
|-----|-------|----------|-------|------------------|------------|
| ISN | TESEQ | ISN T800 | 30297 | 12/05/2024       | 12/04/2025 |

| Equipment                         | Manufacturer | Model No.   | Serial           | Cal. date                | Cal. Due date<br>(mm-dd-yyyy) |  |
|-----------------------------------|--------------|-------------|------------------|--------------------------|-------------------------------|--|
|                                   |              |             | Number           | (mm-dd-yyyy)             |                               |  |
| BM Chamber & Accessory  Equipment | TDK          | SAC-3       |                  | 05/22/2022               | 05/21/2025                    |  |
| Receiver                          | R&S          | ESCI7       | 100938-<br>003   | 09/07/2024               | 09/06/2025                    |  |
| Spectrum Analyzer                 | R&S          | FSV40       | 101200           | 07/18/2024               | 07/17/2025                    |  |
| TRILOG Broadband Antenna          | schwarzbeck  | VULB 9163   | 9163-618         | 05/22/2022               | 05/21/2025                    |  |
| Loop Antenna                      | Schwarzbeck  | FMZB 1519B  | 1519B-076        | 04/16/2024               | 04/15/2025                    |  |
| Microwave Preamplifier            | Tonscend     | EMC051845SE | 980380           | 12/14/2023<br>12/05/2024 | 12/13/2024<br>12/04/2025      |  |
| Horn Antenna                      | A.H.SYSTEMS  | SAS-574     | 374              | 07/02/2023               | 07/01/2026                    |  |
| Horn Antenna                      | ETS-LINGREN  | BBHA 9120D  | 9120D-<br>1869   | 04/16/2024               | 04/15/2025                    |  |
| Preamplifier                      | Agilent      | 11909A      | 12-1             | 03/22/2024               | 03/21/2025                    |  |
| Preamplifier                      | CD           | PAP-1840-60 | 6041.6042        | 06/19/2024               | 06/18/2025                    |  |
| Test software                     | Fara         | EZ-EMC      | EMEC-<br>3A1-Pre | (                        | <u> </u>                      |  |
| Cable line                        | Fulai(7M)    | SF106       | 5219/6A          |                          |                               |  |
| Cable line                        | Fulai(6M)    | SF106       | 5220/6A          |                          | (8                            |  |
| Cable line                        | Fulai(3M)    | SF106       | 5216/6A          |                          |                               |  |
| Cable line                        | Fulai(3M)    | SF106       | 5217/6A          |                          |                               |  |

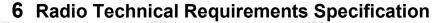













Report No. : EED32Q81556402 Page 11 of 71

|                                    |              | 3M full-anechoic  | Chamber       |                          |                               |
|------------------------------------|--------------|-------------------|---------------|--------------------------|-------------------------------|
| Equipment                          | Manufacturer | Model No.         | Serial Number | Cal. Date (mm-dd-yyyy)   | Cal. Due date<br>(mm-dd-yyyy) |
| Fully Anechoic<br>Chamber          | TDK          | FAC-3             | (             | 01-09-2024               | 01-08-2027                    |
| Receiver                           | Keysight     | N9038A            | MY57290136    | 01-09-2024<br>01-04-2025 | 01-08-2025<br>01-03-2026      |
| Spectrum Analyzer                  | Keysight     | N9020B            | MY57111112    | 01-29-2024<br>01-14-2025 | 01-28-2025<br>01-13-2026      |
| Spectrum Analyzer                  | Keysight     | N9030B            | MY57140871    | 01-23-2024<br>01-14-2025 | 01-22-2025<br>01-13-2026      |
| TRILOG<br>Broadband<br>Antenna     | Schwarzbeck  | VULB 9163         | 9163-1148     | 04-28-2024               | 04-27-2025                    |
| Horn Antenna                       | Schwarzbeck  | BBHA 9170         | 9170-832      | 04-16-2024               | 04-15-2025                    |
| Horn Antenna                       | ETS-LINDGREN | 3117              | 57407         | 07-03-2024               | 07-02-2025                    |
| Preamplifier                       | EMCI         | EMC001330         | 980563        | 03-08-2024               | 03-07-2025                    |
| Preamplifier                       | Tonscend     | TAP-011858        | AP21B806112   | 07-18-2024               | 07-17-2025                    |
| Preamplifier                       | Tonscend     | EMC051845SE       | 980380        | 12-14-2023<br>12-05-2024 | 12-13-2024<br>12-04-2025      |
| Temperature/<br>Humidity Indicator | biaozhi      | GM1360            | EE1186631     | 04-07-2024               | 04-06-2025                    |
| RSE Automatic test software        | JS Tonscend  | JS36-RSE          | V4.0.0.0      | - 6                      | <u> </u>                      |
| Cable line                         | Times        | SFT205-NMSM-2.50M | 394812-0001   |                          |                               |
| Cable line                         | Times        | SFT205-NMSM-2.50M | 394812-0002   |                          | /->                           |
| Cable line                         | Times        | SFT205-NMSM-2.50M | 394812-0003   | (f))                     | -(67                          |
| Cable line                         | Times        | SFT205-NMSM-2.50M | 393495-0001   |                          |                               |
| Cable line                         | Times        | EMC104-NMNM-1000  | SN160710      | /-                       |                               |
| Cable line                         | Times        | SFT205-NMSM-3.00M | 394813-0001   | (6)                      | )                             |
| Cable line                         | Times        | SFT205-NMNM-1.50M | 381964-0001   |                          |                               |
| Cable line                         | Times        | SFT205-NMSM-7.00M | 394815-0001   |                          | -/:3                          |
| Cable line                         | Times        | HF160-KMKM-3.00M  | 393493-0001   | (i)                      | (6)                           |







# 6.1 Antenna Requirement

47 CFR Part 15C Section 15.203 Standard requirement:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please see Internal photos **EUT Antenna:** 

The antenna is internal antenna. The best case gain of the antenna are:

U-NII-1: 5150-5250MHz 0.3dBi U-NII-2A: 5250-5350MHz 0.82dBi U-NII-2C:5500-5700MHz -0.5dBi







Report No. : EED32Q81556402 Page 13 of 71

# 6.2 AC Power Line Conducted Emissions

| Test Requirement:     | 47 CFR Part 15C Section 15.207                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz, S                                                                                                                                                                                                                                                                                                                                                 | weep time=auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Limit:                | Limit (dBuV)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                 | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56 to 46*                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                       | * Decreases with the logarithr                                                                                                                                                                                                                                                                                                                                           | n of the frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test Setup:           | Shielding Room                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | AC Mains                                                                                                                                                                                                                                                                                                                                                                 | AE  LISN2 → AC M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Receiver                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                          | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test Procedure:       | impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the r 3) The tabletop EUT was pla ground reference plane. A placed on the horizontal g 4) The test was performed withe EUT shall be 0.4 m vertical ground reference reference plane. The LISI unit under test and bor mounted on top of the gro | to AC power source letwork) which provide cables of all other SN 2, which was bonders the LISN 1 for the was used to connect ating of the LISN was aced upon a non-metal and for floor-standing a round reference plane th a vertical ground reference plane of the vertical ground in the vertical ground | e through a LISN 1 (Line is a 50Ω/50μH + 5Ω linear units of the EUT were ed to the ground reference is unit being measured. A multiple power cables to a not exceeded. Allic table 0.8m above the trangement, the EUT was a ference plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs. This distance was between All other units of the EUT im the LISN 2. |  |  |  |  |









| Page | 1/ | Ωf | 71  |  |
|------|----|----|-----|--|
| Paue | 14 | OL | 7 1 |  |

| Test Mode:    | All modes were tested, only the worst case was recorded in the report. |
|---------------|------------------------------------------------------------------------|
| Test Results: | Pass                                                                   |

















































































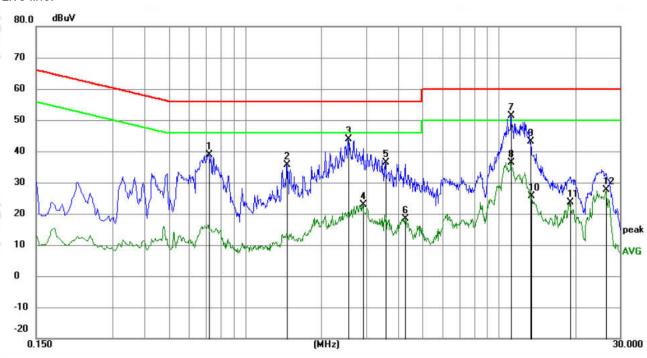














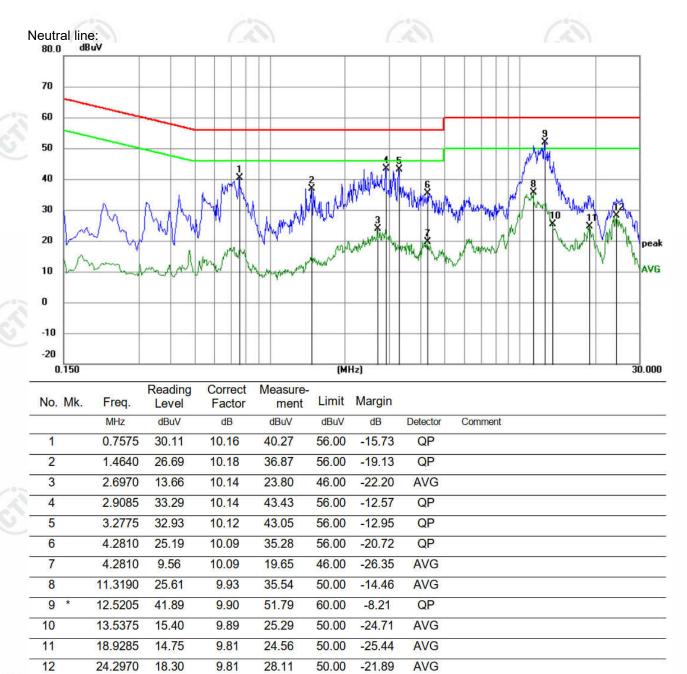

Report No. : EED32Q81556402 Page 15 of 71

#### **Measurement Data**

### Live line:



| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Margin |          |         |  |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|--|
|         | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |  |
| 1       | 0.7170  | 28.62            | 10.14             | 38.76            | 56.00 | -17.24 | QP       |         |  |
| 2       | 1.4595  | 25.57            | 10.18             | 35.75            | 56.00 | -20.25 | QP       |         |  |
| 3       | 2.5530  | 33.65            | 10.15             | 43.80            | 56.00 | -12.20 | QP       |         |  |
| 4       | 2.9040  | 12.72            | 10.14             | 22.86            | 46.00 | -23.14 | AVG      |         |  |
| 5       | 3.5835  | 26.35            | 10.11             | 36.46            | 56.00 | -19.54 | QP       |         |  |
| 6       | 4.2720  | 8.39             | 10.09             | 18.48            | 46.00 | -27.52 | AVG      |         |  |
| 7 *     | 11.1840 | 41.52            | 9.93              | 51.45            | 60.00 | -8.55  | QP       |         |  |
| 8       | 11.1840 | 26.45            | 9.93              | 36.38            | 50.00 | -13.62 | AVG      |         |  |
| 9       | 13.2720 | 33.34            | 9.89              | 43.23            | 60.00 | -16.77 | QP       |         |  |
| 10      | 13.3665 | 15.75            | 9.89              | 25.64            | 50.00 | -24.36 | AVG      |         |  |
| 11      | 19.0634 | 13.78            | 9.81              | 23.59            | 50.00 | -26.41 | AVG      |         |  |
| 12      | 26.4570 | 17.84            | 9.81              | 27.65            | 50.00 | -22.35 | AVG      |         |  |


### Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.









## Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.













Report No. : EED32Q81556402 Page 17 of 71

# 6.3 Maximum Conducted Output Power

|                   | 100                                                                                                                                                                                                                             |                                                                   |                                                                                                             |                                                |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| Test Requirement: | 47 CFR Part 15C S                                                                                                                                                                                                               | Section 15.407 (a                                                 |                                                                                                             |                                                |  |
| Test Method:      | KDB789033 D02 0                                                                                                                                                                                                                 | General UNII Tes                                                  | t Procedures New Rule                                                                                       | s v02r01 Section                               |  |
| Test Setup:       | 6                                                                                                                                                                                                                               |                                                                   |                                                                                                             |                                                |  |
|                   | Control Computer  Power Supply  Temperature Cab                                                                                                                                                                                 | Attenuator                                                        | RF test System Instrument                                                                                   |                                                |  |
| Test Procedure:   | (6)                                                                                                                                                                                                                             |                                                                   | nent Procedure of KDB7                                                                                      |                                                |  |
|                   | General UNII Test  2. The RF output o attenuator. The parmeasurement.  3. Set to the maxin continuously.                                                                                                                        | Procedures New f EUT was conne th loss was comp num power setting | Rules v02r01 Section E<br>ected to the power meter<br>ensated to the results for<br>g and enable the EUT tr | , 3, a<br>by RF cable and<br>or each<br>ansmit |  |
| Limit:            |                                                                                                                                                                                                                                 |                                                                   |                                                                                                             |                                                |  |
|                   | Frequency band (MHz)                                                                                                                                                                                                            | Limit                                                             |                                                                                                             |                                                |  |
|                   | 5450 5050                                                                                                                                                                                                                       | ≤1W(30dBm) for master device                                      |                                                                                                             |                                                |  |
|                   | 5150-5250                                                                                                                                                                                                                       | ≤250mW(24dBm) for client device                                   |                                                                                                             |                                                |  |
|                   | 5250-5350                                                                                                                                                                                                                       | ≤250mW(24dB                                                       | m) for client device or 11                                                                                  | IdBm+10logB*                                   |  |
|                   | 5470-5725                                                                                                                                                                                                                       | ≤250mW(24dB                                                       | m) for client device or 1                                                                                   | IdBm+10logB*                                   |  |
|                   | 5725-5850                                                                                                                                                                                                                       | ≤1W(30dBm)                                                        |                                                                                                             |                                                |  |
|                   | Remark:  * Where B is the 26dB emission bandwidth in MHz The maximum conducted output power must be measured over any interval of continuous transmiss using instrumentation calibrated in terms of an rms- equivalent voltage. |                                                                   |                                                                                                             |                                                |  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                               |                                                                   |                                                                                                             |                                                |  |
| Test Results:     | Refer to Appendix 5G Wi-Fi                                                                                                                                                                                                      |                                                                   |                                                                                                             |                                                |  |







# 6.4 6dB Emission Bandwidth

| Test Requirement: | 47 CFR Part 15C Section 15.407 (e)                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C                                                                                                                                                                                                                                                                                                                                                                      |
| Test Setup:       | Control Congular System                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | Remark: Offset=Cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Procedure:   | 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report. |
| Limit:            | ≥ 500 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Results:     | Refer to Appendix 5G Wi-Fi                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                            |








# 6.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

| Test Requirement: | 47 CFR Part 15C Section 15.407 (a)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                   | Control Control Control Control Control Power Supply Attenuator Temperature Cabriet Table  RF test System Instrument                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                   | Remark: Offset=Cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Test Procedure:   | 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report. |  |  |  |  |  |
| Limit:            | No restriction limits                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Test Results:     | Refer to Appendix 5G Wi-Fi                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

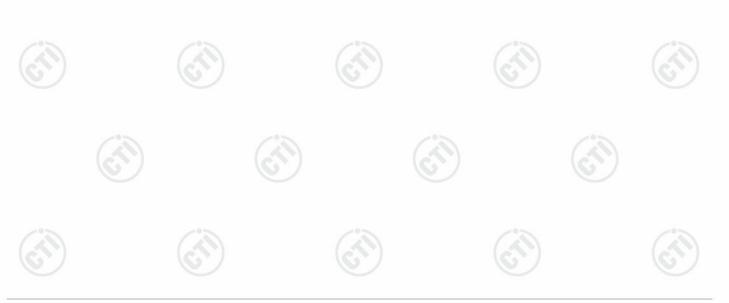






# 6.6 Maximum Power Spectral Density

| Test Requirement: | 47 CFR Part 15C S                                                                                                                                                                                                                                                                                                                             | Section 15.407 (a                                          | )                         |                        |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|------------------------|--|--|--|--|
| Test Method:      | KDB789033 D02 G                                                                                                                                                                                                                                                                                                                               | eneral UNII Test                                           | Procedures New            | Rules v02r01 Section F |  |  |  |  |
| Test Setup:       | -                                                                                                                                                                                                                                                                                                                                             | •                                                          | CHI CHI                   |                        |  |  |  |  |
|                   | Control Computer Power Supply TEMPERATURE CAB                                                                                                                                                                                                                                                                                                 | Attenuator                                                 | RF test System Instrument |                        |  |  |  |  |
|                   | Remark: Offset=Cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                |                                                            |                           |                        |  |  |  |  |
| Test Procedure:   | <ol> <li>Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth.</li> <li>Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS.</li> <li>Allow the sweeps to continue until the trace stabilizes.</li> <li>Use the peak marker function to determine the maximum amplitude level.</li> </ol> |                                                            |                           |                        |  |  |  |  |
| Limit:            | (25)                                                                                                                                                                                                                                                                                                                                          | (6)                                                        | )                         | (25)                   |  |  |  |  |
|                   | Frequency band (MHz)                                                                                                                                                                                                                                                                                                                          | Limit                                                      |                           |                        |  |  |  |  |
|                   | 5150-5250                                                                                                                                                                                                                                                                                                                                     | ≤17dBm in 1Ml                                              | Hz for master devi        | ice                    |  |  |  |  |
|                   | 5150-5250                                                                                                                                                                                                                                                                                                                                     | ≤11dBm in 1Ml                                              | Hz for client device      | e                      |  |  |  |  |
|                   | 5250-5350                                                                                                                                                                                                                                                                                                                                     | ≤11dBm in 1Ml                                              | Hz for client device      | e (C)                  |  |  |  |  |
|                   | 5470-5725                                                                                                                                                                                                                                                                                                                                     | ≤11dBm in 1Ml                                              | Hz for client device      | е                      |  |  |  |  |
|                   | 5725-5850 ≤30dBm in 500kHz                                                                                                                                                                                                                                                                                                                    |                                                            |                           |                        |  |  |  |  |
|                   | Remark:                                                                                                                                                                                                                                                                                                                                       | nsity is measured as connection of a equipment under test. |                           |                        |  |  |  |  |
| Test Mode:        | Transmitting mode                                                                                                                                                                                                                                                                                                                             | with modulation                                            |                           |                        |  |  |  |  |
| Test Results:     | Refer to Appendix                                                                                                                                                                                                                                                                                                                             | Refer to Appendix 5G Wi-Fi                                 |                           |                        |  |  |  |  |
| · ·               |                                                                                                                                                                                                                                                                                                                                               |                                                            |                           |                        |  |  |  |  |





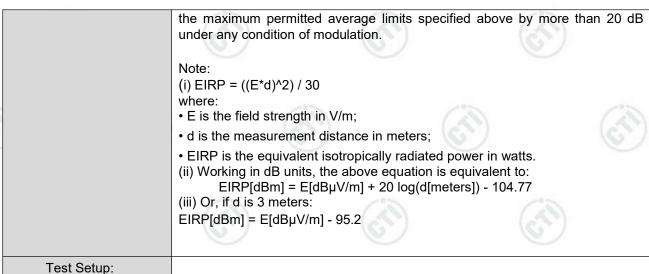



# 6.7 Frequency Stability

| Test Requirement: | 47 CFR Part 15C Section 15.407 (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                   | Control Computer Power Supply Attenuator Instrument  Table  RF test System  Rystem  Instrument  Table                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                   | Demands Office Cold bear attenue for forter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                   | Remark: Offset=Cable loss+ attenuation factor.  1.The EUT was placed inside the environmental test chamber and powered                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Test Procedure:   | by nominal AC/DC voltage.  2. Turn the EUT on and couple its output to a spectrum analyzer.  3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize.  4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.  5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. |  |  |  |  |  |  |
| Limit:            | The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Test Results:     | Refer to Appendix 5G Wi-Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |






Report No. : EED32Q81556402 Page 22 of 71

# 6.8 Radiated Emission

| Test Requirement: | 47 CFR Part 15C Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion 1                                                                              | 5.209 and 1                                                                                                                                         | 5.407 (b)                                                                                                                                                          |                                          | 160                                                                                                                                                                       | /                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ` '                                                                                |                                                                                                                                                     |                                                                                                                                                                    |                                          |                                                                                                                                                                           |                                                                                                                                                                                                           |  |  |  |  |  |
| Test Site:        | Measurement Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e: 3m                                                                              | n (Semi-Ane                                                                                                                                         | choic Cha                                                                                                                                                          | mbe                                      | r)                                                                                                                                                                        |                                                                                                                                                                                                           |  |  |  |  |  |
| Receiver Setup:   | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2)                                                                                 | Detector                                                                                                                                            | RBV                                                                                                                                                                | N                                        | VBW                                                                                                                                                                       | Remark                                                                                                                                                                                                    |  |  |  |  |  |
|                   | 0.009MHz-0.090MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak                                                                               | 10kH                                                                                                                                                | Ηz                                                                                                                                                                 | 30kHz                                    | Peak                                                                                                                                                                      |                                                                                                                                                                                                           |  |  |  |  |  |
|                   | 0.009MHz-0.090MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ηz                                                                                 | Average                                                                                                                                             | 10kH                                                                                                                                                               | Ηz                                       | 30kHz                                                                                                                                                                     | Average                                                                                                                                                                                                   |  |  |  |  |  |
|                   | 0.090MHz-0.110MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ηz                                                                                 | Quasi-pea                                                                                                                                           | ık 10kl                                                                                                                                                            | Ηz                                       | 30kHz                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                |  |  |  |  |  |
|                   | 0.110MHz-0.490MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ηz                                                                                 | Peak                                                                                                                                                | 10kl                                                                                                                                                               | Ηz                                       | 30kHz                                                                                                                                                                     | Peak                                                                                                                                                                                                      |  |  |  |  |  |
|                   | 0.110MHz-0.490MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ηz                                                                                 | Average                                                                                                                                             | 10kH                                                                                                                                                               | Ηz                                       | 30kHz                                                                                                                                                                     | Average                                                                                                                                                                                                   |  |  |  |  |  |
|                   | 0.490MHz -30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                  | Quasi-pea                                                                                                                                           | ık 10kH                                                                                                                                                            | Ηz                                       | 30kHz                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                |  |  |  |  |  |
|                   | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                    | Quasi-pea                                                                                                                                           | ık 100 k                                                                                                                                                           | Hz                                       | 300kHz                                                                                                                                                                    | Quasi-peak                                                                                                                                                                                                |  |  |  |  |  |
|                   | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                    | Peak                                                                                                                                                | 1MF                                                                                                                                                                | łz                                       | 3MHz                                                                                                                                                                      | Peak                                                                                                                                                                                                      |  |  |  |  |  |
|                   | Above 19112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | Peak                                                                                                                                                | 1MH                                                                                                                                                                | lz                                       | 10kHz                                                                                                                                                                     | Average                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:            | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l                                                                                  | ld strength<br>rovolt/meter)                                                                                                                        | Limit<br>(dBuV/m)                                                                                                                                                  | F                                        | Remark                                                                                                                                                                    | Measurement distance (m)                                                                                                                                                                                  |  |  |  |  |  |
|                   | 0.009MHz-0.490MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                 | 00/F(kHz)                                                                                                                                           | -                                                                                                                                                                  |                                          | - (4                                                                                                                                                                      | 300                                                                                                                                                                                                       |  |  |  |  |  |
|                   | 0.490MHz-1.705MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 240                                                                                | 000/F(kHz)                                                                                                                                          | -                                                                                                                                                                  | - @                                      |                                                                                                                                                                           | 30                                                                                                                                                                                                        |  |  |  |  |  |
|                   | 1.705MHz-30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | 30                                                                                                                                                  | -                                                                                                                                                                  | -                                        |                                                                                                                                                                           | 30                                                                                                                                                                                                        |  |  |  |  |  |
|                   | 30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                |                                                                                                                                                     | 40.0                                                                                                                                                               | Qu                                       | asi-peak                                                                                                                                                                  | 3                                                                                                                                                                                                         |  |  |  |  |  |
|                   | 88MHz-216MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                 | 150                                                                                                                                                 | 150 43.5                                                                                                                                                           |                                          | asi-peak                                                                                                                                                                  | 3                                                                                                                                                                                                         |  |  |  |  |  |
|                   | 216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | 200                                                                                                                                                 | 46.0                                                                                                                                                               | Quasi-peak                               |                                                                                                                                                                           | 3                                                                                                                                                                                                         |  |  |  |  |  |
|                   | 960MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | 500                                                                                                                                                 | 54.0                                                                                                                                                               | Quasi-peak                               |                                                                                                                                                                           | 3                                                                                                                                                                                                         |  |  |  |  |  |
|                   | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                    | 500                                                                                                                                                 | 54.0                                                                                                                                                               | Α                                        | verage                                                                                                                                                                    | 3                                                                                                                                                                                                         |  |  |  |  |  |
|                   | *(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz because of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the because of the be | 5.35 eratii band ppera 5.725 eratii coe lin eratio eratii don li bying 0kHz ee thi | GHz band  ng in the 5.2 shall not excepting in the 5.7 nited to a level of 18 5 MHz about a level of 18 5 MHz about a CISPR z, 110-490k ree bands a | shall not 5-5.35 GH ceed an e. 5.47-5.72 I shall no 25-5.85 G rel of -27 sing linearl rom 25 Ml com 25 Ml com 25 ml com edge in the quasi-pearl rom and a re based | t ex | and: All em<br>of -27 dB<br>GHz band:<br>acceed an<br>oand:<br>n/MHz at 7<br>10 dBm/N<br>above or b<br>at 5 MHz and e<br>ve table<br>detector e<br>re 1000 M<br>measureme | e.i.r.p. of -27  issions outside m/MHz.  All emissions e.i.r.p. of -27  5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the MHz. Radiated ents employing |  |  |  |  |  |







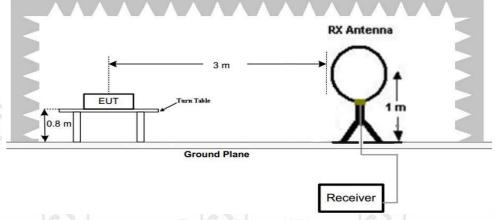
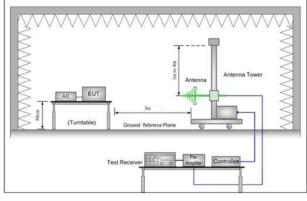




Figure 1. Below 30MHz



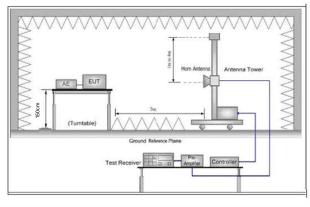
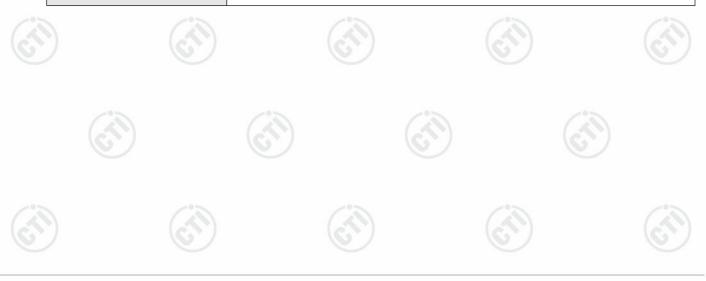



Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure: a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.


> 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

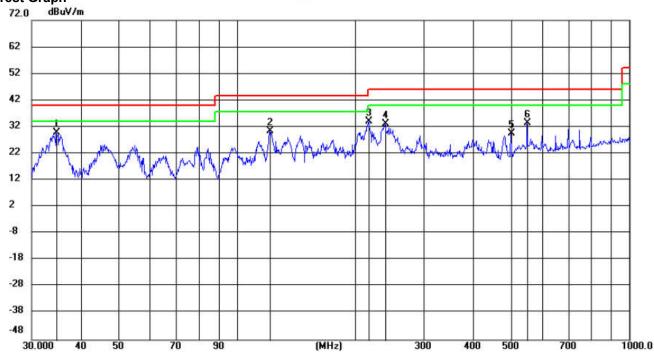
Note: For the radiated emission test above 1GHz:





|               | Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.  b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | c. The antenna height is varied from one meter to four meters above the<br>ground to determine the maximum value of the field strength. Both<br>horizontal and vertical polarizations of the antenna are set to make the<br>measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | d. For each suspected emission, the EUT was arranged to its worst case<br>and then the antenna was tuned to heights from 1 meter to 4 meters (for<br>the test frequency of below 30MHz, the antenna was tuned to heights 1<br>meter) and the rotatable table was turned from 0 degrees to 360<br>degrees to find the maximum reading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | g. Test the EUT in the lowest channel, the middle channel and the highest channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | i. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Mode:    | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Results: | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |








# Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case middle channel of 6Mbps for 802.11a was recorded in the report.

## Horizontal:



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   | *   | 34.7601  | 16.83            | 12.90             | 29.73            | 40.00  | -10.27 | QP       | 199               | 149             |         |
| 2   |     | 121.3994 | 18.95            | 11.41             | 30.36            | 43.50  | -13.14 | QP       | 199               | 330             |         |
| 3   |     | 217.0490 | 21.18            | 13.02             | 34.20            | 46.00  | -11.80 | QP       | 100               | 144             |         |
| 4   |     | 238.6028 | 19.42            | 13.84             | 33.26            | 46.00  | -12.74 | QP       | 100               | 113             |         |
| 5   |     | 500.0380 | 9.62             | 19.84             | 29.46            | 46.00  | -16.54 | QP       | 100               | 219             |         |
| 6   |     | 549.9828 | 12.37            | 21.05             | 33.42            | 46.00  | -12.58 | QP       | 100               | 198             |         |

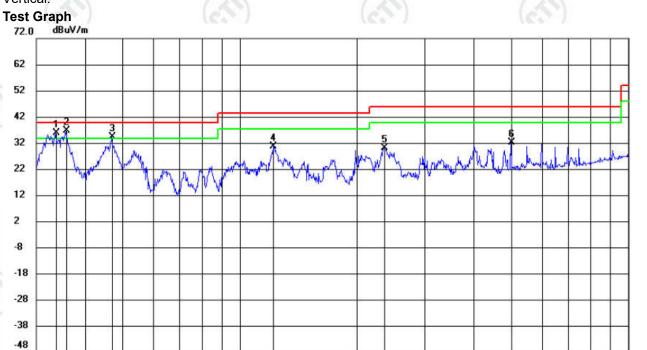















Page 26 of 71

## Vertical:

30.000



|   | No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin |          | Antenna<br>Height | Table<br>Degree |         |
|---|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
| - |     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
|   | 1   | 1   | 33.7276  | 23.30            | 12.75             | 36.05            | 40.00  | -3.95  | QP       | 200               | 209             |         |
|   | 2   | *   | 35.8118  | 23.92            | 13.04             | 36.96            | 40.00  | -3.04  | QP       | 100               | 255             |         |
| 7 | 3   | 4   | 46.9042  | 21.15            | 13.57             | 34.72            | 40.00  | -5.28  | QP       | 100               | 201             |         |
| - | 4   |     | 122.1467 | 19.79            | 11.28             | 31.07            | 43.50  | -12.43 | QP       | 100               | 126             | -       |
|   | 5   |     | 236.4788 | 16.73            | 13.76             | 30.49            | 46.00  | -15.51 | QP       | 200               | 92              | -       |
| - | 6   |     | 500.0380 | 12.71            | 19.84             | 32.55            | 46.00  | -13.45 | QP       | 200               | 124             |         |

(MHz)









500

400

300

700

1000.0























Report No.: EED32Q81556402 Page 27 of 71

## **Transmitter Emission above 1GHz**

Remark: During the test, the Radiates Emission from 1GHz to 40GHz was performed in all modes,, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case;

for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case;

only the worst case was recorded in the report.

| Mode | :              | 8              | 02.11 a Tran      | smitting          |                   | Channe      | el:    | 5180MHz    |        |
|------|----------------|----------------|-------------------|-------------------|-------------------|-------------|--------|------------|--------|
| NO   | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin [dB] | Result | Polarity   | Remark |
| 1    | 1949.338       | 17.12          | 35.78             | 52.90             | 68.20             | 15.30       | PASS   | Horizontal | PK     |
| 2    | 2559.6424      | 16.15          | 37.00             | 53.15             | 68.20             | 15.05       | PASS   | Horizontal | PK     |
| 3    | 3126.165       | 17.26          | 35.86             | 53.12             | 68.20             | 15.08       | PASS   | Horizontal | PK     |
| 4    | 6907.1204      | -4.64          | 53.40             | 48.76             | 68.20             | 19.44       | PASS   | Horizontal | PK     |
| 5    | 10361.8931     | 1.94           | 51.34             | 53.28             | 68.20             | 14.92       | PASS   | Horizontal | PK     |
| 6    | 14246.7873     | 12.09          | 40.45             | 52.54             | 68.20             | 15.66       | PASS   | Horizontal | PK     |
| 7    | 1951.3181      | 17.05          | 35.11             | 52.16             | 68.20             | 16.04       | PASS   | Vertical   | PK     |
| 8    | 2703.9682      | 16.18          | 36.88             | 53.06             | 68.20             | 15.14       | PASS   | Vertical   | PK     |
| 9    | 3811.2725      | 19.17          | 34.35             | 53.52             | 68.20             | 14.68       | PASS   | Vertical   | PK     |
| 10   | 6906.5453      | -4.62          | 53.99             | 49.37             | 68.20             | 18.83       | PASS   | Vertical   | PK     |
| 11   | 10357.8679     | 2.17           | 50.98             | 53.15             | 68.20             | 15.05       | PASS   | Vertical   | PK     |
| 12   | 17001.1751     | 10.67          | 41.48             | 52.15             | 68.20             | 16.05       | PASS   | Vertical   | PK     |

| Mode | :              | 80          | 2.11 n(HT4        | 0) Transmitti     | ng                | Channe      | el:    | 5230MHz    |        |
|------|----------------|-------------|-------------------|-------------------|-------------------|-------------|--------|------------|--------|
| NO   | Freq.<br>[MHz] | Factor [dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin [dB] | Result | Polarity   | Remark |
| 1    | 1308.2323      | 9.76        | 37.43             | 47.19             | 68.20             | 21.01       | PASS   | Horizontal | PK     |
| 2    | 1876.9551      | 15.76       | 35.20             | 50.96             | 68.20             | 17.24       | PASS   | Horizontal | PK     |
| 3    | 2645.6658      | 15.71       | 35.68             | 51.39             | 68.20             | 16.81       | PASS   | Horizontal | PK     |
| 4    | 6973.2487      | -5.50       | 54.51             | 49.01             | 68.20             | 19.19       | PASS   | Horizontal | PK     |
| 5    | 9157.2079      | 0.06        | 47.12             | 47.18             | 68.20             | 21.02       | PASS   | Horizontal | PK     |
| 6    | 12399.795      | 6.60        | 44.01             | 50.61             | 68.20             | 17.59       | PASS   | Horizontal | PK     |
| 7    | 1317.0327      | 9.85        | 36.70             | 46.55             | 68.20             | 21.65       | PASS   | Vertical   | PK     |
| 8    | 1835.3734      | 15.28       | 35.75             | 51.03             | 68.20             | 17.17       | PASS   | Vertical   | PK     |
| 9    | 2590.8836      | 15.86       | 35.71             | 51.57             | 68.20             | 16.63       | PASS   | Vertical   | PK     |
| 10   | 6973.2487      | -5.50       | 55.15             | 49.65             | 68.20             | 18.55       | PASS   | Vertical   | PK     |
| 11   | 9038.7519      | -0.25       | 46.46             | 46.21             | 68.20             | 21.99       | PASS   | Vertical   | PK     |
| 12   | 11787.9644     | 3.29        | 45.39             | 48.68             | 68.20             | 19.52       | PASS   | Vertical   | PK     |



















Page 28 of 71









#### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.







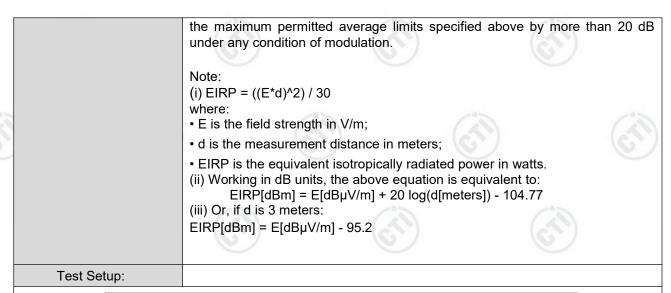


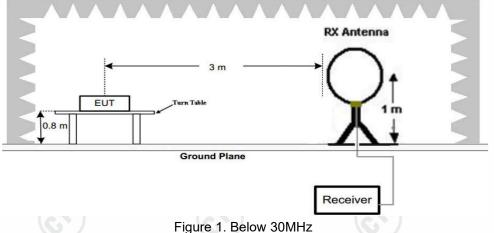


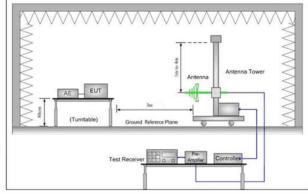







Report No. : EED32Q81556402 Page 29 of 71


# 6.9 Radiated Emission which fall in the restricted bands


| Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.407 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                              |                                                                                            |                                                                                                   |                                                                                                                                                               |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                              |                                                                                            |                                                                                                   |                                                                                                                                                               |  |  |  |
| Test Site:        | Measurement Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e: 3n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n (Semi-Ane                                                                                                       | choic Char                                                                                                                                   | nbe                                                                                        | r)                                                                                                |                                                                                                                                                               |  |  |  |
| Receiver Setup:   | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector                                                                                                          | RBV                                                                                                                                          | ٧                                                                                          | VBW                                                                                               | Remark                                                                                                                                                        |  |  |  |
|                   | 0.009MHz-0.090MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10kH                                                                                                              | Hz 30kHz                                                                                                                                     |                                                                                            | Peak                                                                                              |                                                                                                                                                               |  |  |  |
|                   | 0.009MHz-0.090MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10kH                                                                                                              | Ιz                                                                                                                                           | 30kHz                                                                                      | Average                                                                                           |                                                                                                                                                               |  |  |  |
|                   | 0.090MHz-0.110MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quasi-pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ak 10kH                                                                                                           | Ηz                                                                                                                                           | 30kHz                                                                                      | Quasi-peak                                                                                        |                                                                                                                                                               |  |  |  |
|                   | 0.110MHz-0.490MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ηz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak                                                                                                              | 10kF                                                                                                                                         | Ηz                                                                                         | 30kHz                                                                                             | Peak                                                                                                                                                          |  |  |  |
|                   | 0.110MHz-0.490MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ηz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average                                                                                                           | 10kF                                                                                                                                         | łz                                                                                         | 30kHz                                                                                             | Average                                                                                                                                                       |  |  |  |
|                   | 0.490MHz -30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quasi-pea                                                                                                         | ak 10kH                                                                                                                                      | Ηz                                                                                         | 30kHz                                                                                             | Quasi-peak                                                                                                                                                    |  |  |  |
|                   | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-pea                                                                                                         | ak 100 k                                                                                                                                     | Hz                                                                                         | 300kHz                                                                                            | Quasi-peak                                                                                                                                                    |  |  |  |
|                   | Above 4015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MH                                                                                                               | lz                                                                                                                                           | 3MHz                                                                                       | Peak                                                                                              |                                                                                                                                                               |  |  |  |
|                   | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Above Toriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | 1MH                                                                                                                                          | lz                                                                                         | 10kHz                                                                                             | Average                                                                                                                                                       |  |  |  |
| Limit:            | L Lroduonov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ld strength                                                                                                       | Limit<br>(dBuV/m)                                                                                                                            | R                                                                                          | Remark                                                                                            | Measurement<br>distance (m)                                                                                                                                   |  |  |  |
|                   | 0.009MHz-0.490MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>`</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100/F(kHz)                                                                                                        | _                                                                                                                                            | - (3)                                                                                      |                                                                                                   | 300                                                                                                                                                           |  |  |  |
|                   | 0.490MHz-1.705MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24000/F(kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | _                                                                                                                                            | - (6.)                                                                                     |                                                                                                   | 30                                                                                                                                                            |  |  |  |
|                   | 1.705MHz-30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                | -                                                                                                                                            |                                                                                            | -                                                                                                 | 30                                                                                                                                                            |  |  |  |
|                   | 30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                               | 40.0                                                                                                                                         | Qu                                                                                         | asi-peak                                                                                          | 3                                                                                                                                                             |  |  |  |
|                   | 88MHz-216MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                                               | 43.5                                                                                                                                         | Quasi-peak                                                                                 |                                                                                                   | 3                                                                                                                                                             |  |  |  |
|                   | 216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                               | 46.0                                                                                                                                         | Quasi-peak                                                                                 |                                                                                                   | 3                                                                                                                                                             |  |  |  |
|                   | 960MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                                                                               | 54.0                                                                                                                                         | Qu                                                                                         | asi-peak                                                                                          | 3                                                                                                                                                             |  |  |  |
|                   | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                                                                               | 54.0                                                                                                                                         | Α                                                                                          | verage                                                                                            | 3                                                                                                                                                             |  |  |  |
|                   | *(1) For transmitters outside of the 5.15-3 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz to (3) For transmitters outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the beabove or below | erational perational p | GHz band  ng in the 5.2 shall not excepting in the 5.7 mited to a level of 18 5 MHz about MHz at the simits shown | shall not 25-5.35 GH ceed an e.i. 5.47-5.72 d shall no 25-5.85 Givel of -27 cing linearly from 25 Mi 5.6 dBm/M ve or beloe band edgen in the | z ba<br>z ba<br>i.r.p.<br>5 G<br>t ex<br>Hz b<br>dBm<br>y to<br>Hz a<br>Hz a<br>w th<br>e. | and: All em of -27 dB Hz band: aceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz a ne band e | e.i.r.p. of -27  issions outside m/MHz.  All emissions e.i.r.p. of -27  5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on |  |  |  |
|                   | measurements emplo<br>frequency bands 9-9<br>emission limits in thes<br>an average detector, t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0kHz<br>se th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | z, 110-490k<br>ree bands a                                                                                        | Hz and a                                                                                                                                     | abov<br>on n                                                                               | e 1000 N<br>neasureme                                                                             | MHz. Radiated ents employing                                                                                                                                  |  |  |  |











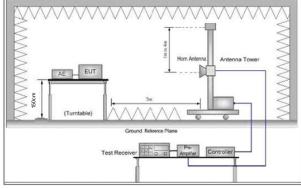



Figure 2. 30MHz to 1GHz

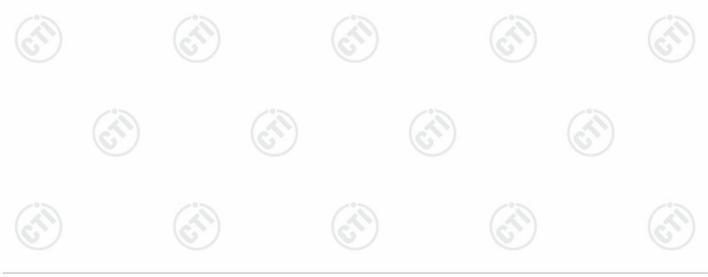
Figure 3. Above 1 GHz

j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table

meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:








Page 31 of 71 Report No.: EED32Q81556402

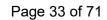
| Test Results: | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Mode:    | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | r. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | p. Test the EUT in the lowest channel, the Highest channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. |



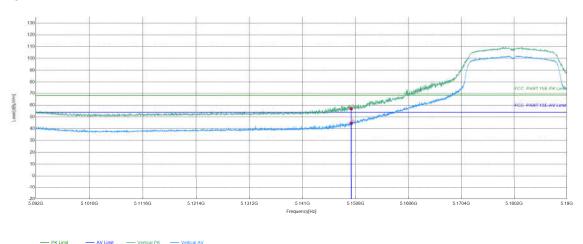



Report No.: EED32Q81556402 Page 32 of 71

## **Test Data:**


| EUT_Name      |                          | Test_Model     |            |
|---------------|--------------------------|----------------|------------|
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5180MHz    |
| Tset_Engineer | chenjun                  | Test_Date      | 2024/12/08 |
| Remark        | 21.8°C59.9%\             | (4)            | (41)       |




| Suspecte | Suspected List |                |                   |                   |                   |                |        |            |        |  |  |  |  |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|--|--|--|--|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |  |  |  |  |
| 1        | 5150           | 21.98          | 35.33             | 57.31             | 68.38             | 11.07          | PASS   | Horizontal | PK     |  |  |  |  |
| 2        | 5150           | 21.98          | 24.05             | 46.03             | 54.00             | 7.97           | PASS   | Horizontal | AV     |  |  |  |  |

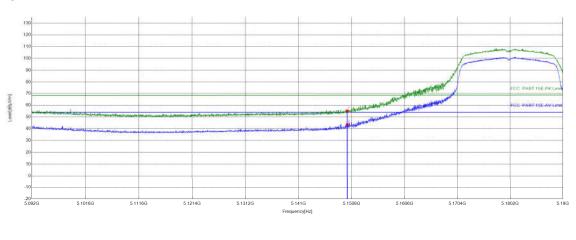






|               |                          | 103            | 100        |
|---------------|--------------------------|----------------|------------|
| EUT_Name      |                          | Test_Model     |            |
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5180MHz    |
| Tset_Engineer | chenjun                  | Test_Date      | 2024/12/08 |
| Remark        | 21.8°C59.9%\             | (3)            | (1)        |

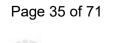



| Suspect | Suspected List |                |                   |                   |                   |                |        |          |        |  |
|---------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|--|
| NO      | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |  |
| 1       | 5150           | 21.98          | 34.95             | 56.93             | 68.38             | 11.45          | PASS   | Vertical | PK     |  |
| 2       | 5150           | 21.98          | 22.69             | 44.67             | 54.00             | 9.33           | PASS   | Vertical | AV     |  |

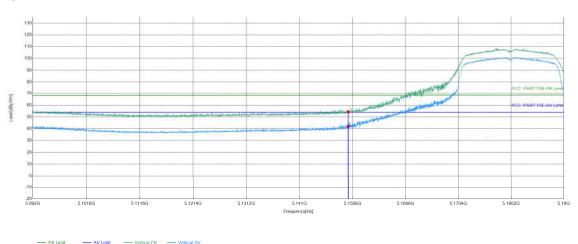




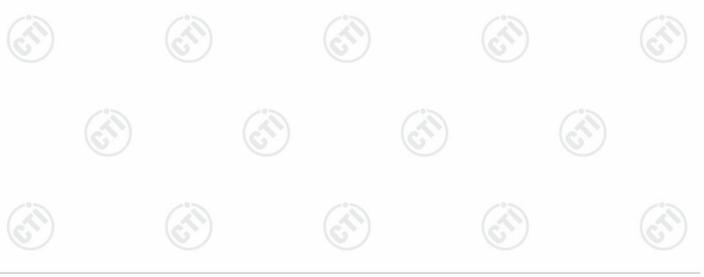
|      |    | _  |     |
|------|----|----|-----|
| Page | 21 | ∽f | 71  |
| raue | 34 | ΟI | 7 1 |


|               |                                | 100            |            |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5180MHz    |
| Tset_Engineer | chenjun                        | Test_Date      | 2024/12/08 |
| Remark        | 21.8°C59.9%\                   | (3)            | (4)        |

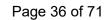



| Suspecto | ed List        |                |                   |                   |                   |                |        |            |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1        | 5150           | 21.98          | 32.79             | 54.77             | 68.38             | 13.61          | PASS   | Horizontal | PK     |
| 2        | 5150           | 21.98          | 21.42             | 43.40             | 54.00             | 10.60          | PASS   | Horizontal | AV     |

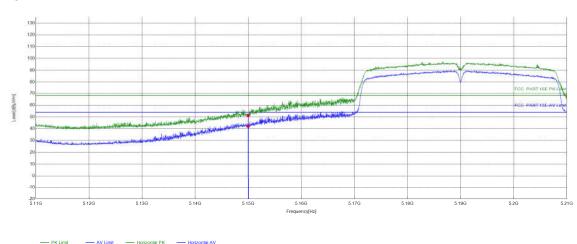




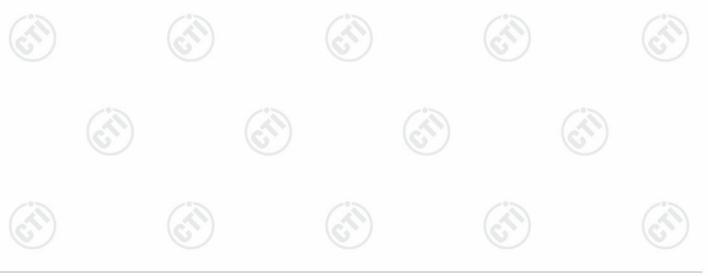




| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5180MHz    |
| Tset_Engineer | chenjun                        | Test_Date      | 2024/12/08 |
| Remark        | 21.8°C59.9%\                   |                | (ii)       |

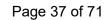



| Suspe | Suspected List |                |                   |                   |                   |                |        |          |        |  |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|--|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |  |
| 1     | 5150           | 21.98          | 32.30             | 54.28             | 68.38             | 14.10          | PASS   | Vertical | PK     |  |
| 2     | 5150           | 21.98          | 19.97             | 41.95             | 54.00             | 12.05          | PASS   | Vertical | AV     |  |

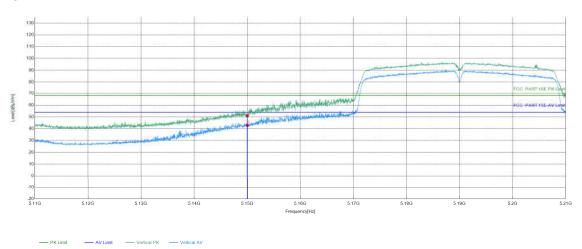








| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5190MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   |                |            |




| Suspecte | d List         |                |                   |                   |                   |                |        |            |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1        | 5150           | 21.73          | 29.50             | 51.23             | 68.20             | 16.97          | PASS   | Horizontal | PK     |
| 2        | 5150           | 21.73          | 20.34             | 42.07             | 54.00             | 11.93          | PASS   | Horizontal | AV     |

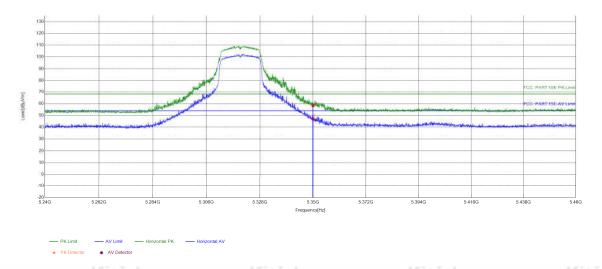




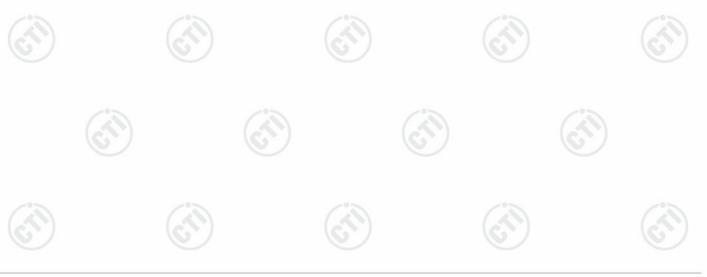



| <b>V</b>      |                                |                |            |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5190MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (1)            |            |




| Suspecte | ed List        |                |                   |                   |                   |                |        |          |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1        | 5150           | 21.73          | 29.20             | 50.93             | 68.20             | 17.27          | PASS   | Vertical | PK     |
| 2        | 5150           | 21.73          | 21.08             | 42.81             | 54.00             | 11.19          | PASS   | Vertical | AV     |

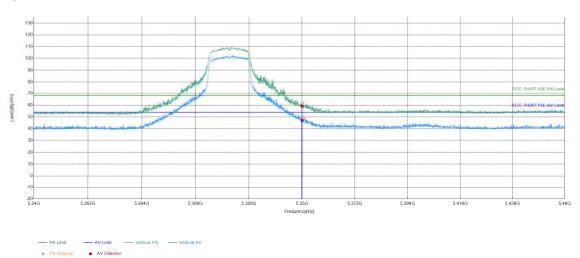





| _    |    | _  |    |
|------|----|----|----|
| Page | 20 | Ωf | 71 |
| raue | SO | OΙ | 11 |

|               |                                 |  | ( A N )        | (200)      |
|---------------|---------------------------------|--|----------------|------------|
| EUT_Name      |                                 |  | Test_Model     |            |
| Test_Mode     | Test_Mode 802.11 a Transmitting |  | Test_Frequency | 5320MHz    |
| Tset_Engineer | Tset_Engineer chenjun           |  | Test_Date      | 2024/12/08 |
| Remark        | 21.8°C59.9%\                    |  | <*S            | 200        |



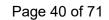

| Suspected List |                |                |                   |                   |                   |                |        |            |        |
|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO             | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1              | 5350           | 22.37          | 35.98             | 58.35             | 68.20             | 9.85           | PASS   | Horizontal | PK     |
| 2              | 5350           | 22.37          | 24.84             | 47.21             | 54.00             | 6.79           | PASS   | Horizontal | AV     |



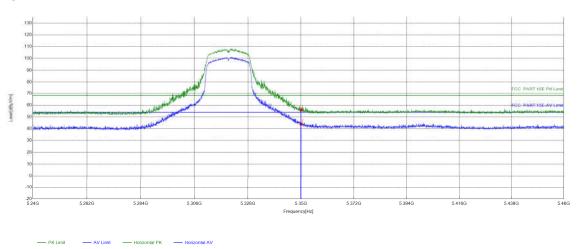



|                                 |              | 100            |            |  |
|---------------------------------|--------------|----------------|------------|--|
| EUT_Name                        |              | Test_Model     |            |  |
| Test_Mode 802.11 a Transmitting |              | Test_Frequency | 5320MHz    |  |
| Tset_Engineer                   | chenjun      | Test_Date      | 2024/12/08 |  |
| Remark                          | 21.8°C59.9%\ |                | (3)        |  |

#### **Test Graph**




| Suspecte | d List         |                |                   |                   |                   |                |        |          |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1        | 5350           | 22.37          | 36.76             | 59.13             | 68.20             | 9.07           | PASS   | Vertical | PK     |
| 2        | 5350           | 22.37          | 24.80             | 47.17             | 54.00             | 6.83           | PASS   | Vertical | AV     |



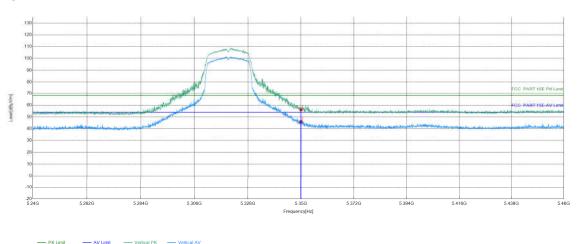

Page 39 of 71





|               |                                | 100            |            |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5320MHz    |
| Tset_Engineer | chenjun                        | Test_Date      | 2024/12/08 |
| Remark        | 21.8°C59.9%\                   |                |            |




| Suspecte | Suspected List |                |                   |                   |                   |                |        |            |        |  |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|--|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |  |
| 1        | 5350           | 22.37          | 33.43             | 55.80             | 68.20             | 12.40          | PASS   | Horizontal | PK     |  |
| 2        | 5350           | 22.37          | 21.72             | 44.09             | 54.00             | 9.91           | PASS   | Horizontal | AV     |  |





| D    | 11 | - 5 74 |  |
|------|----|--------|--|
| Page | 41 | OT / 1 |  |

| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5320MHz    |
| Tset_Engineer | chenjun                        | Test_Date      | 2024/12/08 |
| Remark        | 21.8°C59.9%\                   | (3)            | (ii)       |



| Suspecte | ed List        |                |                   |                   |                   |                |        |          |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1        | 5350           | 22.37          | 33.68             | 56.05             | 68.20             | 12.15          | PASS   | Vertical | PK     |
| 2        | 5350           | 22.37          | 23.56             | 45.93             | 54.00             | 8.07           | PASS   | Vertical | AV     |

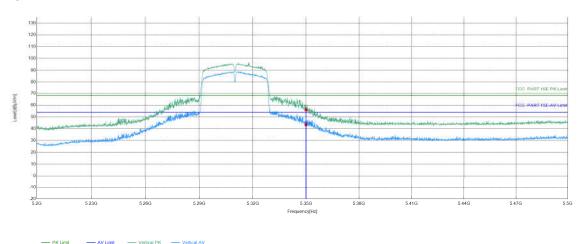




Page 42 of 71 Report No.: EED32Q81556402

|               |                                | 100            |            |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5310MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (3)            | (1)        |

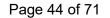


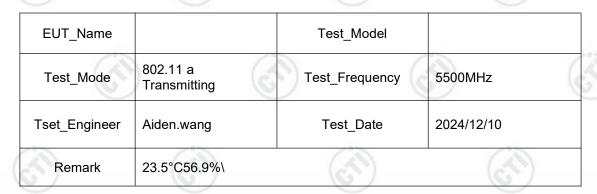

| Suspecte | Suspected List |                |                   |                   |                   |                |        |            |        |  |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|--|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |  |
| 1        | 5350           | 22.37          | 36.11             | 58.48             | 68.20             | 9.72           | PASS   | Horizontal | PK     |  |
| 2        | 5350           | 22.37          | 22.47             | 44.84             | 54.00             | 9.16           | PASS   | Horizontal | AV     |  |

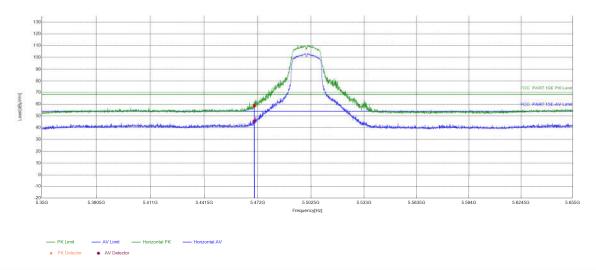







| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5310MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   |                | (1)        |





| Suspecte | Suspected List |                |                   |                   |                   |                |        |          |        |  |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|--|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |  |
| 1        | 5350           | 22.37          | 33.69             | 56.06             | 68.20             | 12.14          | PASS   | Vertical | PK     |  |
| 2        | 5350           | 22.37          | 20.98             | 43.35             | 54.00             | 10.65          | PASS   | Vertical | AV     |  |





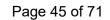




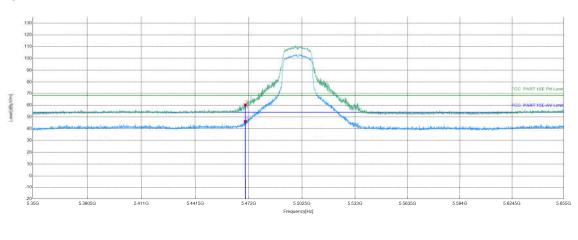


| Susp | Suspected List |                |                |                   |                   |                   |                |        |            |        |
|------|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NC   | 0              | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1    |                | 5470           | 22.43          | 36.24             | 58.67             | 68.20             | 9.53           | PASS   | Horizontal | PK     |
| 2    |                | 5470           | 22.43          | 23.26             | 45.69             | 54.00             | 8.31           | PASS   | Horizontal | AV     |





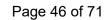


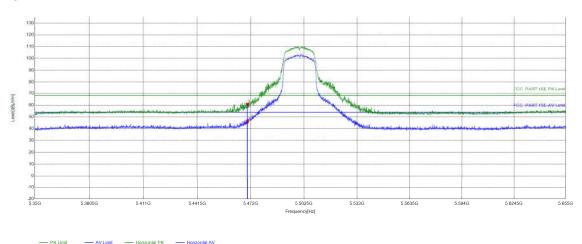








| EUT_Name      |                          | Test_Model     |            |
|---------------|--------------------------|----------------|------------|
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5500MHz    |
| Tset_Engineer | Aiden.wang               | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\             |                | (40)       |

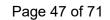



| Suspect | Suspected List |                |                   |                   |                   |                |        |          |        |  |
|---------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|--|
| NO      | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |  |
| 1       | 5470           | 22.43          | 37.81             | 60.24             | 68.20             | 7.96           | PASS   | Vertical | PK     |  |
| 2       | 5470           | 22.43          | 23.74             | 46.17             | 54.00             | 7.83           | PASS   | Vertical | AV     |  |

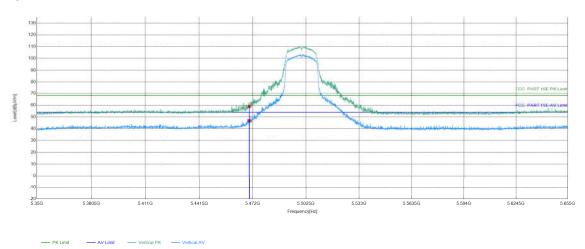







| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5500MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (4)            | (ii)       |
|               |                                | 127 7          | 120 0      |




| Suspecte | Suspected List |                |                   |                   |                   |                |        |            |        |  |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|--|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |  |
| 1        | 5470           | 22.43          | 38.39             | 60.82             | 68.20             | 7.38           | PASS   | Horizontal | PK     |  |
| 2        | 5470           | 22.43          | 23.53             | 45.96             | 54.00             | 8.04           | PASS   | Horizontal | AV     |  |

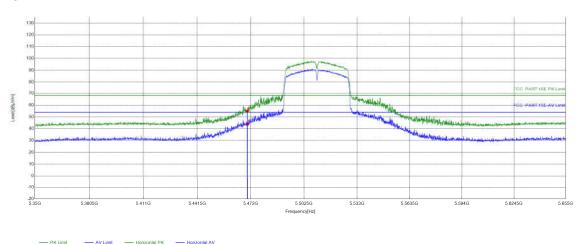






| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5500MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   |                | (40)       |

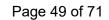



| Suspecte | Suspected List |                |                   |                   |                   |                |        |          |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1        | 5470           | 22.43          | 36.38             | 58.81             | 68.20             | 9.39           | PASS   | Vertical | PK     |
| 2        | 5470           | 22.43          | 24.43             | 46.86             | 54.00             | 7.14           | PASS   | Vertical | AV     |

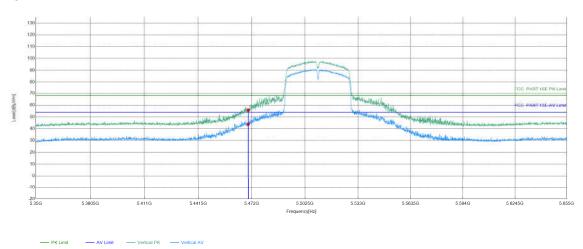




| _    |    | -  | - 4 |
|------|----|----|-----|
| Page | 48 | O† | /1  |


|               |                                |                | (0)       |
|---------------|--------------------------------|----------------|-----------|
| EUT_Name      |                                | Test_Model     |           |
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5510MHz   |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/1 |
| Remark        | 23.5°C56.9%\                   | (i)            | (4)       |




| Suspecte | Suspected List |                |                   |                   |                   |                |        |            |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1        | 5470           | 22.43          | 32.59             | 55.02             | 68.20             | 13.18          | PASS   | Horizontal | PK     |
| 2        | 5470           | 22.43          | 21.37             | 43.80             | 54.00             | 10.20          | PASS   | Horizontal | AV     |

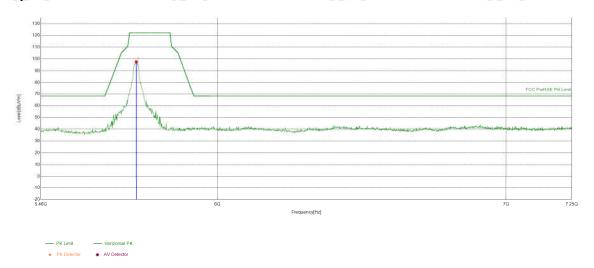




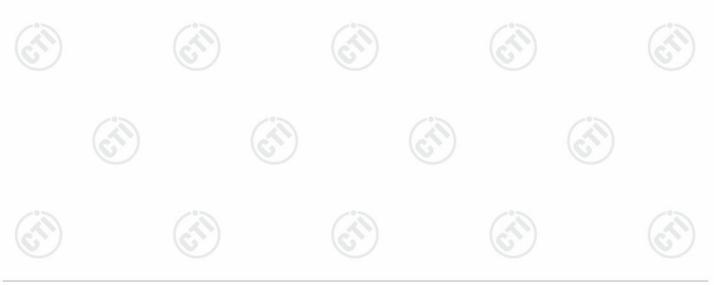


| EUT_Name      |                                | Test_Model     |           |
|---------------|--------------------------------|----------------|-----------|
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5510MHz   |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/1 |
| Remark        | 23.5°C56.9%\                   |                |           |




| Suspecte | Suspected List |                |                   |                   |                   |                |        |          |        |
|----------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO       | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1        | 5470           | 22.43          | 33.52             | 55.95             | 68.20             | 12.25          | PASS   | Vertical | PK     |
| 2        | 5470           | 22.43          | 21.48             | 43.91             | 54.00             | 10.09          | PASS   | Vertical | AV     |

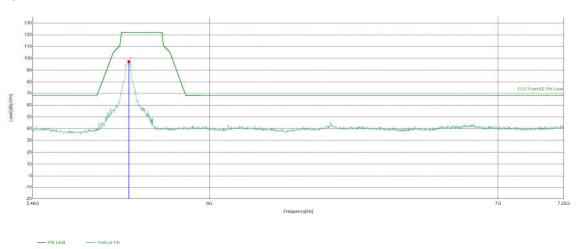




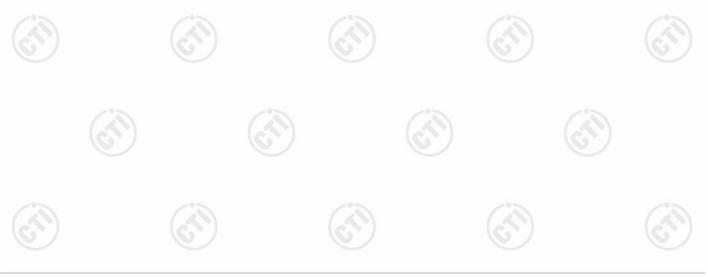

|      |          | _  |     |
|------|----------|----|-----|
| Dogo | $E \cap$ | ∽f | 71  |
| Page | บบ       | ΟI | 7 1 |

| EUT_Name      |                          |   | Test_Model     | (0)        |
|---------------|--------------------------|---|----------------|------------|
| Test_Mode     | 802.11 a<br>Transmitting |   | Test_Frequency | 5745MHz    |
| Tset_Engineer | Aiden.wang               | 6 | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\             | · | (25)           | 200        |

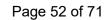



| Suspected List |                |                |                   |                   |                   |                |        |            |        |
|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO             | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1              | 5745.6478      | -7.66          | 105.31            | 97.65             | 122.20            | 24.55          | PASS   | Horizontal | PK     |

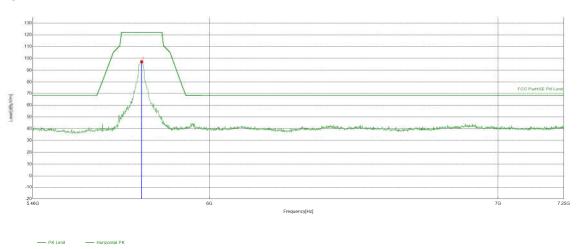




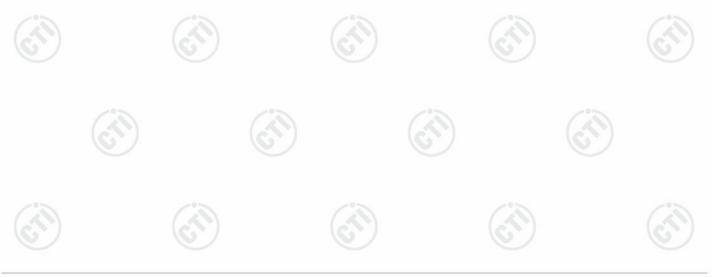




|               | 100                      | 1/2/           |            |
|---------------|--------------------------|----------------|------------|
| EUT_Name      |                          | Test_Model     |            |
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5745MHz    |
| Tset_Engineer | Aiden.wang               | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\             | (3)            |            |




| Suspe | Suspected List |                |                   |                   |                   |                |        |          |        |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1     | 5747.4387      | -7.58          | 104.97            | 97.39             | 122.20            | 24.81          | PASS   | Vertical | PK     |

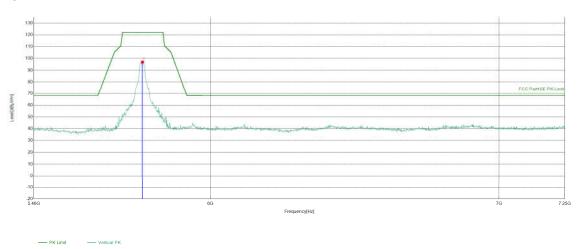




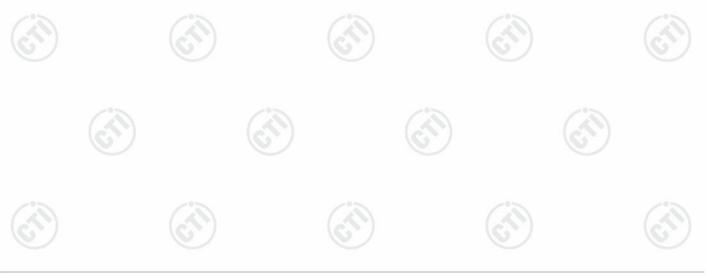



|               |                          | 100            | (6)        |
|---------------|--------------------------|----------------|------------|
| EUT_Name      |                          | Test_Model     |            |
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5785MHz    |
| Tset_Engineer | Aiden.wang               | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\             | (4)            | (2)        |

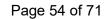



| Suspected List |                |                |                   |                   |                   |                |        |            |        |
|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO             | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1              | 5786.8384      | -7.70          | 105.02            | 97.32             | 122.20            | 24.88          | PASS   | Horizontal | PK     |

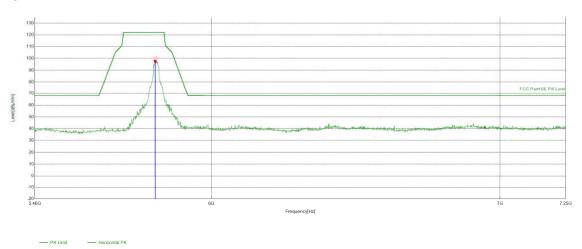





| _    |    | _  | - 4 |
|------|----|----|-----|
| Page | 53 | ot | 71  |


|               |                          | 100            |            |
|---------------|--------------------------|----------------|------------|
| EUT_Name      |                          | Test_Model     |            |
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5785MHz    |
| Tset_Engineer | Aiden.wang               | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\             |                |            |

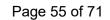



| Suspec | Suspected List |                |                   |                   |                   |                |        |          |        |
|--------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO     | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1      | 5785.943       | -7.69          | 104.70            | 97.01             | 122.20            | 25.19          | PASS   | Vertical | PK     |

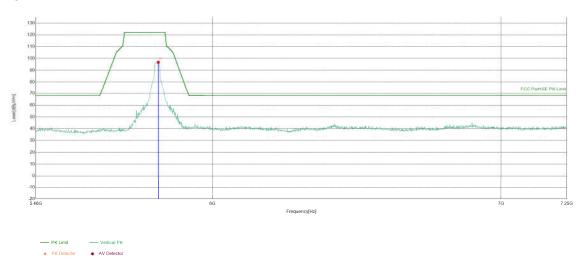




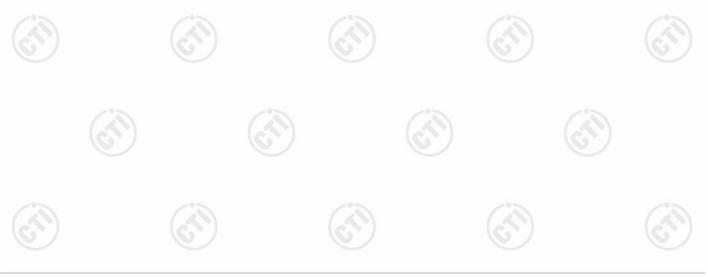



|               |                          | 100            | 100        |
|---------------|--------------------------|----------------|------------|
| EUT_Name      |                          | Test_Model     |            |
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5825MHz    |
| Tset_Engineer | Aiden.wang               | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\             |                | (2)        |

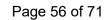



| Suspe | Suspected List |                |                   |                   |                   |                |        |            |        |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1     | 5822.6563      | -7.64          | 105.47            | 97.83             | 122.20            | 24.37          | PASS   | Horizontal | PK     |

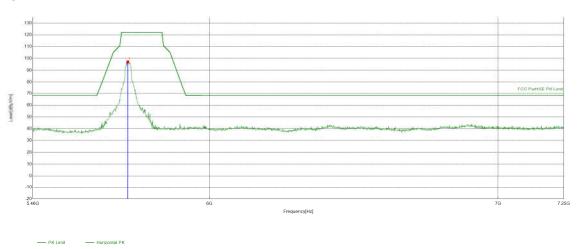








| EUT_Name      |                          | Test_Model     |            |
|---------------|--------------------------|----------------|------------|
| Test_Mode     | 802.11 a<br>Transmitting | Test_Frequency | 5825MHz    |
| Tset_Engineer | Aiden.wang               | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\             | (3)            | (1)        |




| Suspe | Suspected List |                |                   |                   |                   |                |        |          |        |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1     | 5828.9245      | -7.60          | 104.41            | 96.81             | 122.20            | 25.39          | PASS   | Vertical | PK     |

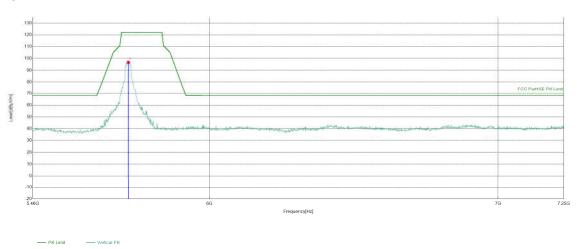







|               |                                |                | 100        |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5745MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (3)            | (3)        |




| Suspe | Suspected List |                |                   |                   |                   |                |        |            |        |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1     | 5743.8569      | -7.72          | 104.88            | 97.16             | 122.20            | 25.04          | PASS   | Horizontal | PK     |





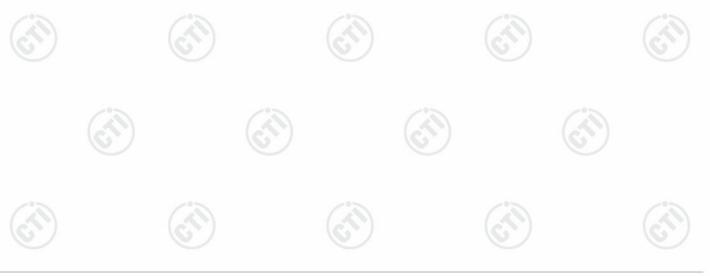



|               |                                |                | 100        |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5745MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (3)            | (1)        |

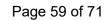



| Suspe | Suspected List |                |                   |                   |                   |                |        |          |        |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1     | 5745.6478      | -7.66          | 104.51            | 96.85             | 122.20            | 25.35          | PASS   | Vertical | PK     |

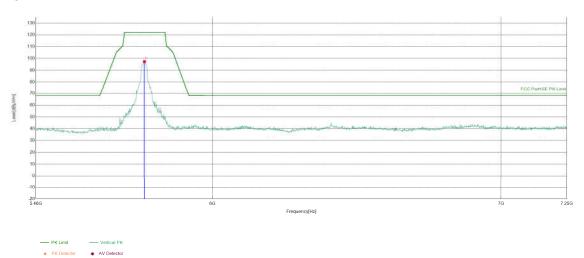




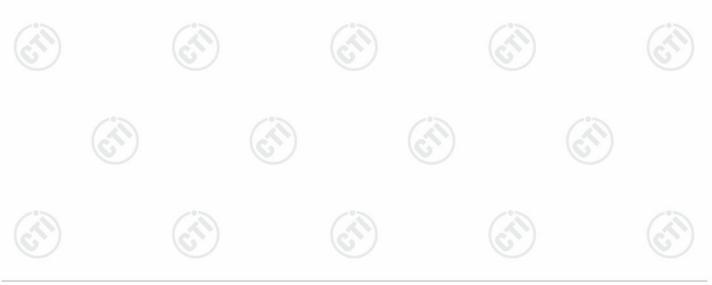

| Page  | $\Gamma$ |          | 74  |
|-------|----------|----------|-----|
| Page  | אר       | $\alpha$ | 7 1 |
| i aac | $\sim$   |          |     |


|               |                                | 103            | 100        |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5785MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   |                |            |

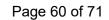



| Suspected List |                |                |                   |                   |                   |                |        |            |        |
|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO             | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1              | 5784.1521      | -7.69          | 105.37            | 97.68             | 122.20            | 24.52          | PASS   | Horizontal | PK     |





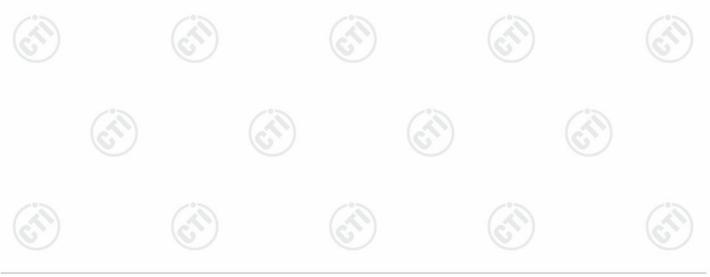




| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5785MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (3)            | (4)        |



| Suspe | Suspected List |                |                   |                   |                   |                |        |          |        |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1     | 5785.943       | -7.69          | 105.07            | 97.38             | 122.20            | 24.82          | PASS   | Vertical | PK     |

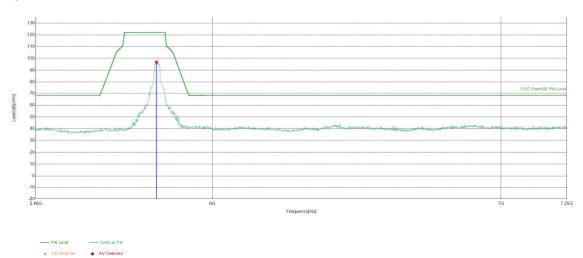




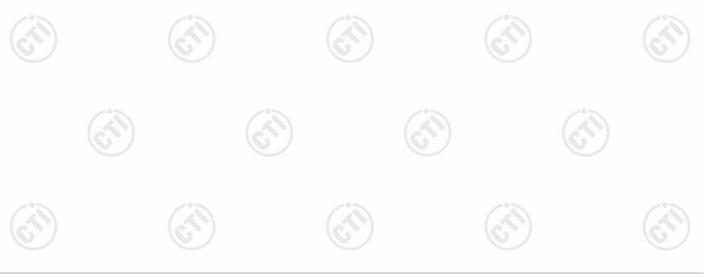



| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5825MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (3)            | (40)       |

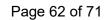



| Suspected List |                |                |                   |                   |                   |                |        |            |        |
|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO             | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1              | 5826.2381      | -7.62          | 104.30            | 96.68             | 122.20            | 25.52          | PASS   | Horizontal | PK     |

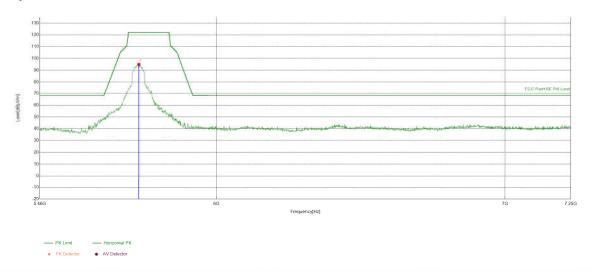




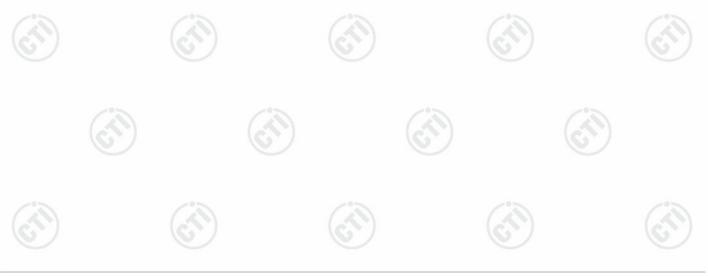




|               |                                | 100            |            |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT20)<br>Transmitting | Test_Frequency | 5825MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   |                | (1)        |




| Suspec | Suspected List |                |                   |                   |                   |                |        |          |        |
|--------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO     | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1      | 5823.5518      | -7.63          | 104.55            | 96.92             | 122.20            | 25.28          | PASS   | Vertical | PK     |

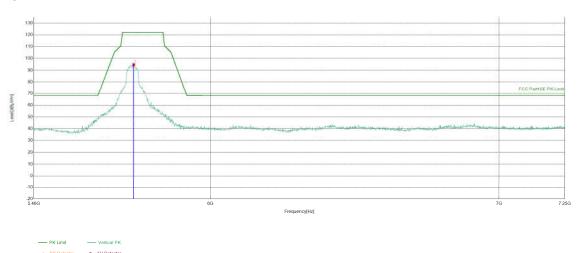







| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5755MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (2)            | (2)        |




| Suspec | Suspected List |                |                   |                   |                   |                |        |            |        |
|--------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO     | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1      | 5756.3932      | -7.52          | 102.58            | 95.06             | 122.20            | 27.14          | PASS   | Horizontal | PK     |

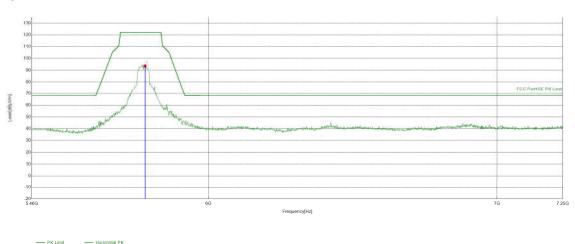






|               |                                | 102            |            |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5755MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (3)            | (4)        |




| Suspe | Suspected List |                |                   |                   |                   |                |        |          |        |  |
|-------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|--|
| NO    | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |  |
| 1     | 5759.0795      | -7.54          | 102.32            | 94.78             | 122.20            | 27.42          | PASS   | Vertical | PK     |  |



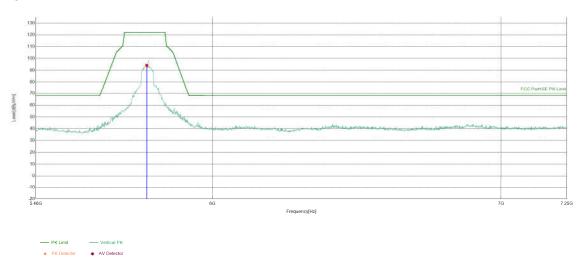




| EUT_Name      |                                | Test_Model     |            |
|---------------|--------------------------------|----------------|------------|
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5795MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   | (3)            | (4)        |



| Suspected List |                |                |                   |                   |                   |                |        |            |        |
|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|------------|--------|
| NO             | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   | Remark |
| 1              | 5800.2701      | -7.78          | 101.48            | 93.70             | 122.20            | 28.50          | PASS   | Horizontal | PK     |






Report No.: EED32Q81556402 Page 65 of 71

|               | 160                            |                |            |
|---------------|--------------------------------|----------------|------------|
| EUT_Name      |                                | Test_Model     |            |
| Test_Mode     | 802.11 n(HT40)<br>Transmitting | Test_Frequency | 5795MHz    |
| Tset_Engineer | Aiden.wang                     | Test_Date      | 2024/12/10 |
| Remark        | 23.5°C56.9%\                   |                |            |

#### **Test Graph**



| Suspected List |                |                |                   |                   |                   |                |        |          |        |
|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO             | Freq.<br>[MHz] | Factor<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1              | 5793.1066      | -7.74          | 102.01            | 94.27             | 122.20            | 27.93          | PASS   | Vertical | PK     |

#### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



















# 7 Appendix 5G Wi-Fi

Refer to Appendix: 5G Wi-Fi of EED32Q81556402























































































## **PHOTOGRAPHS OF EUT Constructional Details**

Refer to Report No.EED32Q81556401 for EUT external and internal photos.





















































































Report No.: EED32Q81556402 Page 71 of 71

#### **Statement**

- 1. This report is considered invalid without approved signature, special seal and the seal on the perforation;
- 2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;
- 3. The result(s) shown in this report refer(s) only to the sample(s) tested;
- 4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;
- 5. Without written approval of CTI, this report can't be reproduced except in full.

