

Page 1 of 50

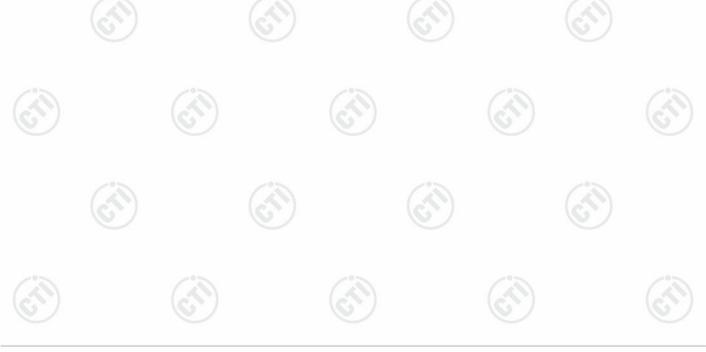
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

1 Contents

Page

	•
1 CONTENTS	 2
2 VERSION	3
3 TEST SUMMARY	
4 GENERAL INFORMATION	 5
4.1 CLIENT INFORMATION	 5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Test Configuration	 7
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	 8
5 TEST RESULTS AND MEASUREMENT DATA	 13
5.1 Antenna Requirement	
5.2 AC POWER LINE CONDUCTED EMISSIONS	
5.3 MAXIMUM CONDUCTED OUTPUT POWER	 18
5.4 20DB EMISSION BANDWIDTH	
5.5 CARRIER FREQUENCY SEPARATION	
5.6 NUMBER OF HOPPING CHANNEL	
5.8 Band edge Measurements	
5.9 Conducted Spurious Emissions	
5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
6 APPENDIX A	38
7 PHOTOGRAPHS OF TEST SETUP	
8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	41

2 Version


	Version No.	Date	Description	
2	00	Feb. 20, 2025	Original	(3)
5				

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

4 General Information

4.1 Client Information

Applicant:	Angry Miao Technology Co., Limited
Address of Applicant:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China
Manufacturer:	Angry Miao Technology Co., Limited
Address of Manufacturer:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China
Factory:	Angry Miao Technology Co., Limited
Address of Factory:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China

4.2 General Description of EUT

Product Name:	AM INFINITY	Y Receiver				
Model No.:	AM30D	\odot \odot	(C)			
Trade Mark:	Angry Miao					
Product Type:	Mobile	➢ Portable ☐ Fixed Location				
Operation Frequency:	2404MHz~24	478MHz	D			
Modulation Technique:	Frequency H	Frequency Hopping Spread Spectrum(FHSS)				
Modulation Type:	GFSK					
Number of Channel:	38					
Hopping Channel Type:	Adaptive Fre	equency Hopping systems				
Antenna Type:	PCB Antenn	a	67			
Antenna Gain:	1.16 dBi	\bigcirc	\sim			
Davian Comala	USB port:	DC 5V				
Power Supply:	Battery:	DC 3.85V	3			
Test Voltage:	DC 3.85V	(c ^r) (c	(\mathbf{x})			
Sample Received Date:	Jan. 07, 202	5				
Sample tested Date:	Jan. 07, 202	5 to Jan. 22, 2025				

Operation F	requency each	of channel		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2404	21	2444	
2	2406	22	2446	
3	2408	23	2448	
4	2410	24	2450	
5	2412	25	2452	
6	2414	26	2454	
7	2416	27	2456	
8	2418	28	2458	
9	2420	29	2460	
10	2422	30	2462	
11	2424	31	2464	
12	2426	32	2466	
13	2428	33	2468	
14	2430	34	2470	
15	2432	35	2472	
16	2434	36	2474	
17	2436	37	2476	
18	2438	38	2478	
19	2440			
20	2442	100		

9

Page 6 of 50

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	(cN)
Channel	Frequency(MHz)
The Lowest channel	2404
The Middle channel	2446
The Highest channel	2478

4.3 Test Configuration

EUT T	est Softwar	e Settings:						
Softwa	ire:		royuan_too					
•)	ower Grade		selected)				cannot be cha	
Use te transm	st software t itting of the	o set the lov EUT.	vest frequency	y, the middle f	requency and	I the highest	frequency kee	ep
	Mode		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Channel	25	F	requency(MH	z)
	(\mathcal{S})		(3)	CH1	-(3)-		2404	
	GFSK			CH22	U		2446	
				CH38			2478	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

4.4 **Test Environment**

				(5)				
Operating Environmen	Operating Environment: Radiated Spurious Emissions:							
Radiated Spurious Emi								
Temperature:	22~25.0 °C							
Humidity:	50~55 % RH		(in)		6			
Atmospheric Pressure:	1010mbar		(\mathcal{C})		6			
Conducted Emissions:	·							
Temperature:	22~25.0 °C							
Humidity:	50~55 % RH	125		12				
Atmospheric Pressure:	1010mbar	(A^{n})						
RF Conducted:								
Temperature:	22~25.0 °C							
Humidity:	50~55 % RH							
Atmospheric Pressure:	1010mbar							
	67		G		0			

4.5 **Description of Support Units**

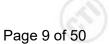
The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	HP ZHAN 66 Pro	FCC&CE	СТІ
	1	14 G4 Notebook	10	
	(\mathcal{A})	PC		(

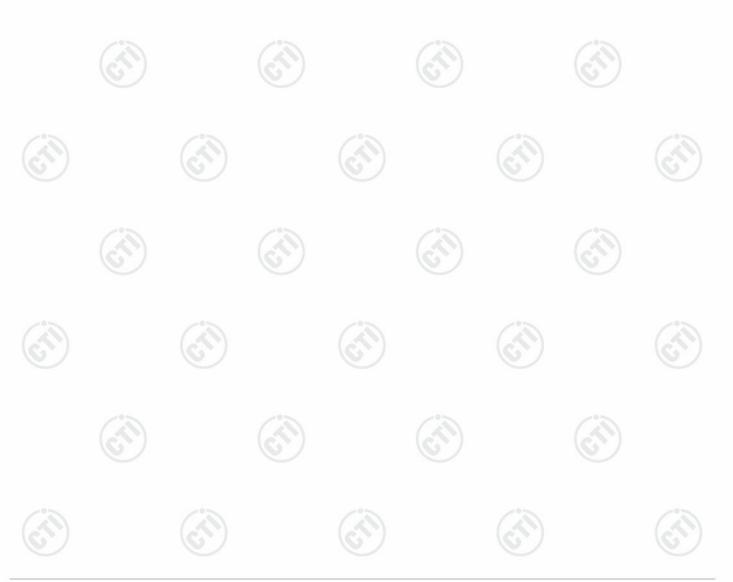
4.6 Test Location

All tests were performed at:


Centre Testing International Group Co., Ltd

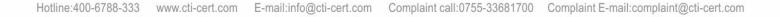
Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	PE power conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
(S) (S)		3.3dB (9kHz-30MHz)	
3	Padiated Spurious omission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7 DC power voltages		0.026%	



4.8 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025		
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-02-2024	09-01-2025		
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025		
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025		
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025		
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	05-29-2024	05-28-2025		
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(A)	(6		

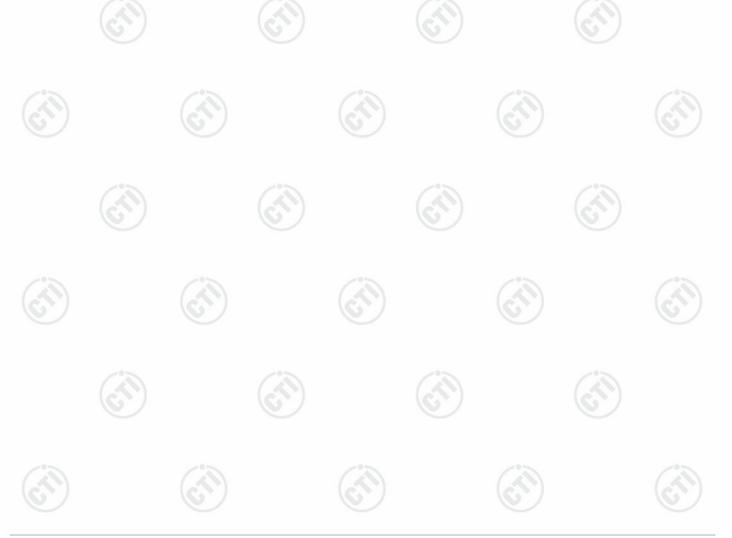
	Con	ducted disturba	nce Test			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025	
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025	
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025	
Barometer	changchun	DYM3	1188			
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	/	<u> </u>	
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025	
ISN	TESEQ	ISN T800	30297	12/05/2024	12/04/2025	

Page 11 of 50

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre		(
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		<u></u>
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	- 0.	

Page 12 of 50

		3M full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024 01-04-2025	01-08-2025 01-03-2026
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024 01-14-2025	01-22-2025 01-13-2026
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	<u></u>	Q
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(6	S)
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	<u></u>	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	- 6	- 6
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(6	9
Cable line	Times	HF160-KMKM-3.00M	393493-0001		



5 Test results and Measurement Data

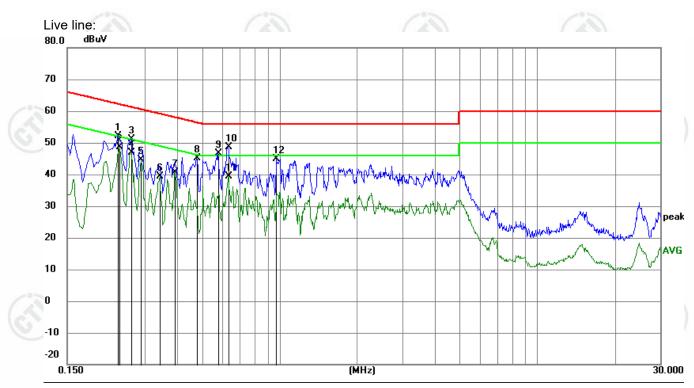
5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be u antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or bited.
antennas with directional ga section, if transmitting anter power from the intentional r	er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this mas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), etion, as appropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 1.16dBi.

5.2 AC Power Line Conducted Emissions

5.2	AC Power Line Cor	nducted Emissions			
	Test Requirement:	47 CFR Part 15C Section 15.2	07	(\mathcal{C})	
	Test Method:	ANSI C63.10: 2013		\sim	
	Test Frequency Range:	150kHz to 30MHz			
265	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	veep time=auto		100
4	Limit:		Limit (dBuV)	60
2		Frequency range (MHz)	Quasi-peak	Average	V
		0.15-0.5	 66 to 56*	56 to 46*	
		0.5-5	56	46	
		5-30	60	50	
		* Decreases with the logarithm			
	Test Setup:	Shielding Room	AE ways	Test Receiver	
	Test Procedure:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Ne impedance. The power cab connected to a second LISI reference plane in the same 	AC power source threat etwork) which provides les of all other units o N 2, which was bonde	ough a LISN 1 (I s a 50Ω/50μH + f the EUT were ed to the ground	Line
		 measured. A multiple socked power cables to a single LIS exceeded. 3) The tabletop EUT was placed ground reference plane. An placed on the horizontal grouter of the EUT shall be 0.4 m free vertical ground reference plane. The LISN unit under test and bonded mounted on top of the grout between the closest points the EUT and associated equipment of the social so	et outlet strip was user SN provided the rating ed upon a non-metalling ound reference plane, h a vertical ground reference rom the vertical ground ane was bonded to the 1 was placed 0.8 m fr to a ground reference nd reference plane. T of the LISN 1 and the	d to connect mul g of the LISN wa ic table 0.8m abor rangement, the ference plane. T d reference plane. T d reference plane horizontal gro om the boundar e plane for LISNs his distance was EUT. All other u	s not bye the EUT was he rear he. The und y of the s s units of



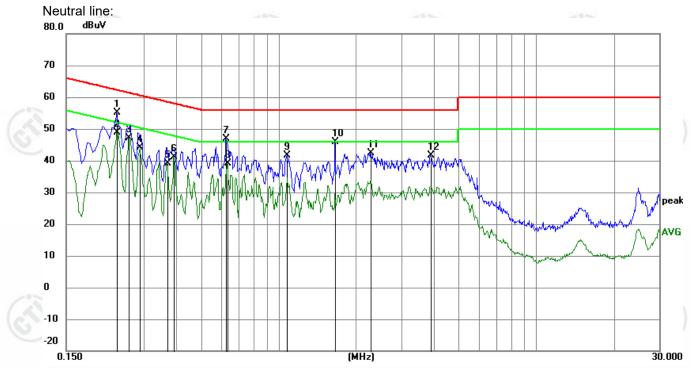
		equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
0	Final Test Mode:	Through Pre-scan, find the GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
6	Test Results:	Pass

Measurement Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.2355	41.87	10.18	52.05	62.25	-10.20	QP		
2 *	0.2400	38.40	10.18	48.58	52.10	-3.52	AVG		
3	0.2670	40.93	10.16	51.09	61.21	-10.12	QP		
4	0.2670	36.78	10.16	46.94	51.21	-4.27	AVG		
5	0.2895	34.43	10.14	44.57	50.54	-5.97	AVG		
6	0.3435	29.35	10.11	39.46	49.12	-9.66	AVG		
7	0.3930	30.57	10.09	40.66	48.00	-7.34	AVG		
8	0.4785	35.03	10.08	45.11	56.37	-11.26	QP		
9	0.5775	36.63	10.10	46.73	56.00	-9.27	QP		
10	0.6315	38.63	10.11	48.74	56.00	-7.26	QP		
11	0.6360	29.18	10.11	39.29	46.00	-6.71	AVG		
12	0.9735	34.79	10.18	44.97	56.00	-11.03	QP		

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Page 17 of 50

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2355	44.94	10.18	55.12	62.25	-7.13	QP	
2 *	0.2355	38.70	10.18	48.88	52.25	-3.37	AVG	
3	0.2625	36.95	10.16	47.11	51.35	-4.24	AVG	
4	0.2895	34.08	10.14	44.22	50.54	-6.32	AVG	
5	0.3704	28.99	10.10	39.09	48.49	-9.40	AVG	
6	0.3930	30.97	10.09	41.06	48.00	-6.94	AVG	
7	0.6270	36.82	10.11	46.93	56.00	-9.07	QP	
8	0.6315	29.04	10.11	39.15	46.00	-6.85	AVG	
9	1.0815	31.36	10.18	41.54	56.00	-14.46	QP	
10	1.6575	35.70	10.17	45.87	56.00	-10.13	QP	
11	2.2785	32.25	10.16	42.41	56.00	-13.59	QP	
12	3.8895	31.44	10.10	41.54	56.00	-14.46	QP	

Remark:

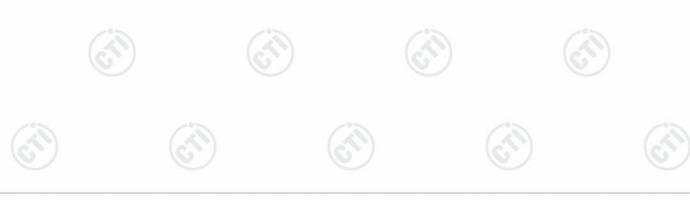
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
122	Test Setup:	Control Control Power Supply Table RF test System Instrument
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
3	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
2	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A
	(S)	

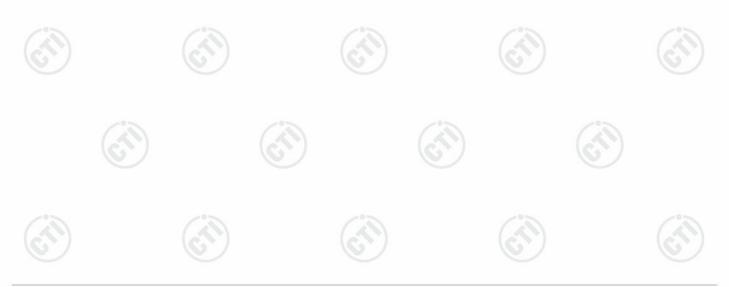
5.4 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Control Control Control Power Suppy TemPerature cabnet Table				
Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for ea measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report. 				
Limit:	NA				
Exploratory Test Mode	Non-hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	GFSK				
Test Results:	Refer to Appendix A				



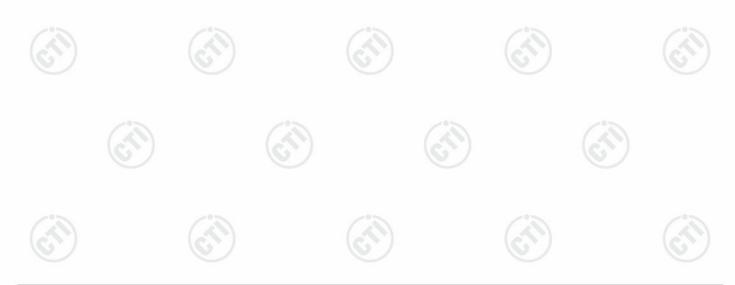
5.5 Carrier Frequency Separation

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
(Cv.)	Test Setup:	Control Control Power Supply Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	GFSK
	Test Results:	Refer to Appendix A



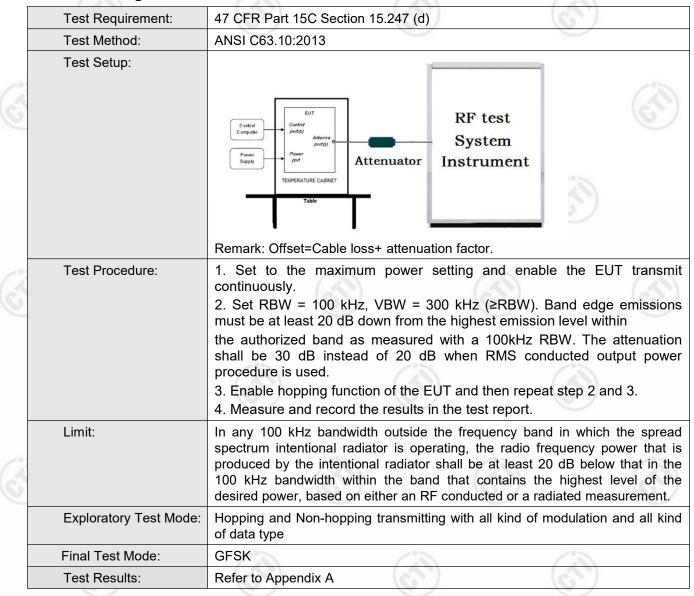
5.6 Number of Hopping Channel

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
č	Test Setup:	Control Control Computer Power Supply TemPERATURE CABNET Table RF test System Instrument					
_	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF					
2		cable and attenuator. The path loss was compensated to the results for each measurement.2. Set to the maximum power setting and enable the EUT transm continuously.					
		 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 					
3		5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.					
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.					
	Test Mode:	Hopping transmitting with all kind of modulation					
	Test Mode.						



5.7 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
() ()	Test Setup:	Control Computer Computer Power Supply TeMPERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
୍	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix A
	G	



5.8 Band edge Measurements

5.9 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Control Control Power supply TemPERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
Š	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Ś	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	GFSK
	Test Results:	Refer to Appendix A

Page 25 of 50

5.10 Pseudorandom Frequency Hopping Sequence

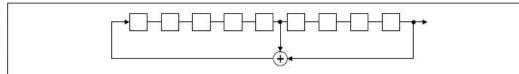
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

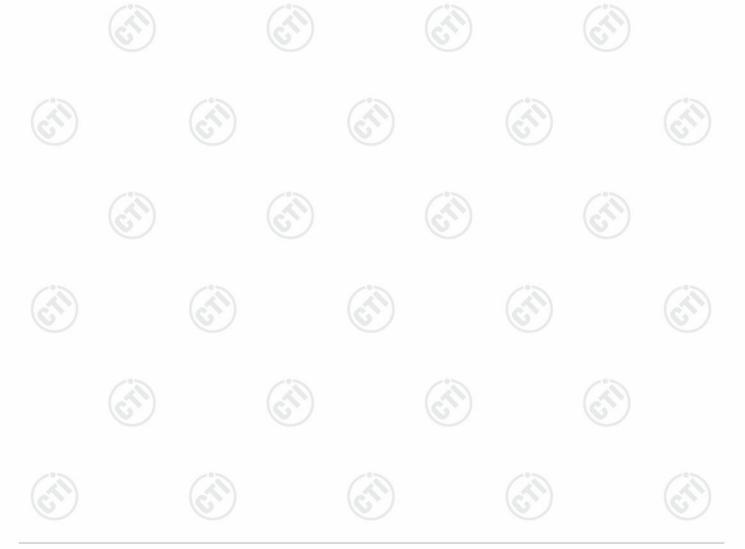
. .

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of P	seudorandom Fre	equency	Hopping Seq	uence as follow:			
20 62 46 77	7	64	8 73		16:75	1	
Each frequency	used equally on th	ne avera	age by each tr	ansmitter.			
bandwidths that		oing cha	annel bandwid	receivers are desigr dths of any Bluetoo als.			
Compliance for	section 15.247(g	3)					
•	· · · · · · · · · · · · · · · · · · ·			tooth system transn ata and the short bu		•	

Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

Report No. : EED32Q82162401


Page 26 of 50

hopping frequency system.

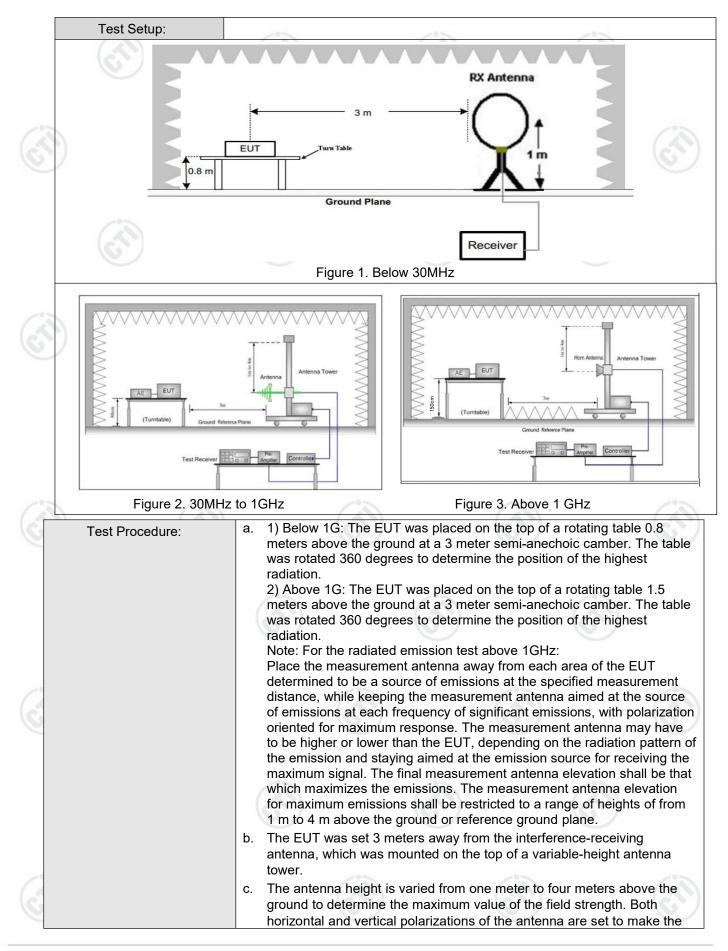
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

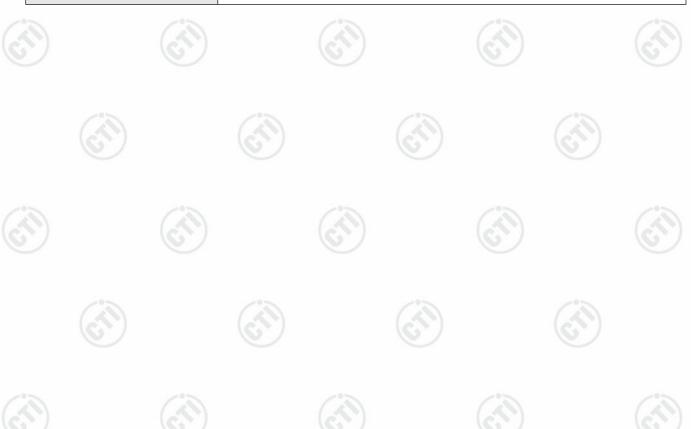
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.11 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	.205	G)
	Test Method:	ANSI C63.10: 2013		\sim			
	Test Site:	Measurement Distance	: 3m	(Semi-Anech	noic Cham	ber)	
ž	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark
8		0.009MHz-0.090MH	z	Peak	10kHz	2 30kHz	Peak
-		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	2 30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kHz	2 30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak
		Above 1011		Peak	1MHz	3MHz	Peak
		Above 1GHz		Peak	1MHz	10kHz	Average
-	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	24	100/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-	- (3	30
		1.705MHz-30MHz		30	-	0	30
		30MHz-88MHz		100	40.0	Quasi-peak	3
		88MHz-216MHz		150	43.5	Quasi-peak	3
2		216MHz-960MHz		200	46.0	Quasi-peak	3
		960MHz-1GHz)	500	54.0	Quasi-peak	3
-		Above 1GHz	/	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 abo equip	ove the maxin	num permi est. This p	tted average	emission limit

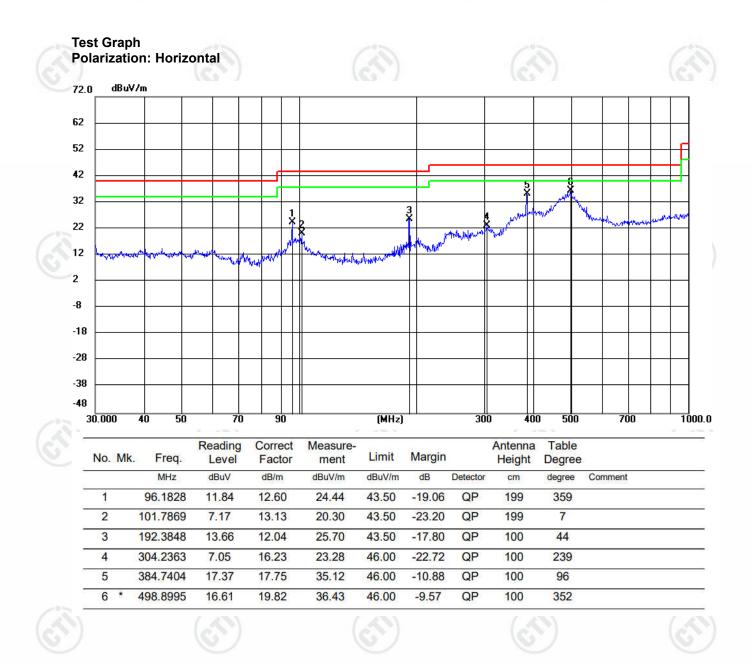


Page 28 of 50



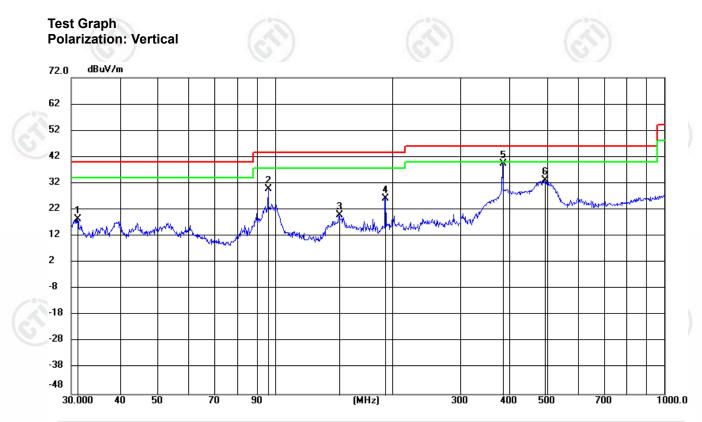
Report No. : EED32Q82162401

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2404MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass
	Final Test Mode:



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of GFSK Low channel was recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.1743	6.00	12.39	18.39	40.00	-21.61	QP	100	39	
2		96.1997	17.33	12.60	29.93	43.50	-13.57	QP	100	333	
3		146.2965	10.84	9.17	20.01	43.50	-23.49	QP	100	360	
4		192.3848	14.26	12.04	26.30	43.50	-17.20	QP	100	39	
5	*	384.8079	21.60	17.75	39.35	46.00	-6.65	QP	100	7	
6		493.5058	13.51	19.72	33.23	46.00	-12.77	QP	100	280	

Radiated Spurious Emission above 1GHz:

	Mode	:		2.4G Tran	smitti	ing		Channel:		2404 MHz	2
	NO	Freq. [MHz]	Factor [dB]	r Read [dBµ	•	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
- 00	1	1144.6763	10.23	38.3	9	48.62	74.00	25.38	Pass	Н	PK
4	2	1954.3303	16.83	34.3	32	51.15	74.00	22.85	Pass	Н	PK
2	3	3358.8239	-12.72	53.4	5	40.73	74.00	33.27	Pass	Н	PK
	4	4807.1205	-10.45	64.5	57	54.12	74.00	19.88	Pass	Н	PK
	5	7379.992	-4.40	47.3	81	42.91	74.00	31.09	Pass	Н	PK
	6	9613.5409	2.50	53.9)4	56.44	74.00	17.56	Pass	Н	PK
	7	1067.2045	9.37	39.1	2	48.49	74.00	25.51	Pass	V	PK
	8	1944.463	16.90	33.9	9	50.89	74.00	23.11	Pass	V	PK
	9	3334.1223	-12.81	54.3	3	41.52	74.00	32.48	Pass	V	PK
	10	4808.4206	-10.44	61.2	21	50.77	74.00	23.23	Pass	V	PK
1	11	7876.6251	-2.62	46.2	26	43.64	74.00	30.36	Pass	V	PK
5	12	9618.7412	2.44	54.5	68	57.02	74.00	16.98	Pass	V	PK
	1								/		

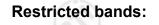
Mo	ode:		2.4G Transmitt	ing		Channel:		2446 MHz	2
N	D Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1155.2103	10.24	37.95	48.19	74.00	25.81	Pass	Н	PK
2	1962.9975	16.34	34.85	51.19	74.00	22.81	Pass	Н	PK
3	3457.6305	-12.95	52.87	39.92	74.00	34.08	Pass	Н	PK
4	4890.9761	-9.63	67.68	58.05	74.00	15.95	Pass	Н	PK
5	7950.73	-1.62	45.22	43.60	74.00	30.40	Pass	Н	PK
6	9781.2521	2.82	54.43	57.25	74.00	16.75	Pass	Н	PK
7	1144.8097	10.23	37.91	48.14	74.00	25.86	Pass	V	PK
8	1956.5971	16.70	35.09	51.79	74.00	22.21	Pass	V	PK
9	3330.222	-12.87	53.85	40.98	74.00	33.02	Pass	V	PK
1(4893.5762	-9.58	65.13	55.55	74.00	18.45	Pass	V	PK
1	1 7774.5683	-3.37	47.16	43.79	74.00	30.21	Pass	V	PK
12	9786.4524	2.98	55.32	58.30	74.00	15.70	Pass	V	PK
0		105	·	205		20-			-05

CTI华测检测

Page 33 of 50

Mode	:		2.4G Transmitti	ng	_	Channel:	_	2478 MHz	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1148.8099	10.37	37.85	48.22	74.00	25.78	Pass	Н	PK
2	1955.9304	16.74	35.14	51.88	74.00	22.12	Pass	Н	PK
3	3329.572	-12.88	53.56	40.68	74.00	33.32	Pass	н	PK
4	4957.2805	-13.27	66.78	53.51	74.00	20.49	Pass	Н	PK
5	7771.9681	-3.34	46.62	43.28	74.00	30.72	Pass	Н	PK
6	9912.5608	0.75	51.64	52.39	74.00	21.61	Pass	н	PK
7	1153.0769	10.31	38.76	49.07	74.00	24.93	Pass	V	PK
8	1955.9304	16.74	35.24	51.98	74.00	22.02	Pass	V	PK
9	3791.7528	-12.09	52.16	40.07	74.00	33.93	Pass	V	PK
10	4957.2805	-13.27	66.86	53.59	74.00	20.41	Pass	V	PK
11	7911.0774	-2.38	45.79	43.41	74.00	30.59	Pass	V	PK
12	9912.5608	0.75	50.80	51.55	74.00	22.45	Pass	V	PK
· /		10.7	1	16.7		10.2			10.21

Remark:

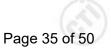

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in 2) this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Test plot as follows:

	EUT_N	lame			Test_Model		
	Test_N	lode	2.4G		Test_Frequency	2404Mh	z
	Tset_En	gineer	chenjun		Test_Date	2025/01	/22
	Rem	ark	23.5°C56.9%				
rest C	Braph						
	130 120 110						
	100 90 80 70						CC PARTISC
	10000000000000000000000000000000000000	aylini, da gu coyaya Maki	an a	n eine ittekstikermitistikalik	nas mainta hitempedadur attirity		A Barren and A Bar
	30						
	20						

- PK Limit ---- AV Limit ----- Horizontal PK - Horizor * PK Detector * AV Detector

	Suspecte	d List								
Ä	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
C	1	2390	15.31	45.12	60.43	74.00	13.57	PASS	Horizontal	PK
	2	2390	15.31	23.66	38.97	54.00	15.03	PASS	Horizontal	AV



	EUT_N	ame	S		Test_Mod	del		(\mathbf{c})	
	Test_M	ode 2.	4G	1	Test_Frequ	ency	2404Mhz	<u>-</u>	~
	Tset_Eng	gineer ch	nenjun	CC CC	Test_Da	te	2025/01/	22	6
	Rema	ırk 23	3.5°C56.9%\	М	-			-	
Tes	st Graph		$\binom{c_1}{c_1}$		(31	•)		(\mathcal{A}^{n})	
	130 120 110								
	90						Jan	CC PART ISC (PH Limit
	Filler	uhlletinden scheiner sleiter	برهاي بالارتبارية والإفارينا برواي	dakterung paielineitettetter	n dan katerin (n dar an dan katerin (n dar	rydd daellan y ddae	population and the	V Constanting of the second se	Weinder
	30 20 10								
	-10 -20 2.31G	2.3214G 2.33	328G 2.3442G	2.3556G	2.367G 2.3784	IG 2.3898G	2.4012G	2.4126G	2.424G
	0 			2.3558G	2.367G 2.3784 Frequency[Hz]	G 2.3898G	2.4012G	2.4126G	2.424G
	0 10 20 231G → PK Limit ★ PK Detector		sz8G 23442G	235580		IG 23898G	24012G	2.4128G	2.424G
Sus	PK Limit PK Detector	- AV Limit - Ve • AV Detector	rtical PK — Vertical AV	107	Frequency(Hz)		2.4012G	2.4126G	
	PK Limit PK Delector	AV Limit Ve				a 230000	24012G Result	241286 Polarity	ler
٩	Spected List NO Freq. [MHz] 1 2390	AV Limit — Ve • AV Detector [dB] 15.31	Reading [dBµV] 40.98	Level [dBµV/m] 56.29	Frequency(H2)	Margin [dB] 17.71	Result	Polarity Vertical	Remar
٦	PK Limit * PK Detector spected List NO Freq. [MHz]	AV Limit Ve • AV Detector Factor [dB]	rtical PK Vertical AV	Level [dBµV/m]	Frequency(Hz)	Margin [dB]	Result	Polarity	Rema
٩	Spected List NO Freq. [MHz] 1 2390	AV Limit — Ve • AV Detector [dB] 15.31	Reading [dBµV] 40.98	Level [dBµV/m] 56.29	Frequency(H2)	Margin [dB] 17.71	Result	Polarity Vertical	Remai
٩	Spected List NO Freq. [MHz] 1 2390	AV Limit — Ve • AV Detector [dB] 15.31	Reading [dBµV] 40.98	Level [dBµV/m] 56.29	Frequency(H2)	Margin [dB] 17.71	Result	Polarity Vertical	Remai

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

	EUT_Nam	ne	J		Test_Moo	lei		U	
~	Test_Mod	le 2.4	4G		Test_Frequ	ency	2478Mhz		
9	Tset_Engin	eer ch	enjun	E	Test_Da	te	2025/01/2	22	6
	Remark	23	.5°C56.9%\						
Test Gra	ph	I	(3)		(2))		(3)	
	130								
	110				en de la communitación de la compañía de la compañí				
	100		1000	1 AM					
	80		accounter of	Constanting of the second				FCC PART ISC P	Ktimit
Level(dB/Mm)	80	ini sinistananana		N.	Radiana (jaran) kaka kaka kaka kaka kaka kaka kaka k	talahan mining ang ang		FCC PARTISE P FCC PARTISE A FCC PARTISE A	K Lynn V Lynn A_BVIL
Invyfeljaer	80		SANNER CONTRACT	- Conservation of the second s			ing give the second	FOC PART ISO P	K turnet dig 83 la
(max(E))awa	80	100		N.				FOC PART HS P FOC PART HS A FOC PART HS A	K time V time
Tuardigitasy	80	الفابيون في وراي ورو		248120	2486G 24908	2 49566	250046	POC PART ISC P POC PART ISC P POC PART ISC A POC POC POC POC POC POC POC POC POC POC	Kture Vine 2510
reentlightwur	00 00 10 10 10 10 10 10 10 10	الفابيون في وراي ورو		248120		24956G	2.5004G	FGC FART 450 A	V 1000
revel	00 00 10 10 10 10 10 10 10 10	86 24710		248120	2486G 24908	24956G	2.5004G	FGC FART 450 A	V 1000
	00 00 00 00 00 00 00 00 00 00 00 00 00	86 24710	3G 24764G	248120	2486G 24908		25004G	FGC FART 450 A	V 1000
Suspecte NO	00 00 00 00 00 00 00 00 00 00 00 00 00	86 24710	3G 24764G	2.4812G	2486G 24908			FGC FART 450 A	2516
Suspecte	PK Limit - PK Limit - W Director - PK Limit - W Director - PK Limit - W Director	ac 24710 AV Limit - Vert Factor	al PK - Verical AV	24812G	2486G 24986 2488G 24986	Margin	37 J	2.00520	V 1000

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

6 Appendix A

Refer to Appendix: 2.4G FHSS of EED32Q82162401

Statement

1. This report is considered invalid without approved signature, special seal and the seal on the perforation;

2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;

3. The result(s) shown in this report refer(s) only to the sample(s) tested;

4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;

5. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***