

FCC PART 15.247 TEST REPORT

For

SWAGTEK

10205 NW 19th Street STE101 Miami, Florida 33172 United States

FCC ID: 055242518

Report Type:		Product Type:	
Class II Permissiv	e Change	2.4 inch 3G Flip Phone	
Report Number:	RSZ190611001	-00BA1	
Report Date:	2019-07-31		
	Simon Wang	Simon	wang
Reviewed By:	RF Engineer		
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn		

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	9
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	10
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	14
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	2.4 inch 3G Flip Phone		
Tested Model	F8G		
Multiple Model [#]	FLIP G, U8G		
Frequency Range	Bluetooth: 2402~2480MHz		
Transmit Power	Bluetooth: 2.824dBm		
Modulation Technique	Bluetooth: GFSK		
Antenna Specification	1.0dBi		
Voltage Range	DC 3.7 V from battery or DC 5.0V from adapter		
Date of Test	2019-06-14		
Sample serial number	190611001		
Received date	2019-06-11		
Sample/EUT Status	Good condition		
Adapter information	Model: XCM04-X0505000YU Input: AC 100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 500mA		

Model	Trade Name
F8G	LOGIC
FLIP G	iSWAG
U8G	UNONU

Notes: This series products model: FLIP G, U8G and F8G are electrically identical, model F8G was selected for fully testing, the detailed information can be referred to the declaration letter.

Objective

This test report is prepared on behalf of *SWAGTEK* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

This is a CIIPC application of the device; the differences between the original device and the current one are as follows:

- 1. Updating the single card to double card.
- 2. Changing the 2G&3G antenna.
- 3. Changing the label on adapter but the circuit parameter didn't change.
- 4. Changing the model number from "LOGIC F8G, iSWAG FLIP G, UNONU U8G, UNONU F8G" to "F8G, FLIP G, U8G".

Based on above differences, it will affected partial test data, so the changed items were performed.

FCC Part 15.247

Related Submittal(s)/Grant(s)

FCC Part 15B JBP and Part 22H /24E PCE submissions with FCC ID: O55242518.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		±5%
RF Output Power with Power meter		±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1 °C
Humidity		±6%
Supply voltages		±0.4%

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

No exercise software was made to the EUT tested.

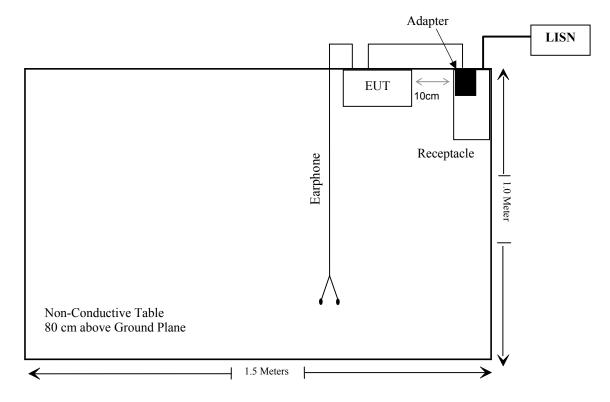
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Un-detachable DC Cable	1.0	EUT	Adapter

Block Diagram of Test Setup

For conducted emission:

FCC Part 15.247

Page 6 of 16

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance*
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance**
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance*
§15.247(a)(1)	Channel Separation Test Complian	
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance*
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance*
§15.247(b)(1)	Peak Output Power Measurement Compliance	
§15.247(d)	Band edges Compliance	

Compliance*: Please referred to FCC ID: O55242518 granted on 2018-10-11.Report No.: HUAK180803685E, which was tested by Shenzhen HUAK Testing Technology Co., Ltd. Compliance**:Only test Radiated emission below 1G, Radiated emission above 1G please referred to FCC ID:

Compliance**:Only test Radiated emission below 1G, Radiated emission above 1G please referred to FCC ID: O55242518 granted on 2018-10-11.Report No.: HUAK180803685E, which was tested by Shenzhen HUAK Testing Technology Co., Ltd.

Report No.: RSZ190611001-00BA1

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Condu	cted Emissions	Test		
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2018-07-11	2019-07-11
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2019-01-25	2020-01-25
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2019-03-02	2020-03-02
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
Un-known Conducted Emission Cable		78652	UF A210B-1- 0720-504504	2018-11-12	2019-11-12
	Radia	ted Emission T	ſest		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21
Sonoma Instrument	Amplifier	310N	186238	2018-11-12	2019-11-12
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03 -101746-zn	2018-07-11	2019-07-11
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR
Ducommun Technologies	RF Cable	RG-214	1	2019-05-21	2019-11-19
Ducommun Technologies	RF Cable	RG-214	2	2018-11-12	2019-11-12

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

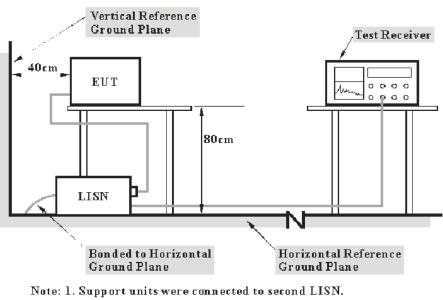
2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2480	3.0	2.00	5	0.6	3.0	Yes


Result: No Standalone SAR test is required

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

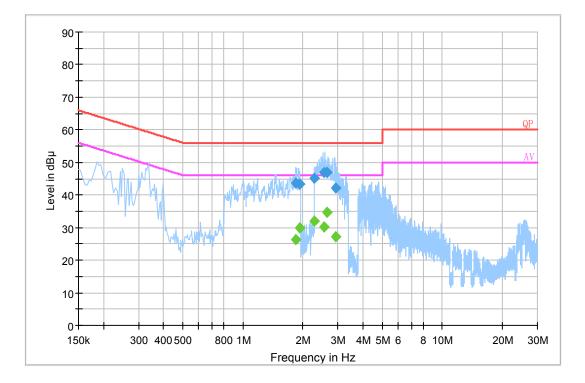
According to the recorded data in following table, the EUT complied with the FCC Part 15.207,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

 $L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_{m} is less than L_{lim} , it implies that the EUT complies with the limit.

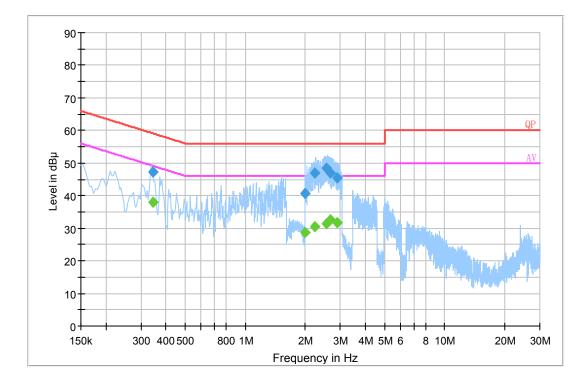
Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2019-06-14.

EUT operation mode: Transmitting & charging (the worst case is GFSK Mode, Middle channel)


Report No.: RSZ190611001-00BA1

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Factor Limit Margin (dBuV) (dB)		Detector (PK/Ave./QP)	
1.842370	43.7	19.9	56.0	12.3	QP	
1.917110	43.2	19.9	56.0	12.8	QP	
2.291110	45.3	19.9	56.0	10.7	QP	
2.567450	46.9	19.8	56.0	9.1	QP	
2.650130	47.0	19.9	56.0	9.0	QP	
2.918050	42.1	19.9	56.0	13.9	QP	
1.842370	26.4	19.9	46.0	19.6	Ave.	
1.917110	30.0	19.9	46.0	16.0	Ave.	
2.291110	31.9	19.9	46.0	14.1	Ave.	
2.567450	30.2	19.8	46.0	15.8	Ave.	
2.650130	34.7	19.9	46.0	11.3	Ave.	
2.918050	27.1	19.9	46.0	18.9	Ave.	

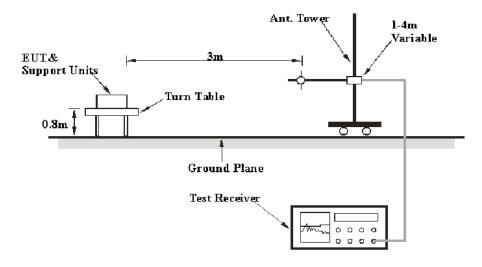
Report No.: RSZ190611001-00BA1

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB) Limit (dBµV)		Margin (dB)	Detector (PK/Ave./QP)	
0.343070	47.1	19.8	59.1	12.0	QP	
2.000030	40.5	19.9	56.0	15.5	QP	
2.236010	46.8	19.8	56.0	9.2	QP	
2.543270	48.5	19.8	56.0	7.5	QP	
2.674250	47.0	19.8	56.0	9.0	QP	
2.874230	45.5	19.9	56.0	10.5	QP	
0.343070	37.9	19.8	49.1	11.2	Ave.	
2.000030	28.8	19.9	46.0	17.2	Ave.	
2.236010	30.5	19.8	46.0	15.5	Ave.	
2.543270	31.4	19.8	46.0	14.6	Ave.	
2.674250	32.5	19.8	46.0	13.5	Ave.	
2.874230	31.7	19.9	46.0	14.3	Ave.	

Note:

Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
Corrected Amplitude = Reading + Correction Factor
Margin = Limit - Corrected Amplitude


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP	

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

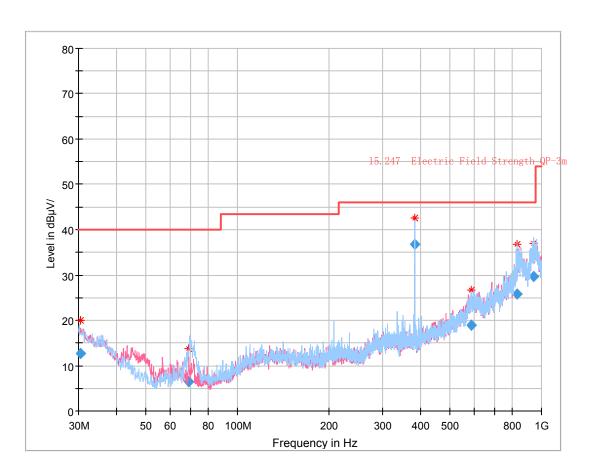
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.


Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2019-06-14.

EUT operation mode: Transmitting&charging

30 MHz~1 GHz: (the worst case is GFSK Mode, Middle channel)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
30.469898	12.60	209.0	Н	103.0	-7.9	40.00	27.40
69.284250	6.41	331.0	Н	151.0	-20.6	40.00	33.59
384.003500	36.77	102.0	Н	107.0	-10.5	46.00	9.23
589.146500	18.90	335.0	Н	13.0	-2.4	46.00	27.10
833.766875	25.89	293.0	Н	152.0	5.3	46.00	20.11
941.312625	29.63	316.0	Н	0.0	8.9	46.00	16.37

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded. And for the pre-scan is performed with the 2400-2483.5MHz band filter.

***** END OF REPORT *****