

Test Report Serial Number: 45461793 R1.0 Test Report Date: Project Number:

3 February 2023 1612

SAR Test Report - New Application

Applicant:

Garmin International Inc. **Olathe, KS, 66062 USA**

FCC ID:

IPH-04536

Product Model Number / HVIN

A04536

Maximum <u>reported</u> SAR							
D. d	WiFi - 2.4GHz	0.03					
Body (1g)	WiFi - 5GHz	0.49					
(19)	Simultaneous	0.61					
General F	op. Limit:	1.60	\\//\/.~				
Fortuna and its a	WiFi - 2.4GHz	0.04	W/kg				
Extremity (10g)	WiFi - 5GHz	0.20					
(109)	Simultaneous	0.24					
General F	op. Limit:	4.00					

IC Registration Number

Product Name / PMN

A04536

In Accordance With:

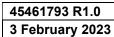
FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X7R8 Canada



FCC Registration: CA3874

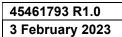
IC Registration 3874A

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Table of Contents

1.0 REVISION HISTORY	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 SAR MEASUREMENT SYSTEM	9
7.0 RF CONDUCTED POWER MEASUREMENT	10
TABLE 7.1 CONDUCTED POWER MEASUREMENTS, 2.4 GHZ WIFI TABLE 7.2 CONDUCTED POWER MEASUREMENT RESULTS, BLUETOOTH TABLE 7.3 CONDUCTED POWER MEASUREMENTS, 5 GHZ WIFI UNI-1 TABLE 7.4 CONDUCTED POWER MEASUREMENTS, 5 GHZ WIFI UNI-3	
8.0 NUMBER OF TEST CHANNELS (Nc)	13
TABLE 8.1 NUMBER OF TEST CHANNELS TABLE 8.2 ANTENNA DISTANCES TABLE 8.3 SAR TEST EXCLUSION BASED ON ANTENNA TEST SEPARATION DISTANCES BODY TABLE 8.3 SAR TEST EXCLUSION BASED ON ANTENNA TEST SEPARATION DISTANCES EXTREMITY	14
9.0 ACCESSORIES EVALUATED	17
Table 9.1 Manufacturer's Accessory List	17
10.0 SAR MEASUREMENT SUMMARY	18
TABLE 10.1: MEASURED RESULTS, BODY (1G)	
11.0 SCALING OF MAXIMUM MEASURE SAR	20
TABLE 11.1 SAR SCALING – BODY (1G)	21 23
TABLE 12.1 EXPOSURE LIMITS	
13.0 DETAILS OF SAR EVALUATION	25
13.1 DAY LOG 13.2 DUT SETUP AND CONFIGURATION. 13.3 DUT POSITIONING 13.4 GENERAL PROCEDURES AND REPORT. 13.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK 13.6 SCAN RESOLUTION 100MHz TO 2GHz 13.7 SCAN RESOLUTION 2GHz TO 3GHz 13.8 SCAN RESOLUTION 5GHz TO 6GHz	
14.0 MEASUREMENT UNCERTAINTIES	29
Table 14.1 Measurement Uncertainty	

45461793 R1.0 3 February 2023


15.0 FLUID DIELECTRIC PARAMETERS	31
TABLE 15.1 FLUID DIELECTRIC PARAMETERS 2450MHz HEAD TSL	
TABLE 15.3 FLUID DIELECTRIC PARAMETERS 5250MHz HEAD TSL	
TABLE 15.4 FLUID DIELECTRIC PARAMETERS 5750MHz HEAD TSL	
16.0 SYSTEM VERIFICATION TEST RESULTS	33
TABLE 16.1 SYSTEM VERIFICATION RESULTS 2450MHz HEAD TSL	33
TABLE 16.2 SYSTEM VERIFICATION RESULTS 5250MHz HEAD TSL	
TABLE 16.3 SYSTEM VERIFICATION RESULTS 5250MHz HEAD TSL	
TABLE 16.4 SYSTEM VERIFICATION RESULTS 5750MHz HEAD TSL	
17.0 SYSTEM VALIDATION SUMMARY	37
Table 17.0 System Validation Summary	37
18.0 MEASUREMENT SYSTEM SPECIFICATIONS	38
TABLE 18.1 MEASUREMENT SYSTEM SPECIFICATIONS	38
19.0 TEST EQUIPMENT LIST	40
TABLE 19.1 EQUIPMENT LIST AND CALIBRATION	40
20.0 FLUID COMPOSITION	41
TABLE 20.1 FLUID COMPOSITION 2450MHz HEAD TSL	
TABLE 20.4 FLUID COMPOSITION 5250, 5750MHz HEAD TSL	41
END OF REPORT	41
APPENDIX A – SYSTEM VERIFICATION PLOTS	42
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	50
APPENDIX C - SETUP PHOTOS	58
FIGURE C.1 – SETUP PHOTO, BACK SIDE 5MM – ELI PHANTOM – BODY SAR	58
FIGURE C.2 – SETUP PHOTO, FRONT SIDE 5MM – ELI PHANTOM – BODY SAR	
FIGURE C.3 – SETUP PHOTO, BACK SIDE -TOUCH – ELI PHANTOM – EXTREMITY SAR	
FIGURE C.4 – SETUP PHOTO, FRONT SIDE -TOUCH – ELI PHANTOM – EXTREMITY SAR	
FIGURE C.5 — SETUP PHOTO, RIGHT EDGE TOUCH - ELI PHANTOM — EXTREMITY SAR	
APPENDIX D – PROBE CALIBRATION	
APPENDIX E – DIPOLE CALIBRATION	
APPENDIX F - PHANTOM	

45461793 R1.0 3 February 2023

1.0 REVISION HISTORY

Revision History											
Samples Tested By:		Ben Hewson	Dat	e(s) of Evaluation:	28-30 October & 10-11 November 2022						
Repo	ort Prepared By:	Ben Hewson	Report Reviewed By:		Art Voss						
Report	Desc	ription of Revision	Revised	Revised	Revision Date						
Revision	2000		Section	Ву	1.0 1.0 1.0 1.2 1.0						
0.1		Draft		Ben Hewson	28 January 2023						
1.0		Initial Release	n/a	Ben Hewson	3 February 2023						

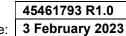
2.0 CLIENT AND DEVICE INFORMATION

Client Information							
Applicant Name	Garmin International Inc.						
	1200 East 151 St						
Applicant Address	Olathe, KS, 66062						
	USA						
	DUT Information						
Device Identifier(s):	FCC ID: IPH-04536						
Device identifier(s).	ISED ID:						
Device Model(s) / HVIN:	A04536						
Test Sample Serial No.:	Production Sample Protoype						
Device Type:	Personal Navigation Device						
	ANT (DXX): 2402-2480MHz						
Transmit Frequency Range:	BT (DTS, DSS): 2402-2480MHz						
Transmit Frequency Range.	WiFi (DTS): 2412-2462MHz						
	U-NII-1: 5180 - 5240, U-NII-3: 5745-5825						
	ANT (DXX): 83.7 Average Power (dBµ/Vm@3m) (0.09mW)						
	BT BR (DSS): 0.003W (4.5 dBm)						
	BT 2EDR (DTS): 0.003W (4.5 dBm)						
	BT 3EDR (DTS): 0.003W (4.5 dBm)						
	BT LE (DTS): 0.003W (4.5 dBm)						
Manuf. Max. Rated Output Power:	802.11b (DTS): 0.006W (8 dBm)						
	802.11g (DTS): 0.006W (8 dBm)						
	802.11n (DTS): 0.004W (6 dBm)						
	802.11n40 (DTS): 0.002W (3 dBm)						
	U-NII-1 (UNII): 0.024W (13.80dBm)						
	U-NII-3 (UNII): 0.019W (12.78DBm)						
Antenna Type and Gain:	2.4GHz: 1 dBi PIFA, 5GHz: 1.5 dBi PIFA						
	ANT: GFSK:						
	BT BR: GFSK						
Madulation	BT 2EDR: π/4-DQPSK						
Modulation:	Bt 3EDR: 8DPSK						
	BLE: GMSK						
	WiFi: CCK, DSSS, OFDM, CCK, MCS						
DUT Power Source:	5V USB, Internal Li-lon Battery						
DUT Dimensions [LxWxH]	L x W x H: 205mm x 135mm x 24mm						
Deviation(s) from standard/procedure:	None						
Modification of DUT:	None						

45461793 R1.0

3 February 2023

3.0 SCOPE OF EVALUATION


This Certification Report was prepared on behalf of:

Garmin International Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC 47 CFR Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in this report.

The A04536 FCC ID: IPH-04536, IC ID:1792A-04536 is a Low Power Digital Transmitter that offers use as a hand-held, transportation mounted or portable configuration , with a Wi-Fi transceiver that is capable of operating in the 2.4GHz WiFi, 5GHz U-NII-1 & 3 frequency bands as well as 2.4Ghz ANT /BT/BLE frequency bands. The device has two antennas, for the 2.4GHz and a 5Ghz frequencies and is capable of simultaneous transmisson between the BT and UNII banks. The device is intended for General Population Use. The product operates from an internal proprietary Li-ion rechargeable battery which can be connected to a compliant USB interface port, AC or DC adapter for charging. Test samples provided by the manufacturer were capable of transmitting at select frequencies and modulations preset by the manufacturer. An additional antenna modification was prepared for one sample allowing the ability to connect test equipment for antenna port conducted power analysis. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 865646, 447498, 248227. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

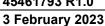
4.0 NORMATIVE REFERENCES

Normative References*									
ANSI / ISO 17025	General Requirements for competence of testing and calibration laboratories								
FCC CFR Title 47 Part 2	Code of Federal Regulations								
Title 47:	Telecommunication								
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices								
IEC International Standard /	IEEE International Committee on Electromagnetic Safety								
IEC/IEEE 62209-1528	Measurement procudeure for the assessment of sepcific absorption rate of human expoure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528; Human models, insturmentation, and procedures (Frequency range of 4 MHz to 10 GHz)								
FCC KDB KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz								
FCC KDB									
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies								
FCC KDB									
KDB 248227 D01v02r02	SAR Guidance for IEEE 802.11 (WiFi) Transmitters								
* When the issue number	or issue date is omitted, the latest version is assumed.								

45461793 R1.0 3 February 2023

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.


Applicant:	M	Model / HVIN:				
Garmin International Inc.		A04536				
Standard(s) Applied:	M	Measurement Procedure(s	·):			
FCC 47 CFR §2.1093		FCC KDB 865664 IEC/IEEE Standar	, FCC KDB 447498, FC d 62209-1528	C KDB	248227	
Reason For Issue:	U	Use Group:	-	Limits Ap	oplied:	
x New Certification		x General Popu	ılation / Uncontrolled	x	1.6W/kg	g - 1g Volume
Class I Permissive Cha	inge				8.0W/kg	g - 1g Volume
Class II Permissive Ch	ange	Occupational	/ Controlled	х	4.0W/kg	յ - 10g Volume
Reason for Change:	•			Date(s) E	Evaluated:	
				28	3-30 Octobe	er & 10-11 November 2022

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

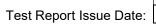
I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Ben Hewson Celltech Labs Inc.

28 January 2023 Date

6.0 SAR MEASUREMENT SYSTEM

SAR Measurement System


Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System

DASY 6 Measurement Controller

7.0 RF CONDUCTED POWER MEASUREMENT

Table 7.1 Conducted Power Measurements, 2.4 GHz WiFi

	A04536-Conducted Power Measurements											
	Frequency	Measured Power	Rated Power	Delta	SAR Test Channel		BW					
Channel	(MHz)	(dBm)	(dBm)	(dB)	(Y/N)	Mode	(MHz)	Modulation				
		7.49			-			DSSS-1Mbps				
6	2437	6.77			-			DSSS-2Mbps				
0	2431	6.78			-	WLAN 2.4G 20	WLAN 2.4G 20			DSSS-5.5Mbps		
		6.90			-			G 20	DSSS-11Mbps	802.11b		
1	2412	6.84	8.00	-1.16	Υ							
7	2442	8.00	8.00	0.00	Υ					DSSS-1Mbps		
11	2462	6.81	8.00	-1.19	Υ							
		7.75	8.00	-0.25	-			OFDM-6Mbps				
		7.79	8.00	-0.21	-	WLAN 2.4G		OFDM-9Mbps				
7	2442	7.81	8.00	-0.19	-		WLAN 2.4G	- WLAN 2.4G	WLAN 2.4G 20	20	OFDM-12Mbps	802.11g
		8.00	8.00	0.00	-						OFDM-36Mbps	
		4.58	8.00	-3.42	-						OFDM-54Mbps	
6	2437	5.98	6.00	-0.02	-	WLAN 2.4G	20	MCS-0	802.11n			
l °	2437	6.00	6.00	0.00	-	WLAN 2.4G	20	MCS-3	002.1111			
1-11	2412-2462		3.00		-	WLAN 2.4G	40	MCS-0-7	802.11n			

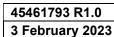


Table 7.2 Conducted Power Measurement Results, Bluetooth

	A04536- Conducted Power Measurements												
Mode	de Modulation Channe		Frequency (MHz)	Measured Power (dBm)	Measured Power (mW)	Rated Power (mW)	Delta (mW)	SAR test Channel					
ANT	GFSK	0-78	2402-2480	-	-	0.09	-	-					
		0	2402.00	2.26	1.68	2.81	1.13	-					
BT BR	GFSK	38	2441.00	2.56	1.80	2.81	1.01	-					
		78	2480.00	2.43	1.75	2.81	1.06	-					
		3	2402.00	2.28	1.69	2.81	1.12	-					
BT 2EDR	π/4 -DQPSK	38	2441.00	2.60	1.82	2.81	0.99	-					
		78	2480.00	2.44	1.75	2.81	1.06	-					
		3	2402.00	2.41	1.74	2.81	1.07	-					
BT 3EDR	8DPSK	38	2441.00	2.65	1.84	2.81	0.97	-					
		78	2480.00	2.57	1.81	2.81	1.00	-					
		37	2402.00	4.17	2.61	2.81	0.20	-					
BT BLE	GMSK	17	2440.00	4.35	2.72	2.81	0.09	-					
		39	2480.00	4.21	2.64	2.81	0.17	-					

Table 7.3 Conducted Power Measurements, 5 GHz WiFi UNI-1

	A04536-Conducted Power Measurements											
Channel	Frequency (MHz)	Measured Power (dBm)	Rated Power (dBm)	Delta (dB)	SAR Test Channel	Mode	BW (MHz)	Modu	lation			
		11.85			-			OFDM6				
36	5180	11.61			-			OFDM9				
30	3100	11.31			-			OFDM12				
		11.14			-			OFDM54	802.11a			
36	5180	11.85	13.80	-1.95	Υ				002.11a			
40	5200	13.78	13.80	-0.02	Υ							
44	5220	13.80	13.80	0.00	Υ	20	20	20 OFDM6				
48	5240	13.60	13.80	-0.20	Υ	UNI-I 5G	20					
		11.47			-	UNI-I JG		MCS0				
36	5180	11.47			-			MCS3				
		11.19			-			MCS7	802.11n			
40	5200	13.63	13.80	-0.17	-				002.1111			
44	5220	13.70	13.80	-0.10	-			MCS0				
48	5240	13.55	13.80	-0.25	-							
38	5190	11.48	12.30	-0.82	-		40	MCS0	802.11n40			
46	5230	12.30	12.30	0.00	-		40	IVICSU	002.111140			

Table 7.4 Conducted Power Measurements, 5 GHz WiFi UNI-3

	A04536-Conducted Power Measurements											
Channel	Frequency (MHz)	Measured Power (dBm)	Rated Power (dBm)	Delta (dB)	SAR Test Channel	Mode	BW (MHz)	Modu	lation			
		12.77			-			OFDM6				
149	5745	12.68			-			OFDM9				
143	3743	12.71			-			OFDM12				
		12.17			-			OFDM54				
149	5745	12.77	12.78	-0.01	-				802.11a			
153	5765	12.70	12.78	-0.08	-							
157	5785	12.65	12.78	-0.13	-		20	OFDM6				
161	5805	12.78	12.78	0.00	Υ	UNI-3 5G	20					
165	5825	12.40	12.78	-0.38	-	0141-3 30						
149	5745	12.76	12.78	-0.02	-							
153	5765	12.69	12.78	-0.09	-							
157	5785	12.61	12.78	-0.17	-			MCS0	802.11n			
161	5805	12.51	12.78	-0.27	-							
165	5825	12.44	12.78	-0.34	-							
151	5755	8.45	8.45	0.00			40	MCS0	802.11n40			
159	5795	8.26	8.45	-0.19	-		40	IVICOU	002.1111 4 0			

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting specified by the manufacture to be the max output power and produce the most conservative SAR. SAR was evaluated at the <u>maximum average</u> tune up tolerance. See section 2.0 Client and Device Information for details. The <u>reported</u> SAR was not scaled down.

45461793 R1.0 3 February 2023

8.0 NUMBER OF TEST CHANNELS (Nc)

Table 8.1 Number of Test Channels

Wi-FI SAR Evaluation:

SAR was evaluated in DSSS mode at the maximum duty cycle. The power level setting selected was specified by the manufacturer to be the max output power and produce the most conservative SAR.

As per FCC KDB 248227, the required 802.11 test channels are Ch1, Ch 6 and Ch 11. The mid-channel conducted power at various bit rates was evaluated to derive the worse case and the conducted output power was investigated on channels with this bit rate. The highest conduced power was found on Channel 7. As a result, this channel was selected for initial SAR evaluation.

SAR test reduction methodology was applied to reduce the total number of required test channels from the SAR test evaluation.

When applicable, SAR test reduction methods may be utilized.

802.11b DSSS SAR test reduction is determined according to the following:

- a) When the <u>reported</u> SAR of the highest measured maximum output power channel is ≤ to 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b) When the <u>reported</u> SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest output power channel. When any <u>reported</u> SAR is > 1.2 W/Kg, SAR is required for the third channel.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

- a) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

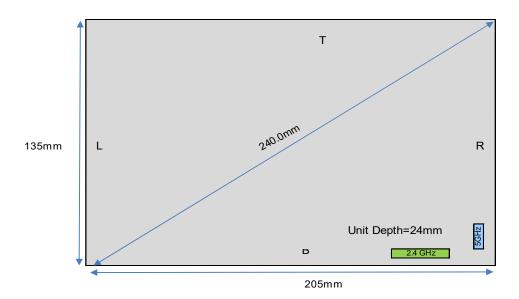
The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. An initial test position was established for the 2.4 GHz and the UNII1 / UNII 3 bands.

When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is \leq 1.2 W/kg or all required channels are tested.

NOTE: The Bluetooth transmitter is capable of simultaneous transmission with the 5GHz WiFi Transmitter. The device SAR was evaluated for simultaneous SAR.

45461793 R1.0 3 February 2023

As per KDB 447498 D01V06, where appropriate SAR test exclusion based on antenna test separation distances may be applied.


- 1. When the distance is < 50mm exclusion threshold is "Ratio". when the distance is >50 mm exclusion is in "mW"
- Maximum power is the source-based-time-average power and represents the maximum RF output power among production units.
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user
- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50mm are determined by; (step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]*[$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the f channel transmit frequency in GHz
- power and distance are rounded to the nearest MW and mm before calculation
- result is rounded to one decimal place for comparison
- the values 3.0 and 7.5 are referred to as numeric thresholds in step b
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distance > 50mm, the SAR test exclusion threshold is determined according to t the following; (step b)
 - a) [Power allowed at numeric threshold for 50 mm in step a) + test separation distance 50mm)*(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Power allowed at numeric threshold for 50 mm in step a) + (test separation distance -50mm)* 10] mW at > 1500MHz and ≤ 6GHz

Table 8.2 Antenna Distances

Topographic View Front Facing

Antenna	Top Edge (mm)	Left Edge (mm)	Bottom Edge (mm)	Right Edge (mm)	Front Depth (mm)	Back Depth (mm)
WLAN/BT	106.0	150.0	15.0	33.0	11.0	11.0
5GHz	95.0	190.0	20.0	10.0	11.0	11.0

45461793 R1.0 3 February 2023

Table 8.3 SAR test exclusion based on antenna test separation distances Body

SAR Test Exclusion Analysis Antenna Separation to DUT Surfaces									
A04536									
4 Band									
EXTREMIT	Y Configuration (10g)	2.4GHz WiFi	5GHz WLAN U-NII-1	5GHz WLAN U-NII-3	ВТ				
	Frequency (MHz)	2480	5240	5825	2480				
Exposure	Pow er (mW)	63.10	31.60	31.60	1.99				
Position	Antenna Gain (dBi)	1.00	1.50	1.50	1.00				
Fosition	Total ERP (mW)	79.44	44.64	44.64	2.51				
	Separation Distance (mm)	11.00	11.00	11.00	11.00				
Front Side	Exclusion Threshold (Pth)(mW)	30.50	19.04	17.81	30.50				
	Testing Required	Yes	Yes	Yes	No				
	Separation Distance (mm)	11.00	11.00	11.00	11.00				
Back Side	Exclusion Threshold (Pth)(mW)	30.50	19.04	17.81	30.50				
	Testing Required	Yes	Yes	Yes	No				

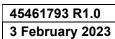


Table 8.3 SAR test exclusion based on antenna test separation distances Extremity

SAR Test Exclusion Analysis								
	Antenna Separa	tion to DU	T Surfaces					
	A	\04536						
		4		Band				
EXTREMIT	Y Configuration (10g)	2.4GHz	5GHz WLAN	5GHz WLAN	BT			
		WiFi	U-NII-1	U-NII-3				
	Frequency (MHz)	2480	5240	5825	2480			
Exposure	Pow er (mW)	63.10	31.60	31.60	1.99			
Position	Antenna Gain (dBi)	1.00	1.50	1.50	1.00			
1 03111011	Total ERP (mW)	79.44	44.64	44.64	2.51			
	Separation Distance (mm)	11.00	11.00	11.00	11.00			
Front Side	Exclusion Threshold (Pth)(mW)	30.50	19.04	17.81	30.50			
	Testing Required	Yes	Yes	Yes	No			
	Separation Distance (mm)	11.00	11.00	11.00	11.00			
Back Side	Exclusion Threshold (Pth)(mW)	30.50	19.04	17.81	30.50			
	Testing Required	Yes	Yes	Yes	No			
	Separation Distance (mm)	106.00	95.00	95.00	106.00			
Top Edge	Exclusion Threshold (Pth)(mW)	2282.78	1641.76	1613.91	2282.78			
	Testing Required	No	No	No	No			
	Separation Distance (mm)	15.00	20.00	20.00	15.00			
Bottom Edge	Exclusion Threshold (Pth)(mW)	55.07	65.53	62.15	55.07			
	Testing Required	Yes	No	No	No			
	Separation Distance (mm)	150.00	190.00	190.00	150.00			
Left Edge	Exclusion Threshold (Pth)(mW)	4422.61	6880.36	6872.25	4422.61			
	Testing Required	No	No	No	No			
	Separation Distance (mm)	33.00	10.00	10.00	33.00			
Right Edge	Exclusion Threshold (Pth)(mW)	247.25	15.64	14.60	247.25			
	Testing Required	No	Yes	Yes	No			

45461793 R1.0 3 February 2023

9.0 ACCESSORIES EVALUATED

Table 9.1 Manufacturer's Accessory List

There are no manufacturer's accessories available when used in a portable application.

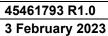
Test Report Issue Date: 3 February 2023

45461793 R1.0

10.0 SAR MEASUREMENT SUMMARY

Table 10.1: Measured Results, Body (1g)

								Mea	sure	d 1g S	SAR Res	ults - B	ODY Co	nfigurati	on								
		Freq.			DUT				Accessories		DUT S	pacing	Measured	SAR	Conducted	Rated	Tolerance	Rated	Delta	Duty	Fluid	reported	
Date	Plot	rieq.		(Configuration	n		Ant	Batt	Body	Audio	DUT	Ant	SAR	Drift	Power	Power	±	Power	Power	Cycle	Sensitivity	SAR
	ID	(MHz)	Pos	Mode	BW	Mod	BR	ID	ID	ID	ID	(mm)	(mm)	(W/kg)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	dB	n	n	(W/kg)
29 Oct 2022	B1	2442	Back	802.11b	20	DSSS	11	-	-	•	-	5	16	0.028	0.630	8.00	8.000	0.000	8.000	0.000	1.000	1.000	0.028
29 Oct 2022	B2	2442	Front	802.11b	20	DSSS	11	-	-	-	-	5	16	0.015	1.130	8.00	8.000	0.000	8.000	0.000	1.000	1.000	0.015
30 Oct 2022	В3	5180	Back	UNI-I	20	OFDM	6	-	-		-	5	16	0.312	0.750	11.85	13.800	0.000	13.800	-1.950	1.000	1.000	0.489
30 Oct 2022	B4	5180	Front	UNI-I	20	OFDM	6	-	-	1	-	5	16	0.085	0.690	11.85	13.800	0.000	13.800	-1.950	1.000	1.000	0.133
11 Nov 2022	B5R	5220	Back	UNI-I	20	OFDM	6	-	-	-	-	5	16	0.441	0.254	13.80	13.220	0.000	13.220	0.580	1.000	1.000	0.441
11 Nov 2022	B6	5805	Back	UNI-III	20	OFDM	6	-	-	-	-	5	16	0.139	0.680	12.78	12.780	0.000	12.780	0.000	1.000	1.000	0.139
	·		Applic	able SAR Lin	nit		•		Use Group						Limit								
FCC C	R 2.109	3	_	Health C	anada Safet	y Code 6			General Population/User Unaware					1.6 W/kg									



Test Report Issue Date: 3 February 2023

45461793 R1.0

Table 10.2: Measured Results, Extremity (10g)

							N	leasu	red 1	0g SA	R Resul	ts - EXT	REMITY	Configu	ration								
		Freq.			DUT				Acc	essories		DUT S	Spacing	Measured	SAR	Conducted	Rated	Tolerance	Rated	Delta	Duty	Fluid	reported
Date	Plot	rieq.			Configuration	ı		Ant	Batt	Body	Audio	DUT	Antenna	SAR	Drift	Power	Power	±	Power	Power	Cycle	Sensitivity	SAR
	ID	(MHz)	Pos	Mode	BW	Mod	BR	ID	ID	ID	ID	(mm)	(mm)	(W/kg)	(dB)	(dBm)	(dBm)	(dB)	(dBm)	dB	n	n	(W/kg)
29 Oct 2022	E1	2442	Front	802.11b	20	DSSS	11	-	-	-	-	0	11	0.015	-0.330	8.000	8.000	0.000	8.000	0.000	1.000	1.000	0.016
29 Oct 2022	E2	2442	Back	802.11b	20	DSSS	11	-	-	-	-	0	11	0.035	-0.220	8.000	8.000	0.000	8.000	0.000	1.000	1.000	0.037
29 Oct 2022	E3	2442	Bottom Edge	802.11b	20	DSSS	11	-	-	-	-	0	15	0.035	0.560	8.000	8.000	0.000	8.000	0.000	1.000	1.000	0.035
29 Oct 2022	E4	2412	Back	802.11b	20	DSSS	11	-	-	-	-	0	11	0.029	-0.310	6.840	8.000	0.000	8.000	-1.160	1.000	1.000	0.041
29 Oct 2022	E5	2462	Back	802.11b	20	DSSS	11	-	-	-	-	0	11	0.023	0.280	6.810	8.000	0.000	8.000	-1.190	1.000	1.000	0.030
30 Oct 2022	E6	5180	Front	UNI-I	20	OFDM	6	-	-	-	-	0	11	0.086	0.100	11.850	13.800	0.000	13.800	-1.950	1.000	1.000	0.135
30 Oct 2022	E7	5180	Back	UNI-I	20	OFDM	6	-	-	-	-	0	11	0.028	1.400	11.850	13.800	0.000	13.800	-1.950	1.000	1.000	0.043
30 Oct 2022	E8	5180	Right Edge	UNI-I	20	OFDM	6	-	-	-	-	0	10	0.125	0.420	11.850	13.800	0.000	13.800	-1.950	1.000	1.000	0.196
10 Nov 2022	E8R	5180	Right Edge	UNI-I	20	OFDM	6	-	-	-	-	0	10	0.108	0.730	11.850	13.800	0.000	13.800	-1.950	1.000	1.000	0.169
11 Nov 2022	E9	5220	Right Edge	UNI-I	20	OFDM	6	-	-	-	-	0	10	0.174	-0.380	13.800	13.800	0.000	13.800	0.000	1.000	1.000	0.190
11 Nov 2022	E10	5240	Right Edge	UNI-I	20	OFDM	6	-	-	-	-	0	10	0.177	2.300	13.600	13.800	0.000	13.800	-0.200	1.000	1.000	0.185
11 Nov 2022	E11	5200	Right Edge	UNI-I	20	OFDM	6	-	-	-	-	0	10	0.151	0.050	13.780	13.800	0.000	13.800	-0.020	1.000	1.000	0.152
11 Nov 2022	E12	5805	Right Edge	UNI-III	20	OFDM	6	-	-	-	-	0	10	0.135	-0.380	12.780	12.780	0.000	12.780	0.000	1.000	1.000	0.147
			Applic	able SAR Lir	nit						Use Group						Limit						
FCC C	FR 2.109	3		Health C	Canada Safet	y Code 6							General	Population	n/User Ur	naware				4 W/kg			

11.0 SCALING OF MAXIMUM MEASURE SAR

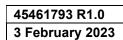
Table 11.1 SAR Scaling - Body (1g)

	Scaling of Maximum Measured SAR (1g)									
M	easured Parameters	Configuration								
IVI	easureu Parameters	Body		Body						
	Plot ID	B1		B3						
Max	rimum Measured SAR _M	0.028		0.312			(W/kg			
	Frequency	2442		5180			(MHz			
Drift	Power Drift	0.630	(1)	0.750	(1)		(dB)			
	Conducted Power	8.000		11.850			(dBm			
DC	Transmit Duty Cycle	100.000		100.0			(%)			
Fluid Deviation from Target										
Δe	Permitivity	-7.79%		-5.36%						
Δσ	Conductivity	7.14%		5.62%						

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Flu	id Sensitivity Calculation	(1g)	IEC 62209	-2 Annex F				
	Delta SAR = Ce * Δ e + C σ * $\Delta\sigma$							
	(F.2)							
	$C\sigma = (0.009804*f^3) - (0.08661*f^2) + (0.02981*f) + 0.7829$							
f	Frequency (GHz)	2.442	5.18					
	Ce	-0.225	-0.202					
	Сσ	0.482	-0.024					
	Ce * ∆e	0.018	0.011					
	Сσ * Δσ	0.034	-0.001					
	ΔSAR	0.052 (3)	0.009 (3)					

Note(3): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529


Manufac	turer's Tuneup 1	Manufacturer's Tuneup Tolerance							
Measured Conducted Power 8.000 11.850									
Rated Conducted Power	8.000	13.800		(dBm)					
ΔΡ	0.000 (4)	-1.950		(dB)					

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

	Crest Factor								
Transmit Duty Cycle (DC)	100.000		100.0			(%)			
CF (1/DC)	1.000	(5)	1.00	###		Ī			

Note(5): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required.

SAR Adjus	SAR Adjustment for Fluid Sensitivity									
$SAR_1 = SAR_M X [\Delta SAR]$	0.028	0.312	(W/kg)							
SAR Adjus	ment for Tune	up Tolerance								
$SAR_2 = SAR_1 + [\Delta P]$	0.028	0.489	(W/kg)							
SAR Adjustment for Drift										
$SAR_3 = SAR_2 + [Drift]$	0.028	0.489	(W/kg)							
SAR Adj	ustment for Cre	est Factor								
SAR ₄ = SAR ₃ x [CF]	0.028	0.489	(W/kg)							
<u>reported</u> 1g SAR										
SAR₄	0.03	0.49	(W/kg)							

Table 11.2 SAR Scaling – Extremity (10g)

	Scaling of Ma	ximum Measu	red SAR (10g)					
B/	leasured Parameters	Configuration						
IV	leasureu Parameters	Extremity	Extremity					
	Plot ID	E4	E8					
Max	kimum Measured SAR _M	0.029	0.125	(W/kg				
	Frequency	2412	5180	(MHz)				
Drif	t Power Drift	-0.310	0.420 (1)	(dB)				
	Conducted Power	6.840	11.850	(dBm				
DC	Transmit Duty Cycle	100.000	100.0	(%)				
	Fluid	Deviation from	Target					
Δe	Permitivity	-7.54%	-8.78%					
Δσ	Conductivity	6.02%	3.24%					

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Flui	d Sensitivity Calculation (10g)		IEC (62209	-2 Annex F		
	Delta SAR = 0	Ce * ∆e + Co	τ * Δ α	J		(F.1)		
$Ce = (0.003456*f^3) - (0.03531*f^2) + (0.07675*f) - 0.186$								
	$C\sigma = (0.004479*f^3) - (0.01586*f^2) - (0.1972*f) + 0.7717$							
f	Frequency (GHz)	2.412		5.18				
	Ce	-0.225		-0.202				
	Сσ	0.489		-0.024				
	Ce * ∆e	0.017		0.018				
	Cσ * Δσ	0.029		-0.001				
	ΔSAR	0.046	(3)	0.017	(3)		\Box	

Note(3): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

Manufacturer's Tuneup Tolerance							
Measured Conducted Power	6.840	11.850		(dBm)			
Rated Conducted Power	8.000	13.800		(dBm)			
ΔΡ	-1.160	-1.950		(dB)			

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

Crest Factor										
Transmit Duty Cycle (DC)	100.000		100.0			(%)				
CF (1/DC)	1.000	(5)	1.00	###		Ī				

Note(5): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required.

SAR Adjustment for Fluid Sensitivity												
$SAR_1 = SAR_M X [\Delta SAR]$	0.029	0.125	(W	V/kg)								
SAR Adjust	ment for Tuneu	p Tolerance										
$SAR_2 = SAR_1 + [\Delta P]$	0.038	0.196	(W.	V/kg)								
SAR Adjustment for Drift												
SAR ₃ = SAR ₂ + [Drift]	0.041	0.196	(W.	V/kg)								
SAR Adjustment for Crest Factor												
$SAR_4 = SAR_3 \times [CF]$	0.041	0.196	(W.	V/kg)								
<u>r</u>	reported 10g SA	R										
SAR₄	0.04	0.20	(W	V/kg)								

45461793 R1.0

3 February 2023

NOTES to Table

Scaling of the Maximum Measured SAR is based on the highest Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face, Body and/or Head SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in the Annexes of this report.

NOTE: Some of the scaling factors in Steps 1 through 4may not apply and are identified by grayed fields.

Step 1

Per IEC/IEEE 62209-1528, FCC KDB 865664, ISED RSS-102 and ISED Notice 2012-DRS0529. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%,

Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative.

The absolute value of Delta is ADDED to the SAR.

Step 3

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported.

Step 4

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. When the transmit Duty Cyle (DC) is less than 100%, the <u>reported</u> SAR must be scaled to 100% by the Crest Factor (CF). CF = 1/DC where DC is in decimal.

Step 5

The Reported SAR is the Maximum Final Adjusted SAR from the applicable Steps 1 through 4and are reported on Page 1 of this report.

45461793 R1.0

3 February 2023

11.3 Simultaneous SAR - FCC

The estimated Bluetooth SAR, in accordance with FCC KDB 447498 D01v06 4.3.2 (b)(1), is given by:

$$SAR = \frac{P}{d} X \frac{\sqrt{f}}{x}$$

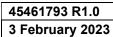
Where P is power, mW, d is separation distance, mm, f is frequency, GHz and x = 7.5 for 1g SAR and 18.75 for 10g SAR

1g SAR; 2.81mW, d = 5mm, f = 2.440GHz = 0.117W/kg 10g SAR; 2.81mW, d = 5mm, f = 2.440GHz = 0.047W/kg

Simultaneous SAR = SAR₁ + SAR₂

Where SAR₁ = highest measured <u>reported</u> SAR, SAR₂ = Standalone Bluetooth SAR 5Ghz Body Config (1g) SAR₁ = 0.489W/kg, SAR₂ = 0.117W/kg 5Ghz Extremity Config (10g) SAR₁ = 0.197W/kg, SAR₂ = 0.047W/kg

1g Simultaneous reported SAR = 0.606W/kg


10g Simultaneous <u>reported</u> SAR = 0.244W/kg

12.0 SAR EXPOSURE LIMITS

Table 12.1 Exposure Limits

	SAR RF EXPOSURE LIMITS										
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /								
100 47 CH\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Treatti Carlada Safety Code 0	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾								
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg								
(averaged	over the whole body)	0.00 W/kg	0. 4 W/Ng								
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg								
(Head and Trunk av	eraged over any 1 g of tissue)	1.6 W/kg	0.0 W/kg								
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg								
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg								

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

13.0 DETAILS OF SAR EVALUATION

13.1 Day Log

	Dielectric							
Date	Ambient Temp	Fluid Temp	Relative Humidity	Barometric Pressure	Fluid Die	ပ္	st	
	(°C)	(°C)	(%)	(kPa)	FIL	SPC	Test	Task
28 Oct 2022	25.1	23.6	27%	101.6	Х	Х	Х	2450H
29 Oct 2022	24.3	22.6	27%	102.2			X	2450H
30 Oct 2022	23.5	22.5	29%	101.4	Х	Х	X	5250H
10 Nov 2022	23.4	23.0	20%	103.4	Х	Х	X	5250H
11 Nov 2022	25.3	23.9	18%	103.0			X	5250H
11 Nov 2022	23.0	23.0	18%	102.8	Х	Х	Х	5750H

45461793 R1.0 3 February 2023

13.2 DUT Setup and Configuration

DUT Setup and Configuration

Overview

The DUT was evaluated for Body SAR at the maximum conducted output power level, preset by the manufacturer, with a fully charged battery in unmodulated continuous transmit operation (Maximum duty cycle), as provided by the manufacturer with a unit set up and pre-installed with Compliance Test Mode.

13.3 DUT Positioning

DUT Positioning

Positioning

The DUT Positioner was securely fastened to the Phantom Platform to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

This device is not capable of voice communication and was not tested in the FACE configuration.

BODY Configuration

There are no Body-Worn and Audio Accessories for this device however the device could be rested on the torso while transmitting. BODY configuration was evaluted at a separation distance of 5mm.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

EXTREMITY

Configuration

The DUT, was securely clamped into the device holder with the surface of the DUT normally in contact with the body (hand) in direct contact with the bottom of the phantom, or 0mm separation from the DUT to the phantom resembling that for which it was intended to be used.

45461793 R1.0 3 February 2023

13.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}$ C throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the <u>Maximum Distance to Phantom Surface</u> to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the SAR column are the SAR values reported by the SAR Measurement Server with the DUT operating at maximum transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the reported SAR which appears on the Cover Page of this report.

45461793 R1.0 3 February 2023

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62209-1528 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEC 62209-1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is ≤ 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz								
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm							
(Geometric Center of Probe Center)	4 = 1 111111							
Maximum probe angle normal to phantom surface.	5° ± 1°							
(Flat Section ELI Phantom)	5 I 1							
Area Scan Spatial Resolution ΔX, ΔΥ	15 mm							
Zoom Scan Spatial Resolution ΔX , ΔY	7.5 mm							
Zoom Scan Spatial Resolution ∆Z	5 mm							
(Uniform Grid)	5 mm							
Zoom Scan Volume X, Y, Z	30 mm							
Phantom	ELI							
Fluid Depth	150 ± 5 mm							

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz								
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm							
(Geometric Center of Probe Center)	4 ± 1 111111							
Maximum probe angle normal to phantom surface.	5° ± 1°							
(Flat Section ELI Phantom)	5 I I							
Area Scan Spatial Resolution ΔX, ΔΥ	12 mm							
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm							
Zoom Scan Spatial Resolution ∆Z	5 mm							
(Uniform Grid)	5 111111							
Zoom Scan Volume X, Y, Z	30 mm							
Phantom	ELI							
Fluid Depth	150 ± 5 mm							

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.8 Scan Resolution 5GHz to 6GHz

Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center) $4 \pm 1 \text{ mm}$ Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom) $5^{\circ} \pm 1^{\circ}$ Area Scan Spatial Resolution ΔX , ΔY 10 mmZoom Scan Spatial Resolution ΔX , ΔY 4 mmZoom Scan Spatial Resolution ΔZ (Uniform Grid)2 mm	Scan Resolution 5GHz to 6GHz								
(Geometric Center of Probe Center)Maximum probe angle normal to phantom surface.(Flat Section ELI Phantom) $5^{\circ} \pm 1^{\circ}$ Area Scan Spatial Resolution ΔX , ΔY 10 mmZoom Scan Spatial Resolution ΔX , ΔY 4 mmZoom Scan Spatial Resolution ΔZ 2 mm	Maximum distance from the closest measurement point to phantom surface:	4 ± 4 mm							
(Flat Section ELI Phantom)	(Geometric Center of Probe Center)	4 ± 1 111111							
(Flat Section ELI Phantom) 10 mm Area Scan Spatial Resolution ΔX , ΔY 10 mm Zoom Scan Spatial Resolution ΔX , ΔY 4 mm Zoom Scan Spatial Resolution ΔZ 2 mm	Maximum probe angle normal to phantom surface.	E0 1 40							
Zoom Scan Spatial Resolution ΔX, ΔY 4 mm Zoom Scan Spatial Resolution ΔZ 2 mm	(Flat Section ELI Phantom)	5 I I							
Zoom Scan Spatial Resolution ΔZ 2 mm	Area Scan Spatial Resolution ΔX, ΔΥ	10 mm							
l 2 mm	Zoom Scan Spatial Resolution ΔX , ΔY	4 mm							
(Uniform Grid)	Zoom Scan Spatial Resolution ∆Z	2 mm							
	(Uniform Grid)	2 mm							
Zoom Scan Volume X, Y, Z 22 mm	Zoom Scan Volume X, Y, Z	22 mm							
Phantom ELI	Phantom	ELI							
Fluid Depth 100 ± 5 mm	Fluid Depth	100 ± 5 mm							

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

14.0 MEASUREMENT UNCERTAINTIES

Table 14.1 Measurement Uncertainty

Per FCC KDB 865664 D01v01r04, 2.8.2, SAR Measurement Uncertainty is only required when the reported SAR is:

- ≥ 1.5 W/kg (General Population) 1g
- ≥ 3.75 W/kg (General Population) 10g Extremity
- ≥ 7.5 W/kg (Occupational) 1g
- ≥ 18.75 W/kg (Occupational) 10g Extremity

The highest *reported* SAR for this evaluation is < 1.5 W/kg.

Celltech

45461793 R1.0 3 February 2023

Table 14.2 Calculation of Degrees of Freedom

Calculation of the Degrees and Effective Degrees of Freedom									
	uc ⁴								
v _{eff} =	<i>m</i>								
	$\sum \frac{c_i^A u_i^A}{}$								
	∠ v _i								
	<i>i</i> =1								
	_								

15.0 FLUID DIELECTRIC PARAMETERS

Table 15.1 Fluid Dielectric Parameters 2450MHz HEAD TSL

	FLUID DIELECTRIC PARAMETERS										Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2			
Date: 28 Oct 2022 Fluid Temp: 23.6 Frequency: 2450MHz Tissue: Head							ΔSAR	ΔSAR	SAR Correction Factor (1)					
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	1g	10g	1g	10g			
2410.0000		36.3000	1.8700	39.2700	1.76	-7.56%	6.25%	0.048	0.029	1.00	1.00			
2412.0000	*	36.3060	1.8680	39.2660	1.76	-7.54%	6.02%	0.046	0.028	1.00	1.00			
2420.0000		36.3300	1.8600	39.2500	1.77	-7.44%	5.08%	0.041	0.025	1.00	1.00			
2440.0000		36.1500	1.9200	39.2200	1.79	-7.83%	7.26%	0.053	0.031	1.00	1.00			
2442.0000	*	36.1620	1.9200	39.2160	1.79	-7.79%	7.14%	0.052	0.031	1.00	1.00			
2450.0000		36.2100	1.9200	39.2000	1.80	-7.63%	6.67%	0.049	0.029	1.00	1.00			
2460.0000		36.0200	1.9100	39.1900	1.81	-8.09%	5.52%	0.045	0.027	1.00	1.00			
2462.0000	*	36.0900	1.9160	39.1860	1.81	-7.90%	5.74%	0.045	0.027	1.00	1.00			
2470.0000		36.3700	1.9400	39.1700	1.82	-7.15%	6.59%	0.047	0.028	1.00	1.00			

Table 15.2 Fluid Dielectric Parameters 5250MHz HEAD TSL

	FLUID DIELECTRIC PARAMETERS										Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2				
Date: 30 Oc	30 Oct 2022 Fluid Temp: 22.5 Frequency: 5250MHz Tissue: Head							ΔSAR	ΔSAR	SAR Correction Factor (1)					
Freq (MHz)	202	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	1g	10g	1g	10g				
5180.0000	*	32.8500	4.7800	36.0100	4.63	-8.78%	3.24%	0.017	0.021	1.00	1.00				
5190.0000		32.8700	4.7700	36.0000	4.64	-8.69%	2.80%	0.017	0.021	1.00	1.00				
5200.0000	*	33.3400	4.8000	35.9900	4.65	-7.36%	3.23%	0.014	0.017	1.00	1.00				
5210.0000		33.2000	4.7300	35.9700	4.67	-7.70%	1.28%	0.015	0.019	1.00	1.00				
5220.0000	*	33.5300	4.6700	35.9600	4.68	-6.76%	-0.21%	0.014	0.017	1.00	1.00				
5230.0000		33.1100	4.6200	35.9500	4.69	-7.90%	-1.49%	0.016	0.021	1.00	1.00				
5240.0000	*	33.1500	4.5800	35.9400	4.70	-7.76%	-2.55%	0.016	0.021	1.00	1.00				
5250.0000		32.8100	4.6300	35.9300	4.71	-8.68%	-1.70%	0.018	0.023	1.00	1.00				

45461793 R1.0 3 February 2023

Table 15.3 Fluid Dielectric Parameters 5250MHz HEAD TSL

	FLUID DIELECTRIC PARAMETERS										Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2				
									AR ΔSAR	SAR Correction					
Date: 10 No	v 20	22 Fluid Te	mp: 23	Frequency:	5250MHz	Tissue:	Head			Factor (1)					
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	1g	10g	1g	10g				
5180.0000	*	34.0800	4.8900	36.0100	4.63	-5.36%	5.62%	0.009	0.011	1.00	1.00				
5190.0000		33.9700	4.8600	36.0000	4.64	-5.64%	4.74%	0.010	0.012	1.00	1.00				
5200.0000	*	33.8100	4.8900	35.9900	4.65	-6.06%	5.16%	0.011	0.013	1.00	1.00				
5210.0000		33.9500	4.9500	35.9700	4.67	-5.62%	6.00%	0.010	0.011	1.00	1.00				
5220.0000	*	33.6400	4.9000	35.9600	4.68	-6.45%	4.70%	0.012	0.014	1.00	1.00				
5230.0000		33.9100	4.9900	35.9500	4.69	-5.67%	6.40%	0.010	0.011	1.00	1.00				
5240.0000	*	33.6600	4.9600	35.9400	4.70	-6.34%	5.53%	0.011	0.013	1.00	1.00				
5250.0000		33.7400	4.9000	35.9300	4.71	-6.10%	4.03%	0.011	0.013	1.00	1.00				

Table 15.4 Fluid Dielectric Parameters 5750MHz HEAD TSL

	FLUID DIELECTRIC PARAMETERS										Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2			
Date: 11 Nov	20	22 Fluid Te	emp: 23.9	Frequency:	5750MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co Facto	rrection or (1)			
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	1g	10g	1g	10g			
5750.0000		34.0000	5.2800	35.3600	5.22	-3.85%	1.15%	0.007	0.009	1.00	1.00			
5800.0000		34.0300	5.3200	35.3000	5.27	-3.60%	0.95%	0.007	0.009	1.00	1.00			
5805.0000	*	33.8700	5.3450	35.2950	5.28	-4.04%	1.33%	0.007	0.010	1.00	1.00			
5810.0000		33.7100	5.3700	35.2900	5.28	-4.48%	1.70%	0.008	0.011	1.00	1.00			

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.1 System Verification Results 2450MHz HEAD TSL

System Verification Test Results						
Date		Frequency	Validation Source			
		(MHz)	P/N		S/N	
28 Oct 2022		2450	D2450V2		825	
	Fluid	Ambient	Ambient	Forward	Source	
Fluid Type	Temp	Temp	Humidity	Power	Spacing	
	°C	°C	(%)	(mW)	(mm)	
Head	23.6	25	27%	250	10	
Fluid Parameters						
Permittivity			Conductivity			
Measured	Target	Deviation	Measured	Target	Deviation	
36.21	39.20	-7.63%	1.92	1.80	6.67%	
Measured SAR						
1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation	
14.10	13.18	6.98%	6.38	6.01	6.24%	
Measured SAR Normalized to 1.0W						
1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation	
56.40	52.72	6.98%	25.52	24.02	6.27%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 846224

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

45461793 R1.0 3 February 2023

Table 16.2 System Verification Results 5250MHz HEAD TSL

System Verification Test Results						
Date		Frequency	Validation Source			
		(MHz)	P/N		S/N	
30 Oct 2022		5250	D5GHzV2		1031	
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)	
Head	22.6	24	27%	50	10	
Fluid Parameters						
Permittivity			Conductivity			
Measured	Target	Deviation	Measured	Target	Deviation	
32.81	35.93	-8.68%	4.63	4.71	-1.70%	
Measured SAR						
1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation	
3.52	3.97	-11.41%	0.93	1.15	-18.55%	
Measured SAR Normalized to 1.0W						
1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation	
70.40	79.47	-11.41%	18.66	22.91	-18.55%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 846224

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

Table 16.3 System Verification Results 5250MHz HEAD TSL

System Verification Test Results						
Date		Frequency	Validation Source			
		(MHz)	P/N		S/N	
10 Nov 2022		5250	D5GHzV2		1031	
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)	
Head	23.0	23	20%	50	10	
Fluid Parameters						
Permittivity			Conductivity			
Measured	Target	Deviation	Measured	Target	Deviation	
33.74	35.93	-6.10%	4.90	4.71	4.03%	
Measured SAR						
1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation	
3.81	3.97	-4.11%	1.18	1.15	3.01%	
Measured SAR Normalized to 1.0W						
1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation	
76.20	79.47	-4.11%	23.60	22.91	3.01%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 846224

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

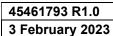


Table 16.4 System Verification Results 5750MHz HEAD TSL

System Verification Test Results						
Date		Frequency	Validation Source			
		(MHz)	P/N		S/N	
11 Nov 2022		5750	D5GHzV2		1031	
	Fluid	Ambient	Ambient	Forward	Source	
Fluid Type	Temp	Temp	Humidity	Power	Spacing	
	°C	°C	(%)	(mW)	(mm)	
Head	23.9	25	18%	50	10	
Fluid Parameters						
Permittivity			Conductivity			
Measured	Target	Deviation	Measured	Target	Deviation	
34.00	35.36	-3.85%	5.28	5.22	1.15%	
Measured SAR						
1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation	
3.85	3.78	1.93%	1.05	1.10	-4.59%	
Measured SAR Normalized to 1.0W						
1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation	
77.00	75.54	1.93%	21.00	22.01	-4.59%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 846224

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

45461793 R1.0 3 February 2023

17.0 SYSTEM VALIDATION SUMMARY

Table 17.0 System Validation Summary

SAR Validation Summary Chart					
Validation Date	Validation Source	Validation Frequency	Linearity	Isotropy	Extrapolation
✓	= Complete	✓	= Not Required		
3-May-22	D2450V2	2450	✓	✓	✓
13-May-22	D5GHzV2	5250	✓	✓	√
19-May-22	D5GHzV2	5750	✓	✓	✓

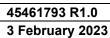

18.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 18.1 Measurement System Specifications

Management Contain Constitution				
Measurement System Specification				
Specifications				
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL			
Repeatability	+/- 0.035 mm			
No. of axis	6.0			
Data Acquisition Electronic (DAE) S	ystem			
Cell Controller				
Processor	Intel(R) Core(TM) i7-7700			
Clock Speed	3.60 GHz			
Operating System	Windows 10 Professional			
Data Converter				
Features	Signal Amplifier, multiplexer, A/D converter, and control logic			
Software	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V52.10.0.1446			
Continuit	Postprocessing Software: SEMCAD X, V14.6.10(Deployment Build)			
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock			
DASY Measurement Server				
Function	Real-time data evaluation for field measurements and surface detection			
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM			
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface			
E-Field Probe				
Model	EX3DV4			
Construction	Triangular core fiber optic detection system			
Frequency	4 MHz to 10 GHz			
Linearity	±0.2 dB (30 MHz to 10 GHz)			
Phantom				
Туре	ELI Elliptical Planar Phantom			
Shell Material	Fiberglass			
Thickness	2mm +/2mm			
Volume	> 30 Liter			
Phantom				
Туре	SAM Flat Planar Phantom			
Shell Material	Fiberglass			
Thickness	2mm +/2mm			
Volume	approx. 25 Liter			
Phantom				
Туре	MFP Flat Planar Phantom			
Shell Material	Fiberglass			
Thickness	2mm +/2mm			
Volume	approx.8.1 Liter			

	Measurement System Specification (Continued)			
	Probe Specification			
Construction:	Symmetrical design with triangular core; Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents (e.g. DGBE)			
Calibration:	ISO/IEC 17025			
Frequency:	4 MHz - 10 GHz; Linearity: ± 0.2 dB (30 MHz - 10 GHz)			
	± 0.1 dB in TSL (rotation around probe axis)	The state of the s		
Directivity:	± 0.3 dB in TSL (rotation normal to probe axis)			
Dynamic Range:	10 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB (noise: typically <1 mW/g)	J		
	Overall length: 337 mm; (tip: 20 mm)			
Dimensions:	Tip diameter: 2.5 mm; Tip (body: 12 mm)			
	Typical distance from probe tip to dipole centers: 1 mm			
Application:	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better than 30%	EX3DV4 E-Field Probe		
	Phantom Specification			
	nantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- nar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, id IEC 62209-2.	ELI Phantom		
	Phantom Specification			
	phantom is a flat planar fiberglass shell phantom with a shell thickness of 2.0mm +/- nar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, id IEC 62209-2.			
		SAM Phantom		
	Phantom Specification			
The MFP V5.1C phantom is a flat planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.		1		
		MFP Phantom		
	Device Positioner Specification			
device inclinatio openings and th	ce positioner has two scales for device rotation (with respect to the body axis) and the on (with respect to the line between the ear openings). The plane between the ear ne mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for ce holder. The device holder positions are adjusted to the standard measurement three sections.	Device Positioner		

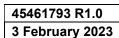

19.0 TEST EQUIPMENT LIST

Table 19.1 Equipment List and Calibration

Test Equipment List				
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE
Schmid & Partner DASY 6 System	-	-	-	-
-DASY Measurement Server	00158	1078	CNR	CNR
-Robot	00046	599396-01	CNR	CNR
-DAE4	00019	353	14-Apr-22	14-Apr-23
-EX3DV4 E-Field Probe	00213	3600	20-Apr-22	20-Apr-23
-D2450V2 Validation Dipole	00219	825	24-Apr-21	24-Apr-24
-D5GHzV2 Validation Dipole	00126	1031	27-Apr-21	27-Apr-24
ELI Phantom	00247	1234	CNR	CNR
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
HP 8753ET Network Analyzer	00134	US39170292	6-Jan-21	6-Jan-24
Rohde & Schwarz SMR20 Signal Generator	00006	100104	11-Aug-20	11-Aug-23
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Narda Directional Coupler 3020A	00064	-	CNR	CNR
Kangaroo VWR Humidity/Thermometer	00334	192385455	5-Aug-19	5-Jan-23
Digital Multi Meter DMR-1800	00250	TE182	23-Jun-20	23-Jun-23
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR
DC-18G 10W 30db Attenuator	00102	-	COU	COU
R&S FSP40 Spectrum Analyzer	00241	100500	9-Aug-21	9-Aug-24
HP 8566B Spectrum Analyzer	00051	2747A055100	29-Jun-20	29-Jun-23
RF Cable-SMA	00311	-	CNR	CNR
HP Calibration Kit	00145	-	CNR	CNR

CNR = Calibration Not Required

COU = Calibrate on Use

20.0 FLUID COMPOSITION

Table 20.1 Fluid Composition 2450MHz HEAD TSL

Tissue Simulating Liquid (TSL) Composition				2450MHz Head	
Component by Percent Weight					
Water	Glycol	Salt ⁽¹⁾	HEC ⁽²⁾	Bacteriacide ⁽³⁾	
52.0	48.0	0.0	0.0	0.0	

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 20.4 Fluid Composition 5250, 5750MHz HEAD TSL

The 5GHz Head TSL is a SPEAG proprietary broad band fluid:

Type: **HBBL3500-5500V2**Batch number: **131210-2**P/N: **SL AAH 502 AC**

END OF REPORT

45461793 R1.0

3 February 2023

APPENDIX A - SYSTEM VERIFICATION PLOTS

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825

Procedure Name: SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 1G target = 52.719 2

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.92 S/m; ϵ_r = 36.21; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 10/28/2022 11:32:05 AM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(6.58, 6.58, 6.58) @ 2450 MHz; Calibrated: 4/20/2022

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 1G target = 52.719 2/Area Scan (4x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 12.1 W/kg

SPC/SPC 2450H_input=250mw, Target=[11.86]13.18][14.50]W/kg 1G target = 52.719 2/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

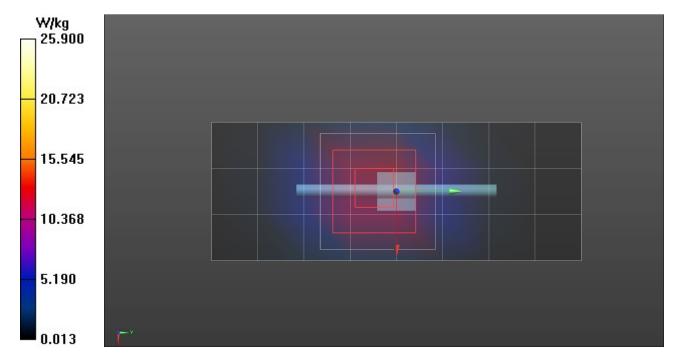
Reference Value = 88.08 V/m; Power Drift = 0.03 dB

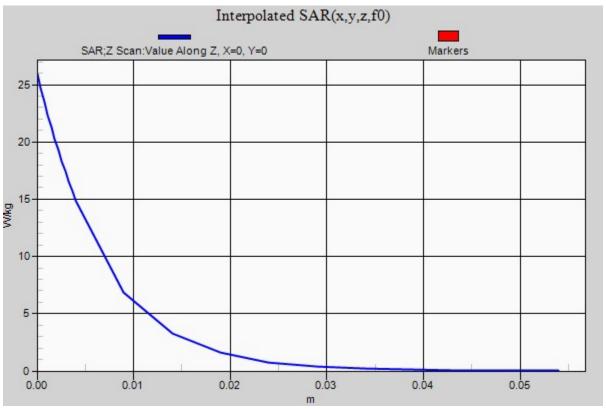
Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.38 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 46.3%


Maximum value of SAR (measured) = 16.0 W/kg


SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 1G target = 52.719 2/Z Scan (1x1x22): Measurement grid:

dx=20mm, dy=20mm, dz=5mm

Penetration depth = 6.744 (6.479, 6.868) [mm]

Maximum value of SAR (interpolated) = 25.9 W/kg

45461793 R1.0

3 February 2023

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Procedure Name: SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2 2

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.63 \text{ S/m}$; $\epsilon_r = 32.81$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Date/Time: 10/30/2022 11:57:12 AM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.55, 4.55, 4.55) @ 5250 MHz; Calibrated: 4/20/2022

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/14/2022

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

• Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2 2/Area Scan (4x7x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 5.69 W/kg

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2 2/Zoom Scan (8x8x6)/Cube 0:

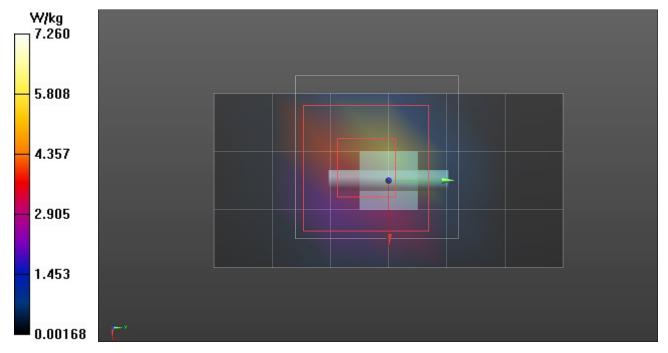
Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 27.32 V/m; Power Drift = 0.25 dB

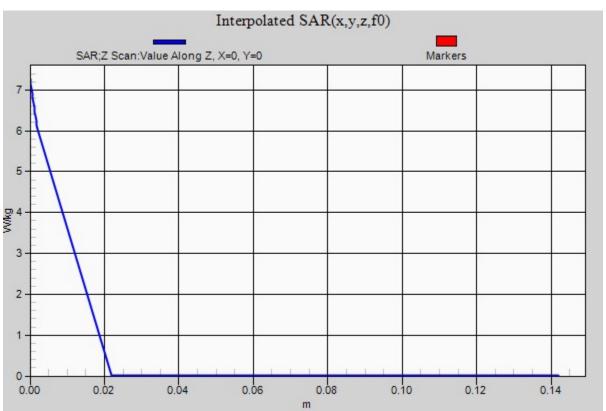
Peak SAR (extrapolated) = 14.9 W/kg

SAR(1 g) = 3.52 W/kg; SAR(10 g) = 0.933 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 54.2%


Maximum value of SAR (measured) = 7.53 W/kg


SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2 2/Z Scan (1x1x19): Measurement grid:

dx=20mm, dy=20mm, dz=20mm

Penetration depth = n/a (n/a, 3.430) [mm]

Maximum value of SAR (interpolated) = 7.26 W/kg

45461793 R1.0

3 February 2023

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Procedure Name: SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2

Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 33.74$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 11/10/2022 12:54:19 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.55, 4.55, 4.55) @ 5250 MHz; Calibrated: 4/20/2022

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/14/2022

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

• Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2/Area Scan (4x7x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 7.14 W/kg

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2/Zoom Scan (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 29.08 V/m; Power Drift = 0.10 dB

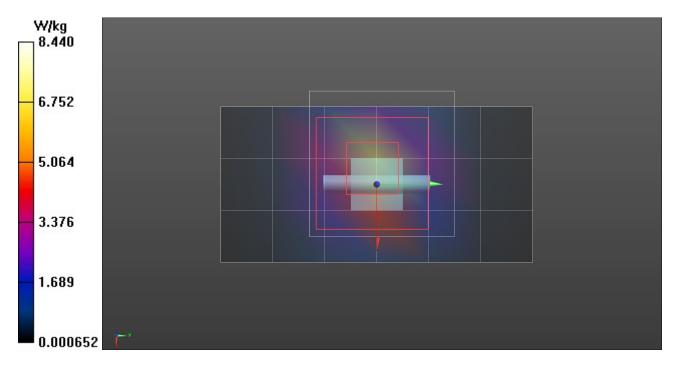
Peak SAR (extrapolated) = 14.5 W/kg

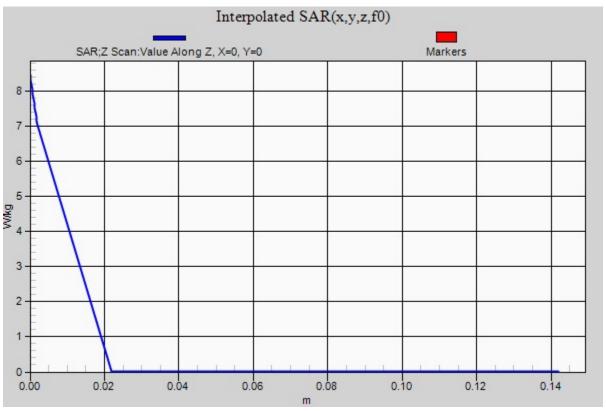
SAR(1 g) = 3.81 W/kg; SAR(10 g) = 1.18 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 55.4%

Maximum value of SAR (measured) = 7.62 W/kg


SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2/Z Scan (1x1x19): Measurement grid:


dx=20mm, dy=20mm, dz=20mm

Penetration depth = n/a (n/a, 3.145) [mm]

Maximum value of SAR (interpolated) = 8.44 W/kg

45461793 R1.0

3 February 2023

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1031

Procedure Name: SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.28$ S/m; $\epsilon_r = 34$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 11/11/2022 5:12:09 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.16, 4.16, 4.16) @ 5750 MHz; Calibrated: 4/20/2022

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/14/2022

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 3 3 2/Area Scan (4x7x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.99 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 3 3 2/Zoom Scan (31x31x31)/Cube 0:

Interpolated grid: dx=0.8000 mm, dy=0.8000 mm, dz=0.4000 mm

Reference Value = 25.64 V/m; Power Drift = 1.32 dB

Penetration depth = 2.900 (3.057, 3.203) [mm]

Smallest distance from peaks to all points 3 dB below = 5.6 mm

Ratio of SAR at M2 to SAR at M1 = 51.1%

Maximum value of SAR (interpolated) = 19.0 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 3 3 2/Zoom Scan (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

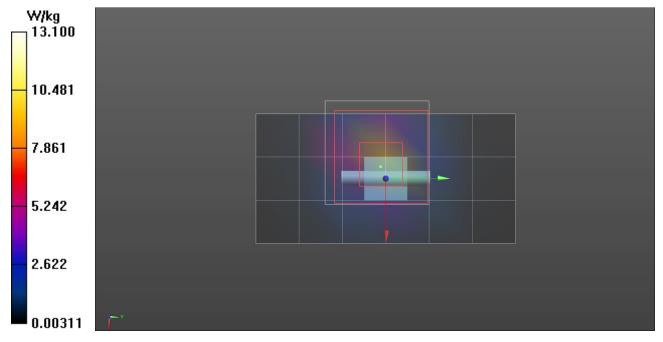
Reference Value = 25.64 V/m; Power Drift = 1.32 dB

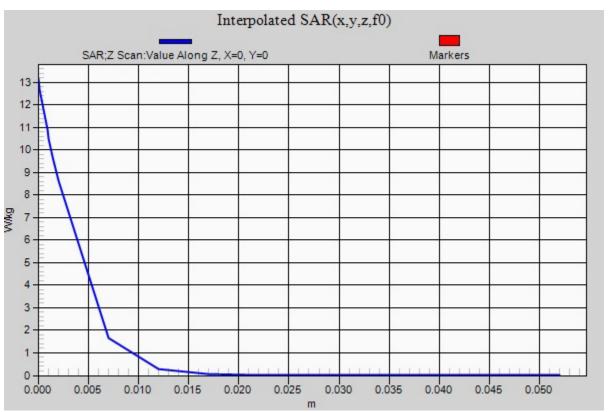
Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 3.85 W/kg; SAR(10 g) = 1.05 W/kg

Smallest distance from peaks to all points 3 dB below = 5.6 mm

Ratio of SAR at M2 to SAR at M1 = 51.1%


Maximum value of SAR (measured) = 8.79 W/kg


SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 3 3 2/Z Scan (1x1x22): Measurement grid:


dx=20mm, dy=20mm, dz=5mm

Penetration depth = 2.880 (3.025, 2.857) [mm]

Maximum value of SAR (interpolated) = 13.1 W/kg

45461793 R1.0 3 February 2023

APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

Plot B1

DUT: A04536; Type: Transmitter; Serial: Production Sample Proto-type Procedure Name: B1-A04536, Back Side 5mm, 2442MHz 802.11b 20MHz DSSS-1,WIFI

Communication System: UID 0, CW (0); Frequency: 2442 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.92 \text{ S/m}$; $\epsilon_r = 36.162$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Date/Time: 10/29/2022 2:18:27 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(6.58, 6.58, 6.58) @ 2442 MHz; Calibrated: 4/20/2022

- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/B1-A04536, Back Side 5mm, 2442MHz 802.11b 20MHz DSSS-1,WIFI/Area Scan (7x9x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0437 W/kg

2450H/B1-A04536, Back Side 5mm, 2442MHz 802.11b 20MHz DSSS-1,WIFI/Zoom Scan (7x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.141 V/m; Power Drift = 0.63 dB

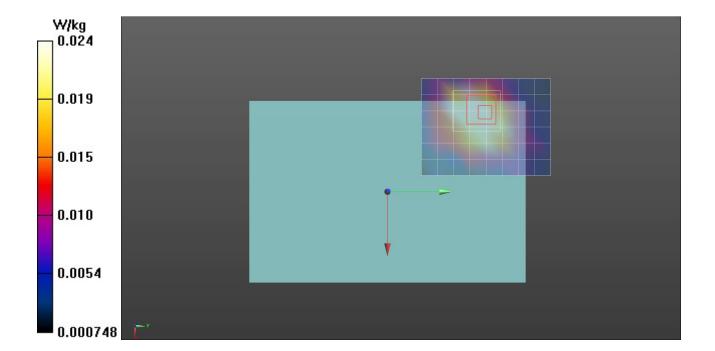
Peak SAR (extrapolated) = 0.139 W/kg

SAR(1 g) = 0.028 W/kg; SAR(10 g) = 0.013 W/kg

Ratio of SAR at M2 to SAR at M1 = 47.6%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0470 W/kg


2450H/B1-A04536, Back Side 5mm, 2442MHz 802.11b 20MHz DSSS-1,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 31.01) [mm]

Maximum value of SAR (interpolated) = 0.0240 W/kg

45461793 R1.0 3 February 2023

Plot B3

DUT: A04536; Type: Transmitter; Serial: Production Sample Proto-type Procedure Name: B3-A04536, Back Side 5mm,5180MHz UNI-I OFDM-6 20MHz ,WIFI

Communication System: UID 0, CW (0); Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; σ = 4.78 S/m; ε_r = 32.85; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 10/30/2022 9:18:58 AM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.55, 4.55, 4.55) @ 5180 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

5250H/B3-A04536, Back Side 5mm,5180MHz UNI-I OFDM-6 20MHz ,WIFI/Area Scan (8x9x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.782 W/kg

5250H/B3-A04536, Back Side 5mm,5180MHz UNI-I OFDM-6 20MHz ,WIFI/Zoom Scan (9x9x6)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm Reference Value = 7.460 V/m; Power Drift = 0.75 dB

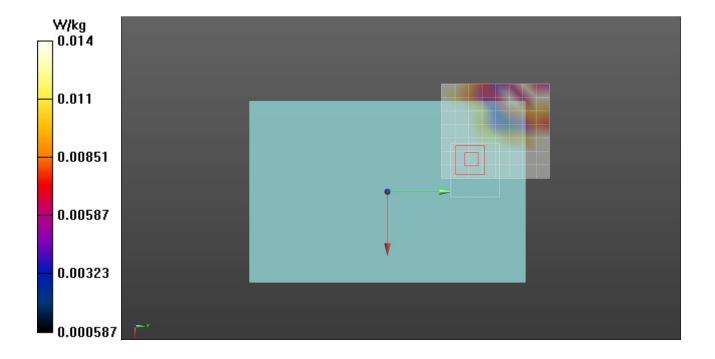
Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 0.312 W/kg; SAR(10 g) = 0.109 W/kg

Smallest distance from peaks to all points 3 dB below = 4 mm

Ratio of SAR at M2 to SAR at M1 = 55.6%

Maximum value of SAR (measured) = 0.741 W/kg


5250H/B3-A04536, Back Side 5mm,5180MHz UNI-I OFDM-6 20MHz ,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm,

dv=20mm. dz=20mm

Penetration depth = n/a (n/a, 41.78) [mm]

Maximum value of SAR (interpolated) = 0.0119 W/kg

45461793 R1.0 3 February 2023

Plot E4

DUT: A04536; Type: Transmitter; Serial: Production Sample Proto-type Procedure Name: E4-A04536, Back Side , 2412MHz 802.11b 20MHz DSSS-1,WIFI

Communication System: UID 0, CW (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.868 \text{ S/m}$; $\epsilon_r = 36.306$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Date/Time: 10/29/2022 1:48:21 PM

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(6.58, 6.58, 6.58) @ 2412 MHz; Calibrated: 4/20/2022

- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/E4-A04536, Back Side, 2412MHz 802.11b 20MHz DSSS-1, WIFI/Area Scan (7x9x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.124 W/kg

2450H/E4-A04536, Back Side, 2412MHz 802.11b 20MHz DSSS-1,WIFI/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 6.053 V/m; Power Drift = -0.31 dB

Peak SAR (extrapolated) = 0.154 W/kg

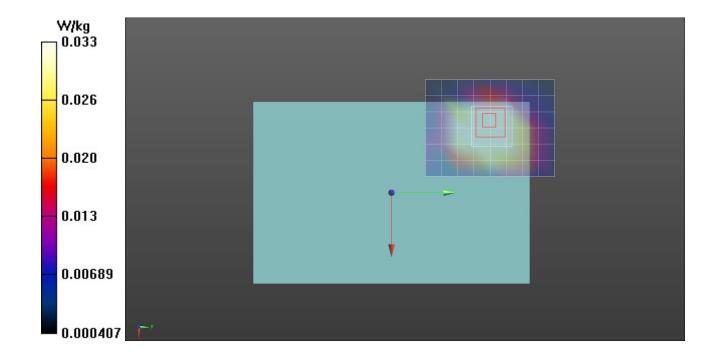
SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.029 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 41.1%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.116 W/kg


2450H/E4-A04536, Back Side , 2412MHz 802.11b 20MHz DSSS-1,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 8.981) [mm]

Maximum value of SAR (interpolated) = 0.0328 W/kg

3 February 2023

45461793 R1.0 3 February 2023

Plot E8

DUT: A04536; Type: Transmitter; Serial: Production Sample Proto-type Procedure Name: E8-A04536, Right Side, 5180MHz UNI-I OFDM-6 20MHz,WIFI

Communication System: UID 0, CW (0); Frequency: 5180 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; σ = 4.78 S/m; ϵ_r = 32.85; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 10/30/2022 3:09:40 PM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.55, 4.55, 4.55) @ 5180 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

5250H/E8-A04536, **Right Side**, **5180MHz UNI-I OFDM-6 20MHz,WIFI/Area Scan (9x6x1)**: Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.10 W/kg

5250H/E8-A04536, Right Side , 5180MHz UNI-I OFDM-6 20MHz,WIFI/Zoom Scan (9x9x6)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm Reference Value = 7.551 V/m; Power Drift = 0.42 dB

Peak SAR (extrapolated) = 1.52 W/kg

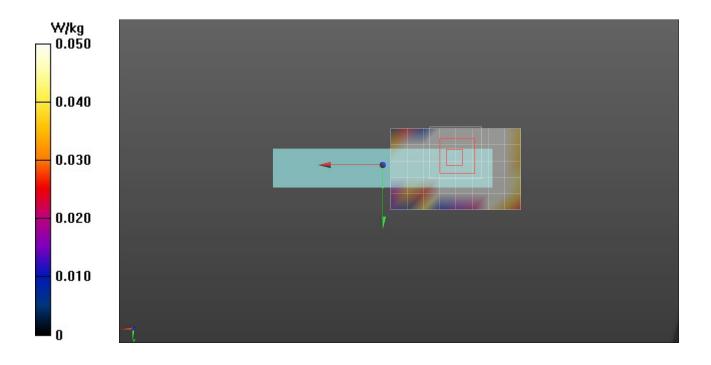
SAR(1 g) = 0.376 W/kg; SAR(10 g) = 0.125 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 50.7%

Maximum value of SAR (measured) = 0.881 W/kg

5250H/E8-A04536, Right Side, 5180MHz UNI-I OFDM-6 20MHz,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm


Penetration depth = n/a (n/a, 0) [mm]

Maximum value of SAR (interpolated) = 0.0503 W/kg

45461793 R1.0

3 February 2023

