

FCC SAR Test Report

Report No. : ENS2111260081W00302R

Applicant : Shenzhen Hui Ke Electronics Co., LTD.

Address : Room A, 2 Floor, 5 Building, Hezhou Yuye Industrial park, Xixiang, Baoan

District, Shenzhen, China

EUT : Pet trainer

Model No. : CW-001, CW-002, CW-003, CW-004, CW-005, CW-006, CW-007, CW-008, CW-009,

CW-010, CW-011, CW-012, CW-013, CW-014, CW-015, CW-016, CW-017, CW-018

Trade mark : N/A

Standards : FCC 47 CFR Part 2 § 2.1093:2013

IEEE Std C95.1[™] -2005 IEEE Std. 1528:2013 RSS -102 Issue 5:2015 IEEE /IEC 62209-1528:2020

Date of Testing : Jan.03,2022

CERTIFICATION:The above equipment have been tested by **EMTEK (SHENZHEN) CO., LTD.BIdg 69, Majialong Industry Zone,Nanshan District, Shenzhen, Guangdong, China**,and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. This report shall not be reproduced, except in full, without the written approval of EMTEK (SHENZHEN) CO., LTD.

Ry an Zhou	
Ryan Zhou/Editor	
foe his	
Joe Xia/Supe is or	
* *	
CRITICATE	

Lisa Wang/Manager

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Rel	ease C	ControlRecord	3
1.	Sumr	mary of Maximum SAR Value	4
2.		ription of Equipment Under Test	
3.	SAR	Measurement System	6
	3.1	Definition of SpecificAbsorptionRate (SAR)	6
	3.2	SPEAG DASY System	
		Robot	
		Probes	8
		Data Acquisition Electronics (DAE)	8
		Phantoms	
		Device Holder	10
		System Validation Dipoles	
		Tissue Simulating Liquids	11
	3.3	SAR System Verification	
	3.4	SAR Measurement Procedure	13
		Area & Zoom Scan Procedure	13
		Power Drift Monitoring	
		Spatial Peak SAR Evaluation	14
		SAR Averaged Methods	14
4.	SAR	Measurement Evaluation	15
	4.1	EUT Configuration and Setting	15
	4.2	EUT Testing Position	15
		Body-worn device	15
		EUT Setup Photos	16
	4.3	Tissue Verification	17
	4.4	System Verification	
	4.5	Power Measurement	18
	4.6	SAR Testing Results	
		SAR Test Results Summary	
5.		oration of Test Equipment	
6.	Meas	surement Uncertainty	21
7	Inforr	mation on the Testing Laboratories	25

Appendix A.SAR Plots of System Verification Appendix B.SAR Plots of SAR Measurement Appendix C.Calibration Certificate for Probe and Dipole

Release ControlRecord

Report No.	Reason for Change	Date Issued
ENS2111260081W00302R	Initial release	Jan.19,2022
_		

1. Summary of Maximum SAR Value

Operating	Highest SAR _{1g} (W/kg)
Mode	Face up of EUT with 25 mm Gap
Analog	467.5625-467.7125MHz(0.5W): 0.092 W/kg
	462.5500-462.7250MHz(0.5W): 0.245 W/kg

Note:

1. The SAR limit (Head & Body: SAR_{1g}1.6 W/kg, Extremity: SAR_{10g} 4.0 W/kg) for general population/uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.

2. <u>Description of Equipment Under Test</u>

Product:	Pet trainer	
Model Number:	CW-001, CW-002, CW-003, CW-004, CW-005, CW-006, CW-007, CW-008, CW-009, CW-010, CW-011, CW-012, CW-013, CW-014, CW-015, CW-016, CW-017, CW-018 (CW-011~ CW-018 only export to US market. These models are identical in circuitry and electrical, mechanical and physical construction; Only the appearance is different; We chose CW-004 as the final test prototype)	
Power supply:	DC 3.7V for Battery DC 5V from USB Port	
Frequency Range:	462.5500MHz - 462.7250MHz; 467.5625MHz - 467.7125MHz	
Type of Modulation:	FM	
Channel Spacing:	12.5kHz	
Max Transmit Power:	26.50 dBm	
Antenna:	Inseparable antenna	
Antenna Gain:	0.5 dBi	

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

3. SAR Measurement System

3.1 <u>Definition of SpecificAbsorptionRate (SAR)</u>

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASYsoftware can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

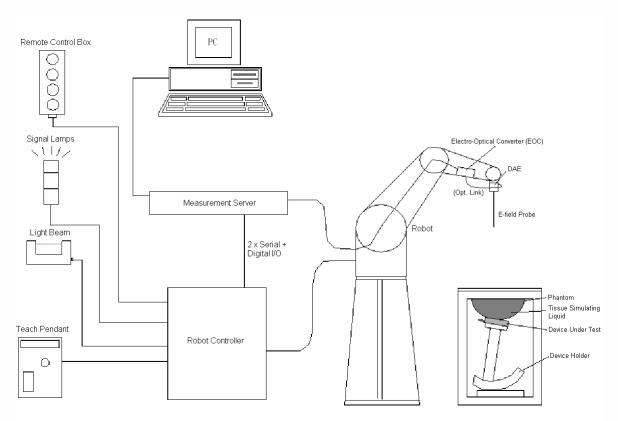
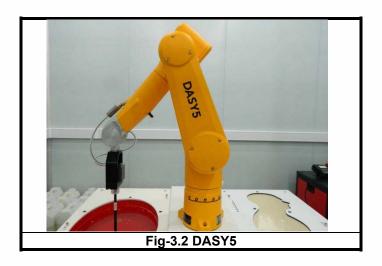



Fig-3.1 DASY System Setup

Robot

The DASYsystem uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- · High precision (repeatability ±0.035 mm)
- · High reliability (industrial design)
- · Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Model	ES3DV3	
Construction	Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g Linearity: ± 0.2 dB	AGE .
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	

Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	P Tolar
Input Offset Voltage	< 5μV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

Phantoms

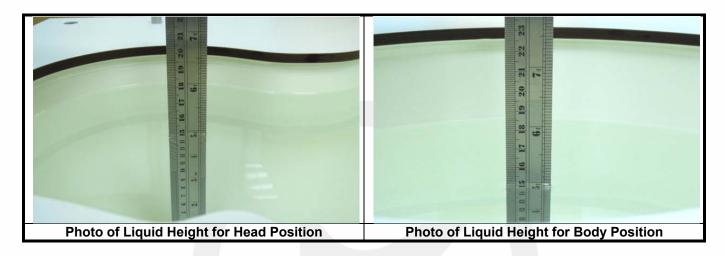
22 1.1	T : 044	
Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	No. of the last of
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

Model	ELI	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions Major axis: 600 mm Minor axis: 400 mm		
Filling Volume	approx. 30 liters	

Device Holder

Model	Mounting Device	-
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

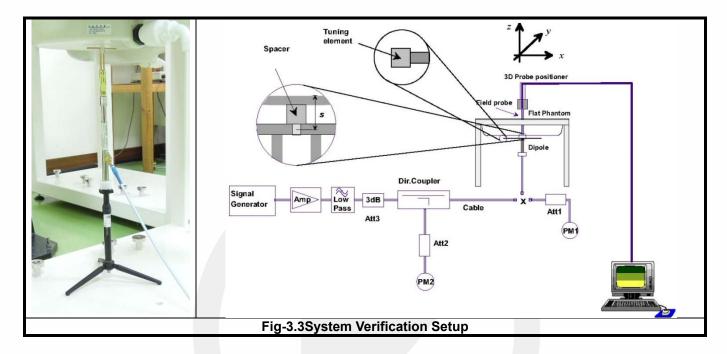

System Validation Dipoles

Model	D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feedpoint impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz),> 40 W (f > 1GHz)	

Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the tissue simulating liquids are defined in IEC 62209-1 and IEC62209-2. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.


Table-3.1Targets of Tissue Simulating Liquid

Frequency (MHz)	Target Permittivity	Range of ±5%	Target Conductivity	Range of ±5%
450	43.5	41.3 ~ 45.7	0.87	0.83 ~ 0.91
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure Transmitter outputpower through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for below 3 GHz, 5x5x7 points with step size 6, 6 and 4 mm for 3 GHz to 4 GHz, and 7x7x12 points with step size 4, 4 and 2 mm for above 5 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

4. SAR Measurement Evaluation

4.1 EUT Configuration and Setting

< Test Positions for front-of-face configurations >

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

< Test positions for body-worn and other configurations>

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

4.2 EUT Testing Position

Body-worn device

A typical example of a body-worn device is a Walkie talkie, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

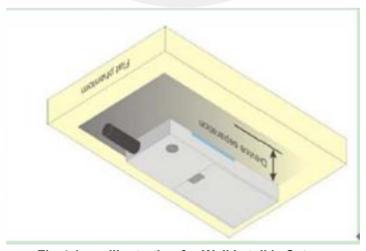
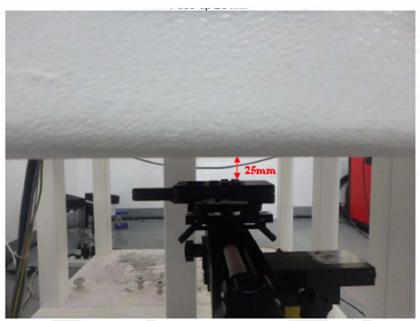



Fig-4.1 Illustration for Walkie talkie Setup

EUT Setup Photos

Face up of EUT with 25 mm Gap

4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Tissue Type	Frequency (MHz)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)	Test Date
H450	450	0.86	42.65	0.87	43.5	-1.15	-1.95	Jan.03,2022

Note:

- 1. The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within ±5% of the target values. Liquid temperature during the SAR testing must be within ±2 °C.
- 2. Since the maximum deviation of dielectric properties of the tissue simulating liquid is within 5%, SAR correction is evaluated in the measurement uncertainty shown on section 6 of this report.

4.4 System Verification

The measuring results for system check are shown as below.

Test Date	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Jan.03,2022	450	4.61	0.302	4.72	2.39	1113	3337	1398

Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

4.5 Power Measurement

Frequency (MHz)	Channel	ERP (dBm)
467.5625-467.7125MHz (0.5W)		
467.5625	8	26.20
467.6375	11	26.50
467.7125	14	26.30
462.5500-462.7250MHz(0.5W)	•	
462.5500	15	26.30
462.6500	19	26.50
462.7250	22	26.30

4.6 SAR Testing Results

SAR Test Results Summary

SAR MEASUREMENT									
Depth of Liquid (cm):>15 Relative Humidity (%): 50.6									
Product: Pet trainer									
Test Mode: Hold to F	ace with 2.5	cm sep	aration & b	ody back tol	uch with cli	р			
Position	Freq. ratio Power with (MHz) n (+0.24R)		SAR 1g with 100% duty Cycle (W/kg)	SAR 1g with 50% duty cycle (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/kg)	Limit W/kg	
Analog-467.5625-467	7.7125MHz (0	0.5W)			- C	0			
Face Up	467.6375	12.5	0.17	0.171	0.0855	26.99	26.50	0.092	1.6
Analog-462.5500-462.7250MHz(0.5W)									
Face Up	462.6500	12.5	-0.40	0.400	0.200	26.99	26.50	0.245	1.6

Note:

- 1. During the test, EUT power is 0.5W with 100% duty cycle;
- 2. There is just default battery and antenna in this project;

P_max = Maximum Power(W)

P_ int = Initial Power(W)

Drift = DASY drift results(dB)

SAR_meas=Measured 10-g or 1-g Avg.SAR(W/kg)

DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation.

For conservative results, the following are applied:

If P_int > P_ max, then P_ max/P_ int =1. Drift = 1 for positive drift

462.5625

All test data are from **A**ttestation of **G**lobal **C**ompliance(Shenzhen) Co.,Ltd **Test Engineer**: Thea Huang

5. Calibration of Test Equipment

Equipment description	Manufacturer/ Model	Identificat ion No.	Software version	Current calibration date	Next calibration date
Stäubli Robot	Stäubli-TX60	F13/5Q2U D1/A/01	N/A	N/A	N/A
Robot Controller	Stäubli-CS8	139522	N/A	N/A	N/A
E-Field Probe	Speag- ES3DV3	SN:3337	N/A	Aug. 24, 2021	Aug. 23, 2022
SAM Twin Phantom	Speag-SAM	1790	N/A	N/A	N/A
ELI4 Phantom	ELI V5.0	1210	N/A	N/A	N/A
Device Holder	Speag-SD 000 H01 KA	SD 000 H01 KA	N/A	N/A	N/A
DAE4	Speag-SD 000 D04 BM	1398	N/A	May 17,2021	May 16,2022
SAR Software	Speag-DASY5	N/A	5.3da53	N/A	N/A
Liquid	SATIMO	N/A	N/A	N/A	N/A
Dipole	Speag-D450V3	SN:1113	N/A	Feb. 05,2021	Feb. 04,2024
Signal Generator	Agilent-E4438C	US414613 65	V5.03	Aug. 18,2021	Aug. 17,2022
Vector Analyzer	Agilent / E4440A	MY443039 16	N/A	Mar. 21, 2021	Mar. 20, 2022
Network Analyzer	Rhode & Schwarz ZVL6	SN101443	3.2	Oct. 28,2021	Oct. 27,2022
Attenuator	Warison WATT-6SR1211	S/N:WRJ3 4AYM2F1	N/A	June 09,2021	June 08,2022
Amplifier	AS0104-55_55	1004793	N/A	June 10,2021	June 09,2022
Directional Couple	Werlatone/ C5571-10	SN99463	N/A	May 15,2020	May 14,2022
Power Sensor	NRP-Z21	1137.6000 .02	N/A	Sep. 07,2021	Sep. 06,2022
Power Sensor	NRP-Z23	100323	N/A	Feb. 17,2021	Feb. 16,2022
Power Viewer	R&S	V2.3.1.0	N/A	N/A	N/A
Calibration standard parts for network sub - port	R&S/ ZV-Z132	N/A	V2.3.1.0	Dec. 07, 2021	Dec. 06, 2022

6. Measurement Uncertainty

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table as follow.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor(a)	1/k(b)	1/√3	1/√6	1/√2

 ⁽a) Standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) K is the coverage factor

Table 13.1 Standard Uncertainty for Assumed Distribution (above table)

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Mea	surement u			ty- ES3D\	/3 ver 1 gram	/ 10 gram.			
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	~O				1	. 30		0	
Probe calibration	Annex B	6.65	N	1	1	1	6.65	6.65	
Axial Isotropy	7.2.2.2	0.25	R	√3	√0.5	√0.5	0.10	0.10	
Hemispherical Isotropy	7.2.2.2	1.30	R	√3	√0.5	√0.5	0.53	0.53	
Boundary effect	7.2.2.5	1.00	R	√3	_ 1	1	0.58	0.58	
Linearity	7.2.2.3	0.30	R	√3	1	1	0.17	0.17	
System detection limits	7.2.2.3	1.00	R	√3	1	1	0.58	0.58	
Modulation response	7.2.2.4	3.30	R	√3	1	1	1.91	1.91	
Readout Electronics	7.2.2.6	0.15	N	1 0	1	1	0.15	0.15	١.
Response Time	7.2.2.7	0.00	R	√3	1	1	0.00	0.00	-
Integration Time	7.2.2.8	1.70	R	$\sqrt{3}$	1	1	0.98	0.98	,
RF ambient conditions-Noise	7.2.9	3.00	R	√3	1	1	1.73	1.73	
RF ambient conditions-reflections	7.2.9	3.00	R	√3	1	1	1.73	1.73	
Probe positioner mechanical tolerance	7.2.3.1	0.40	R	√3	1	1	0.23	0.23	
Probe positioning with respect to phantom shell	7.2.3.2	6.70	R	√3	1	1	3.87	3.87	
Post-processing	7.2.10	4.00	R	√3	1	1	2.31	2.31	
Test sample Related					G	0			
Test sample positioning	7.2.5.3	2.90	N	1	1	1	2.90	2.90	
Device holder uncertainty	7.2.5.2	3.60	N	1	1	1	3.60	3.60	
SAR drift measurement	7.2.8	5.00	R	√3	1	1	2.89	2.89	
SAR scaling	7.2.11	5.00	R	$\sqrt{3}$	1	1	2.89	2.89	
Phantom and set-up					~ (J)				
Phantom uncertainty (shape and thickness uncertainty)	7.2.4	6.60	R	√3	1	1	3.81	3.81	
Uncertainty in SAR correction for deviations in permittivity and conductivity	7.2.7.2	1.90	N	1	01	0.84	1.90	1.60	
Liquid conductivity (temperature uncertainty)	7.2.6.6 7.2.6.5	2.50	R	√3	0.78	0.71	1.13	1.02	
Liquid conductivity (measured)	7.2.6.3 7.2.6.5	4.00	N	1	0.78	0.71	3.12	2.84	1
Liquid permittivity (temperature uncertainty)	7.2.6.6 7.2.6.5	2.50	R	√3	0.23	0.26	0.33	0.38	
Liquid permittivity (measured)	7.2.6.4 7.2.6.5	5.00	N	1	0.23	0.26	1.15	1.30	1
Combined Standard Uncertainty	-		RSS	-			11.79	11.62	\perp
Expanded Uncertainty (95% Confidence interval)	07	-C	K=2	0			23.58	23.25	

System	validation		Uncertain	-	V3 d over 1 gra	m / 10 gram			
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	».O				1	- NO		O	
Probe calibration	Annex B	6.65	N	1	1	1	6.65	6.65	00
Axial Isotropy	7.2.2.2	0.25	R	√3	1	1	0.14	0.14	- 00
Hemispherical Isotropy	7.2.2.2	1.30	R	√3	0	0	0.00	0.00	
Boundary effect	7.2.2.5	1.00	R	√3	_ 1	1	0.58	0.58	
Linearity	7.2.2.3	0.30	R	√3	1	1	0.17	0.17	-
System detection limits	7.2.2.3	1.00	R	√3	1	1	0.58	0.58	
Modulation response	7.2.2.4	3.30	R	√3	0	0	0.00	0.00	-
Readout Electronics	7.2.2.6	0.15	N	1 0	1	1	0.15	0.15	-
Response Time	7.2.2.7	0.00	R	1	0	0	0.00	0.00	- 00
Integration Time	7.2.2.8	1.70	R	$\sqrt{3}$	0	0	0.00	0.00	- 00
RF ambient conditions-Noise	7.2.9	3.00	R	√3	1	1	1.73	1.73	
RF ambient conditions-reflections	7.2.9	3.00	R	√3	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	7.2.3.1	0.40	R	√3	1	1	0.23	0.23	00
Probe positioning with respect to phantom shell	7.2.3.2	6.70	R	√3	1	1	3.87	3.87	00
Post-processing	7.2.10	4.00	R	√3	1	1	2.31	2.31	00
System validation source			100		.C				
Deviation of experimental dipole from numerical dipole	7.2.12	5.00	N	1	1	1	5.00	5.00	00
Input power and SAR drift measurement	7.2.8	5.00	R	√3	1	1	2.89	2.89	00
Other source contribution Uncertainty	7.2.13	2.00	R	√3	1	1	1.15	1.15	00
Phantom and set-up					30		G_{-}		
Phantom uncertainty (shape and thickness uncertainty)	7.2.4	6.60	R	√3	1	1	3.81	3.81	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	7.2.7.2	1.90	N	1	1	0.84	1.90	1.60	00
Liquid conductivity (temperature uncertainty)	7.2.6.6 7.2.6.5	2.50	R	√3	0.78	0.71	1.13	1.02	00
Liquid conductivity (measured)	7.2.6.3 7.2.6.5	4.00	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity (temperature uncertainty)	7.2.6.6 7.2.6.5	2.50	R	√3	0.23	0.26	0.33	0.38	ox
Liquid permittivity (measured)	7.2.6.4 7.2.6.5	5.00	N	1	0.23	0.26	1.15	1.30	N
Combined Standard Uncertainty	_ C		RSS			~ 0	11.44	11.27	
Expanded Uncertainty (95% Confidence interval)	0	-05	K=2	6			22.88	22.54	

Svst	em Check u		Uncertain or Dipole		V3 over 1 gram	n / 10 gram.			
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	~.O				1	- 500		C	
Probe calibration drift	Table 13 note a	0.50	N	1	1	1	0.50	0.50	00
Axial Isotropy	7.2.2.2	0.25	R	√3	0	0	0.00	0.00	00
Hemispherical Isotropy	7.2.2.2	1.30	R	√3	0	0	0.00	0.00	00
Boundary effect	7.2.2.5	1.0	R	√3	. 0	0	0.00	0.00	00
Linearity	7.2.2.3	0.3	R	√3	0	0	0.00	0.00	00
System detection limits	7.2.2.3	0.30	R	√3	0	0	0.00	0.00	00
Modulation response	7.2.2.4	1.00	R	√3	0	0	0.00	0.00	- 00
Readout Electronics	7.2.2.6	3.30	N	1 0	0	0	0.00	0.00	- 00
Response Time	7.2.2.7	0.15	R	√3	0	0	0.00	0.00	00
Integration Time	7.2.2.8	0.00	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-Noise	7.2.9	1.70	R	√3	0	0	0.00	0.00	
RF ambient conditions-reflections	7.2.9	3.00	R	√3	0	0	0.00	0.00	00
Probe positioner mechanical tolerance	7.2.3.1	3.00	R	√3	1	1	0.23	0.23	00
Probe positioning with respect to phantom shell	7.2.3.2	0.40	R	√3	1	1	3.87	3.87	00
Post-processing	7.2.10	6.70	R	√3	0	0	0.00	0.00	00
System check source			3	~ 0	\sim	0.	-0	100	
Deviation between experimental dipoles	7.2.12	2.00	N	1	1	1	2.00	2.00	00
Input power and SAR drift measurement	7.2.8	5.00	R	√3	1	1	2.89	2.89	00
Other source contribution Uncertainty	7.2.13	2.00	R	√3	1	1	1.15	1.15	00
Phantom and set-up	$_{-}C$						<u> </u>		
Phantom uncertainty (shape and thickness uncertainty)	7.2.4	6.60	R	√3	1	1	3.81	3.81	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	7.2.7.2	1.90	N	1	01	0.84	1.90	1.60	90
Liquid conductivity (temperature uncertainty)	7.2.6.6 7.2.6.5	2.50	R	√3	0.78	0.71	1.13	1.02	
Liquid conductivity (measured)	7.2.6.3 7.2.6.5	4.00	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity (temperature uncertainty)	7.2.6.6 7.2.6.5	2.50	R	√3	0.23	0.26	0.33	0.38	
Liquid permittivity (measured)	7.2.6.4 7.2.6.5	5.00	N	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty	P. C.		RSS		1	100	9.89	9.69	T
Expanded Uncertainty (95% Confidence interval)		100	K=2	C		1	19.78	19.38	50

7. Information on the Testing Laboratories

TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

We, EMTEK (SHENZHEN) CO., LTD., were founded in 2000 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Site Description EMC Lab.

: Accredited by CNAS

The Certificate Registration Number is L2291.

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01 (identical to ISO/IEC 17025:2017)

Accredited by FCC

Designation Number: CN1204

Test Firm Registration Number: 882943

Accredited by A2LA

The Certificate Number is 4321.01.

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0008

Name of Firm : EMTEK (SHENZHEN) CO., LTD.

Site Location : Building 69, Majialong Industry Zone, Nanshan District, Shenzhen,

Guangdong, China

If you have any comments, please feel free to contact us at the following:

Add:Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

TEL: 86-755-26954280

FAX: 86-755-26954282

Email: csg@emtek.com.cn

Web Site: www.emtek.com.cn

The road map of all our labs can be found in our web site also.

---END---

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Test Laboratory: AGC Lab System Check Head 450MHz DUT: Dipole 450 MHz Type: D450V3 Test date: Jan. 03, 2022

Communication System: CW, Communication System Band: CW; Duty Cycle: 1:1;

Frequency, 450MHz, Medium parameters used: f = 450MHz, $\sigma = 0.86$ mho/m; $\epsilon r = 42.65$; $\rho = 1000$ kg/m³;

Phantom Type: Elliptical Phantom; Input Power=18dBm

Ambient temperature (°C): 20.6, Liquid temperature (°C): 20.4

DASY Configuration:

- Probe: ES3DV3 SN3337; ConvF(7.15, 7.15, 7.15); Calibrated: Aug. 24, 2021;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- Electronics: DAE4 SN1398; Calibrated: May 17,2021
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 450MHz Head/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.330 W/kg

Configuration/System Check 450MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.247 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.423 W/kg

SAR(1 g) = 0.298 W/kg; SAR(10 g) = 0.205 W/kg Maximum value of SAR (measured) = 0.340 W/kg

0.220 0.161 0.114

Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination are shown as follows.

Analog-467.5625-467.7125MHz (0.5W)
Test Laboratory: AGC Lab
450 Mid-face up 2.5cm (12.5 KHz)
DUT: Pet trainer; Type: CW-004

Date: Jan. 03, 2022

Communication System: 450; Communication System Band: D450 (450.0 MHz); Duty Cycle: 1:1;

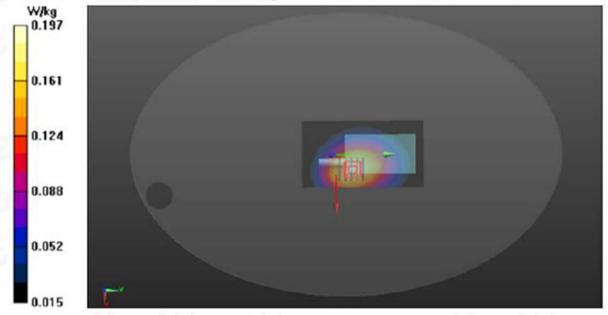
Frequency: 467.6375 MHz, Medium parameters used: f = 450MHz; σ = 0.87 mho/m; ϵ r = 42.31; ρ = 1000 kg/m³;

Phantom Type: Elliptical Phantom

Ambient temperature (°C): 20.6, Liquid temperature (°C): 20.4

DASY Configuration:

- Probe: ES3DV3 SN3337; ConvF(7.15, 7.15, 7.15); Calibrated: Aug. 24, 2021;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- Electronics: DAE4 SN1398; Calibrated: May 17,2021
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Configuration/FACE UP-25MM/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.180 W/kg

Configuration/FACE UP-25MM/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm dz=5mm

Reference Value = 7.613 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.249 W/kg

SAR(1 g) = 0.171 W/kg; SAR(10 g) = 0.108 W/kg

Maximum value of SAR (measured) = 0.197 W/kg

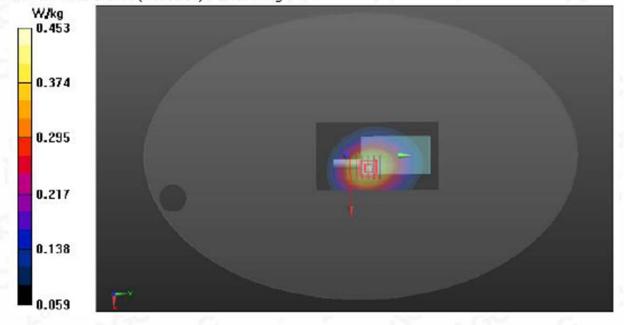
Analog-462.5500-462.7250MHz(0.5W)
Test Laboratory: AGC Lab
450 Mid-face up 2.5cm (12.5 KHz)
DUT: Pet trainer; Type: CW-004

Date: Jan. 03, 2022

Communication System: 450; Communication System Band: D450 (450.0 MHz); Duty Cycle: 1:1; Frequency: 462.6500MHz, Medium parameters used: f = 450MHz, $\sigma = 0.85$ m ho/m; $\sigma' = 42.97$; $\rho = 1000$ kg/m³; Phantom Type: Elliptical Phantom

Ambient temperature (°C): 20.6, Liquid temperature (°C): 20.4

DASY Configuration:


- Probe: ES3DV3 SN3337; ConvF(7.15, 7.15, 7.15); Calibrated: Aug. 24, 2021;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- Electronics: DAE4 SN1398; Calibrated: May 17,2021
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/ FACE UP-25MM /Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.461 W/kg

Configuration/ FACE UP-25MM /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm dz=5mm

Reference Value = 20.536 V/m; Power Drift = -0.40 dB Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.400 W/kg; SAR(10 g) = 0.286 W/kg Maximum value of SAR (measured) = 0.453 W/kg

Appendix C. Calibration Certificate for Probe and Dipole

The calibration certificates are shown as follows.

