

2.7 MPE CALCULATION

2.7.1 FCC Part 80 Section 1.1307(b)/80.227

2.7.2 Equipment Under Test

RAY240

2.7.3 Date of Test

N/A

2.7.4 Test Equipment Used (See Section 3.1 for details)

N/A

2.7.5 MPE Calculation

A Raymarine device, RAY 240, has a maximum output power of 25 W. The manufacturer declares a duty cycle of 50% with a worst-case antenna gain of 3.0dBi. The equipment is proposed as meeting the OET65 requirements for use at 1.5m.

The wavelength of the equipment is:

$$\frac{3x10^8}{156.025 \times 10^6} = 1.92m$$

Thus, the far field region is defined as being:

$$\frac{\lambda}{2\pi}$$
 = $\frac{1.92}{6.283}$ = 0.306m or 30.60cm

Therefore, the formula below is applicable as any distance greater than 30.60cm is in the far field. Thus, at a distance of 1.5m from the antenna, the Power Density is calculated as:

$$S = P \times G = \frac{25000 \times 2.0}{4\pi R^2} = 0.177 \text{mW/cm}^2$$

where:

P = power measured in mW

G = antenna gain as numeric gain, (2.0 numeric / 3.0dBi)

R = distance in cm

MPE for Occupational/Controlled Exposure at 156.025 MHz is 1mW/cm²

MPE for General Population/Uncontrolled Exposure at 156.025 MHz is 0.2mW/cm²

Therefore, the unit under test has a power density, which is less than both the General Population and Occupational exposure limits where a separation distance of 1.5m from the antenna exists. The table below shows the Power Density result for the bottom channel and manufacturer declared antenna configuration.

Frequency (MHz)	Measured Conducted Power (mW)	Antenna Gain		Power Density (mW/cm²)
		dBi	Numeric	(IIIVWCIII)
156.025	25000	3.0	2.0	0.177