Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7351 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|----------------| | Connector Angle (°) | | | Mechanical Surface Detection Mode | -77
enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | No. L0570 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client Auden Certificate No: 714-97161 ### CALIBRATION CERTIFICATE Object D2450V2 - SN: 735 Calibration Procedure(s) TMC-OS-E-02-194 Calibration Procedures for dipole validation kits Calibration date: December 8, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101547 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Reference Probe EX3DV4 | SN 3617 | 28-Aug-14(SPEAG,No.EX3-3617_Aug14) | Aug-15 | | DAE4 | SN 549 | 27-Oct-14(CTTL-SPEAG, No. Z14-97133) | Oct-15 | | | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 01-Jul-14 (CTTL, No.J14X02145) | Jun-15 | | Network Analyzer E5071C | MY46110673 | 15-Feb-14 (TMC, No.JZ14-781) | Feb-15 | | | | | | Name **Function** Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Issued: December 10, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Lu Bingsong Certificate No: Z14-97161 Deputy Director of the laboratory Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z14-97161 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.82 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.6 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 54.2 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.4 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.6 mW /g ± 20.4 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.3 ± 6 % | 1.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.1 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.88 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 mW /g ± 20.4 % (k=2) | Certificate No: Z14-97161 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.4Ω+ 5.56jΩ | | |--------------------------------------|---------------|-------| | Return Loss | - 23.4dB | 8.111 | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.3Ω+ 6.46jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.8dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.014 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | Manufactured by | SPEAG | |-----------------------|-----------------|-------| |-----------------------|-----------------|-------| Certificate No: Z14-97161 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 735 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.816 \text{ S/m}$; $\varepsilon_r = 39.36$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.19, 7.19, 7.19); Calibrated: 2014-08-28; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn549; Calibrated: 2014-10-27 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Date: 08.12.2014 ## System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.2 W/kg #### SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 20.6 W/kg 0 dB = 20.6 W/kg = 13.14 dBW/kg Certificate No: Z14-97161 Page 5 of 8 ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 735 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.935 \text{ S/m}$; $\varepsilon_r = 53.27$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.31, 7.31, 7.31); Calibrated: 2014-08-28; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn549; Calibrated: 2014-10-27 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Date: 08.12.2014 # System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.98 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.88 W/kg Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg Certificate No: Z14-97161 Page 7 of 8 ## Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 108 S C Certificate No: D5GHzV2-1040 Jun14 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1040 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: Drimany Standarda June 20, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-13 (No. EX3-3503_Dec13) | Dec-14 | | DAE4 | SN: 601 | 30-Apr-14 (No. DAE4-601_Apr14) | Apr-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Mraen El Daniel | | Approved by: | Katja Pokovic | Technical Manager | am | | | | | 160 07 | Cal Data (Cartificate Na.) Issued: June 20, 2014 Cohodulad Calibration This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1040_Jun14 Page 1 of 16 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio syizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" - c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1040_Jun14 Page 2 of 16