

FCC Test Report

Report No.: ARFR-ESH-P200320321B-1-A1

FCC ID: 2ANDLTY-R8804

Product: Smart Camera

Model: SC002-WO2

Received Date: Nov.16, 2020

Test Date: Nov.18 to 24, 2020

Issued Date: Dec.15, 2020

Applicant: Hangzhou Tuya Information Technology Co., Ltd

Address: Room701, Building3, More Center, No.87 GuDun Road, Hangzhou,

Zhejiang, China

Issued By: BUREAU VERITAS ADT (Shanghai) Corporation

Lab Address: No. 829, Xinzhuan Road, Shanghai, P.R.China (201612)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record					
1	(Certificate of Conformity	. 4			
2	5	Summary of Test Results	. 5			
	2.1	Test Instruments	6			
	2.2	Measurement Uncertainty	. 7			
	2.3	Modification Record	. 7			
3	(General Information	8			
	3.1	General Description of EUT	8			
	3.2	Description of Test Modes	9			
	3.2.1	Test Mode Applicability:	10			
	3.2.2	Test Condition:	10			
	3.3	Radiated Emission Measurement	11			
	3.3.1	Limits	11			
	3.3.2	Test Procedures	11			
	3.3.3	Deviation from Test Standard	13			
	3.3.4	Test Setup	14			
	3.3.5	EUT Operating Conditions	15			
	3.3.6	Test Results	15			
	3.4	Conducted Emission Measurement	18			
	3.4.1	Limits	18			
	3.4.2	Test Procedures	18			
	3.4.3	Deviation from Test Standard	18			
	3.4.4	Test Setup	19			
	3.4.5	EUT Operating Conditions	19			
	3.4.6	Test Results	20			
4	F	Pictures of Test Arrangements	24			

Release Control Record

Issue No.	Description	Date Issued
ARFR-ESH-P200320321B-1-A1	Original release	Dec.15, 2020

Special comment: Supplement "A1" to test report No.: ARFR-ESH-P200320321B-1 dated on 2020-04-08.

This report is updated report based on history report ARFR-ESH-P200320321B-1 for adding alternative adaptor KA06E-0501000US. After evaluation, we choose model SC002-WO2 with adaptor KA06E-0501000US to perform CE, RE test item. Other test results can refer to history report ARFR-ESH-P200320321B-1.

1	Certificate	of Conformity	,
---	-------------	---------------	---

Product: Smart Camera

Brand: --

Model: SC002-WO2

Applicant: Hangzhou Tuya Information Technology Co., Ltd

Test Date: Nov.18 to 24, 2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

SIAA VIII

The above equipment has been tested by BUREAU VERITAS ADT (Shanghai) Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

, Date:

Dec.15, 2020

	20			
	Scott XU			
	Project Engineer			
Approved by :	CHAI) CORPORATION OF THE PROPERTY OF THE PROPE	, Date:	Dec.15, 2020	
	Daniel SUN型 EMC Lab Manager			

Prepared by:

2 Summary of Test Results

The EUT has been tested according to the following specifications:

47 CFR FCC Part 15, Subpart C (SECTION 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit.			
15.205 / 15.209 / 15.247(d)	Radiated Emissions Measurement	PASS	Meet the requirement of limit.			

2.1 Test Instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Double Ridged Broadband Horn (30MHz-1.5GHz)	Schwarzbeck	VULB9168	E1A1036	Feb.08,20	Feb.07,21
Horn Antenna (1GHz -18GHz)	Schwarzbeck	BBHA9120D	E1A1017	Aug.25,20	Aug.24,22
Pre-Amplifier(9kHz-1GHz)	SONOMA	310	E1A2007	Apr.20,20	Apr.19,21
Pre-Amplifier(1GHz-26.5GHz)	Agilent	8449B	E1A2002	Mar.03,20	Mar.02,21
Signal Generator	Keysight	N5171B	E1S9016	Apr.20,20	Apr.19,21
Signal Generator	Keysight	N5182B	E1S9017	Apr.20,20	Apr.19,21
Wireless Connectivity Tester	R&S	CMW270	E1S9021	NCR	NCR
Spectrum Analyzer	R&S	FSP30	E1S1002	Aug.02,20	Aug.03,21
Spectrum Analyzer	Keysight	N9030B	E1S1003	Jul.23, 20	Jul.22, 21
Spectrum Analyzer	Keysight	N9020A	E1S1004	Mar.03, 20	Mar.02, 21
RF Control Unit	Toscend	JS0806-2	E1C5003	NCR	NCR
DC Power supply	Chroma	62024p-80-60	S1S1009	Mar.25,20	Mar.24,21
Humidity&Temp Programmable Tester	ESPEC	SE TH-Z-042U	C1TH002	Jun.25,20	Jun.24,21
Test Software	Toscend	JS1120-3	N/A	N/A	N/A
Test Software	Toscend	JS36-RSE	N/A	N/A	N/A

2.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

	_	Expanded Uncertainty	
Measurement	Frequency	(k=2) (±)	
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.83 dB	
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.36 dB	
	1GHz ~ 6GHz	3.47 dB	
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.75 dB	
	18GHz ~ 40GHz	3.30 dB	

2.3 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Camera
Brand	
Test Model	SC002-WO2
Model Difference	
Power Rating	120Vac 60Hz for adaptor
Modulation Type	CCK, DQPSK, DBPSK for DSSS
Woodington Type	64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
Operating Frequency	See clause 3.2
Number of Channel	See clause 3.2
Antenna Type	Ceramic Antenna
Antenna Connector	
Antenna Gain	0dBi

Modulation Mode	TX /RX Function
802.11b	1TX / 1RX
802.11g	1TX / 1RX
802.11n (HT20)	1TX / 1RX

3.2 Description of Test Modes

13 channels are provided for 802.11b, 802.11g and 802.11n (HT20)

Channel	Frequency	Channel	Frequency
1	1 2412MHz		2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz	-	-

3.2.1 Test Mode Applicability:

EUT					
Configure Mode	RE≥1G	RE < 1G	PLC	APCM	Description
-		√	√		-

Where RE≥1G: Radiated Emission above 1GHz RE≤1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Power Line Conducted Emission Test:

- □ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11b	1 to 11	1	DSSS	DBPSK	1.0

3.2.2 Test Condition:

Applicable to	Normal Environmental Conditions	Normal Input Power
RE≥1G	25deg. C, 60%RH	120Vac, 60Hz
RE < 1G	25deg. C, 60%RH	120Vac, 60Hz
PLC	25deg. C, 60%RH	120Vac, 60Hz
APCM	25deg. C, 60%RH	120Vac, 60Hz

Report No.: ARFR-ESH-P200320321B-1-A1 Page No. 10 / 24 Report Format Verision: 6.1.1

3.3 Radiated Emission Measurement

3.3.1 Limits

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

3.3.2 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degree to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotate table was turned

Report No.: ARFR-ESH-P200320321B-1-A1 Page No. 11 / 24 Report Format Verision: 6.1.1

from 0 degree to 360 degree to find the maximum reading.

e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

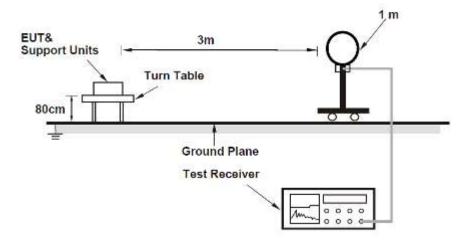
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

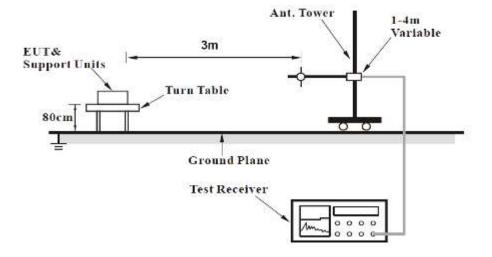
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz & 360 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1/T for RMS Average (Duty cycle < 98 %) for Peak detection at frequency above 1 GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.

Report No.: ARFR-ESH-P200320321B-1-A1 Page No. 12 / 24 Report Format Verision: 6.1.1

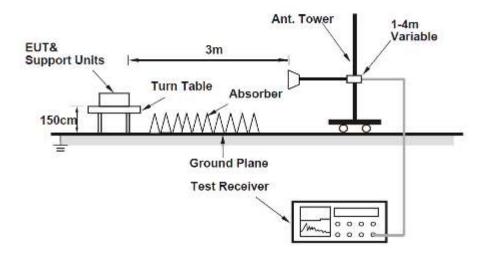

5. All modes of operation were investigated and the worst-case emissions are reported.						
3.3.3 Deviation from Test Standard						
No deviation.						

Report No.: ARFR-ESH-P200320321B-1-A1 Page No. 13 / 24 Report Format Verision: 6.1.1



3.3.4 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

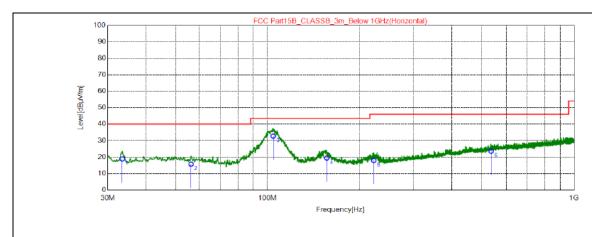
For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.3.5 EUT Operating Conditions

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

3.3.6 Test Results

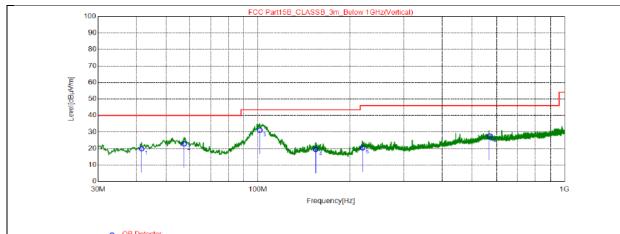

Radiated Emissions Range 9kHz~30MHz

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Radiated Emissions Range 30MHz~1GHz

Mode	802.11b-2412MHz	Detector Function	Quasi-Peak (QP)
Frequency Range	30MHz ~ 1GHz	Antenna Polarity	Horizontal

QP Detector


NO.	Freq.	QP Reading	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.49	30.11	-11.24	18.87	40.00	21.13	200	13	Horizontal
2	56.19	25.83	-10.06	15.77	40.00	24.23	200	233	Horizontal
3	104.3	47.14	-14.44	32.70	43.50	10.80	200	237	Horizontal
4	156.1	29.28	-9.87	19.41	43.50	24.09	200	75	Horizontal
5	222.4	29.61	-11.66	17.95	46.00	28.05	200	233	Horizontal
6	538.0	27.45	-3.89	23.56	46.00	22.44	200	35	Horizontal

REMARKS:

- 1. Emission Level(dBuV/m) = Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Mode	802.11b-2412MHz	Detector Function	Quasi-Peak (QP)
Frequency Range	30MHz ~ 1GHz	Antenna Polarity	Vertical

QP Detector

NO.	Freq.	QP Reading	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	20242204
1	41.64	30.08	-10.31	19.77	40.00	20.23	100	24	Vertical
2	57.35	32.89	-10.12	22.77	40.00	17.23	100	320	Vertical
3	101.3	45.89	-14.80	31.09	43.50	12.41	100	69	Vertical
4	154.5	29.32	-9.91	19.41	43.50	24.09	100	202	Vertical
5	219.9	32.17	-11.75	20.42	46.00	25.58	100	106	Vertical
6	570.8	30.73	-3.16	27.57	46.00	18.43	100	39	Vertical

REMARKS:

- 1. Emission Level(dBuV/m) = Original Spectrum reading (dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

3.4 Conducted Emission Measurement

3.4.1 Limits

Frequency (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

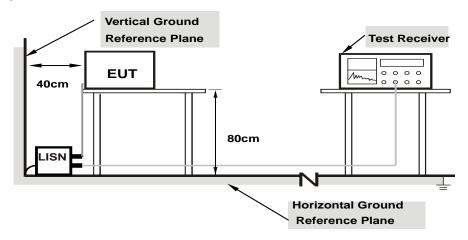
Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.4.2 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.


3.4.3 Deviation from Test Standard

No deviation.

Report No.: ARFR-ESH-P200320321B-1-A1 Page No. 18 / 24 Report Format Verision: 6.1.1

3.4.4 Test Setup

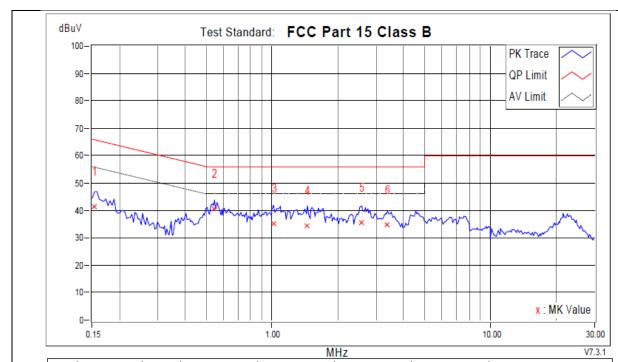
Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.4.5 EUT Operating Conditions

Same as 4.1.6.

Report Format Verision: 6.1.1

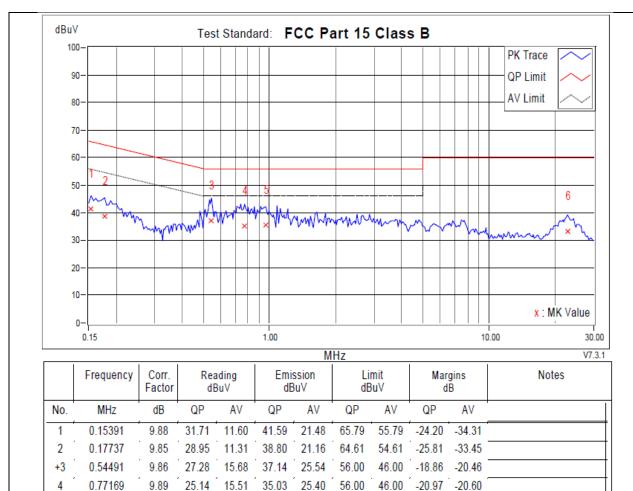


3.4.6 Test Results

Working While Charging

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Power rating	AC 120V, 60Hz		

Test Plot:


	Frequency	Corr. Factor		ading BuV		ssion BuV		mit BuV		gins B	Notes
No.	MHz	dB	QP	AV	QP	AV	QP	AV	QP	AV	
1	0.15391	9.87	31.65	15.00	41.52	24.87	65.79	55.79	-24.26	-30.91	
+2	0.54491	9.72	31.00	25.87	40.72	35.59	56.00	46.00	-15.28	-10.41	
3	1.01564	9.61	25.45	13.61	35.06	23.22	56.00	46.00	-20.94	-22.78	
4	1.45356	9.69	24.87	13.94	34.56	23.63	56.00	46.00	-21.44	-22.37	
5	2.58355	9.84	25.89	15.26	35.73	25.10	56.00	46.00	-20.27	-20.90	
6	3.38510	9.92	24.88	13.95	34.80	23.87	56.00	46.00	-21.20	-22.13	
	ſ	f i	í I	ſ	ſ	ſ	ſ	I	ſ	ı	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Power rating	AC 120V, 60Hz		

REMARKS:

5

6

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

25.88

10.33 22.89 12.16 33.22 22.49 60.00 50.00 -26.78 -27.51

56.00

46.00

-20.35

-20.12

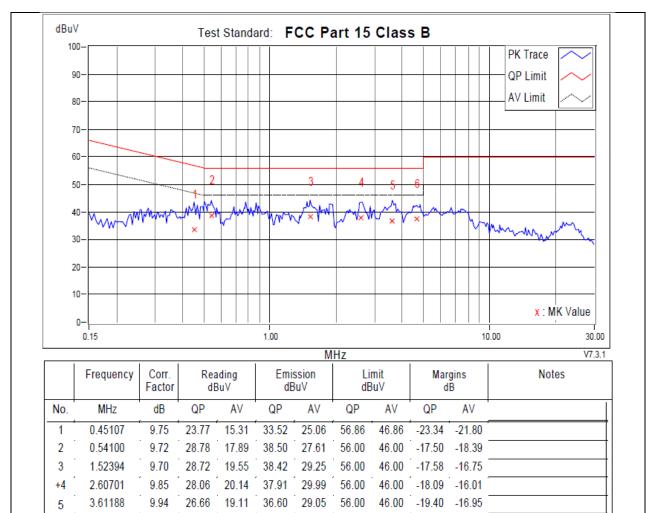
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value

25.74

9.91

15.97

35.65


- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

0.96328

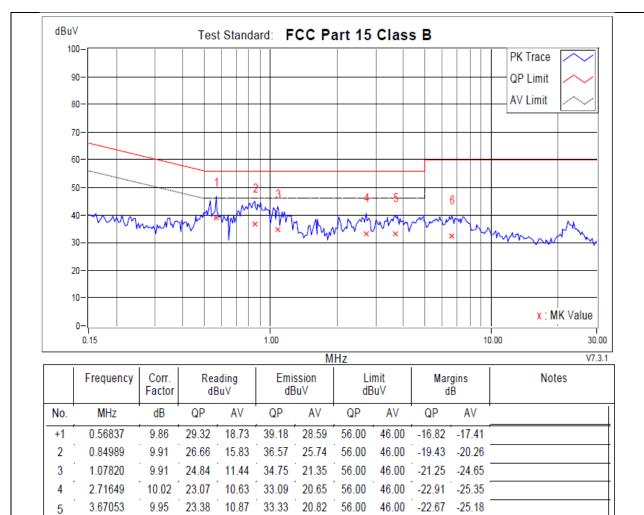
22.82871

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Power rating	AC 240V, 50Hz		

REMARKS:

6

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.


10.04 27.37 19.23 37.41 29.27 56.00 46.00 -18.59 -16.73

- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.65585

Phase	Line (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Power rating	AC 240V, 50Hz		

REMARKS:

6

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.

18.91

60.00

50.00

-27.66 -31.09

- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

6.64604

10.12

22.22

8.79

32.34

4 Pictures of Test Arrangements		
Please refer to the attached file (Test Setup Photo).		
END		