

Report No.: TBR-C-202503-0164-4 Page: 1 of 8

Maximum Permissible Exposure Evaluation FCC ID: 2A66E-SRC3422

Report No.	2	TBR-C-202503-0164-4			
Applicant		Guangdong Seneasy Intelligent Technology Co., Ltd.			
Equipment Under Test	(El	Л			
EUT Name	1	Remote control			
Model No.	1	60.0			
Series Model No.	:				
Brand Name	:	Dish			
Sample ID	1	HC-C-202503-0164-01-1# & HC-C-202503-0164-01-2#			
Receipt Date		2025-03-31			
Test Date	•	025-03-31 to 2025-05-19			
Issue Date	-)25-05-19			
Standards	-	CC Part 2.1093			
Test Method		DB 447498 D01 General RF Exposure Guidance v06			
Conclusions	÷	PASS			
		In the configuration tested, the EUT complied with the standards specified above.			
Test By		: Gold. zhang			
Reviewed By		: Emily Tang			
Approved By	ed By : WAN SV Ivan Su				

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

CONTENTS

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
2.	MEASUREMENT UNCERTAINTY	5
3.	TEST FACILITY	6
4.	SAR TEST EXCLUSION CALCULATIONS	7

Report No.: TBR-C-202503-0164-4 Page: 3 of 8

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202503-0164-4	Rev.01	Initial issue of report	2025-05-19
			TOBLE T
1000	CUL	AN AND	0000
m - m			5 D - 1
1000		A LAND	1 (40B)
and the second			
103			MOBL
6000	200	and and	107
TOBY TO	2		033
RODE	Due -	AT ME	COD -
The second			
- 1030 - A	The second	A LEMAN	1000

1. General Information about EUT

1.1 Client Information

Applicant		uangdong Seneasy Intelligent Technology Co., Ltd.		
Address		No.10, Dongsheng Zhong Road, Chenjiang Street, Zhongkai Hi-Tech District, Huizhou, 516000 China		
Manufacturer	:	Guangdong Seneasy Intelligent Technology Co., Ltd.		
Address	1	No.10, Dongsheng Zhong Road, Chenjiang Street, Zhongkai Hi-Tech District, Huizhou, 516000 China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Remote control			
Models No.	-	60.0			
Model Different					
Product Description		Operation Frequency:	2.4G: 2425MHz~2475MHz Bluetooth LE 5.0: 2402MHz~2480MHz		
	:	Modulation Type:	2.4G: QPSK Bluetooth LE 5.0: GFSK		
- RUDS		Antenna Gain:	2.14dBi PCB Antenna		
Power Rating		DC 1.5V by AAA batter	y*2		
Software Version	1	V01.08			
Hardware Version		S3422A4776-A			
Pomark: The shows ante	nno	information is dealared by many	facturer and far more detailed factures description, places		

Remark: The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	Level Accuracy: Above 1000MHz	±0.95 dB
Power Spectral Density- Conducted	Level Accuracy: Above 1000MHz	±3dB
Occupied Bandwidth	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±3.8%
Unwanted Emission- Conducted	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±2.72 dB
Temperature		±0.6°C
Humidity		±4%
Supply voltages		±2%
Time		±4%

Report No.: TBR-C-202503-0164-4 Page: 6 of 8

3. Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

4. SAR Test Exclusion Calculations

- 4.1 FCC: According to KDB 447498 D01 v06 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.
 - (1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations
 - Sub clause 4.31: Standalone SAR test exclusion considerations
 - 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

4.2 Summary simultaneous transmission for SAR Exclusion

The SAR exemption limits outlined in clause 4.3.2(b) of KDB 447498 have been derived based on an approximate SAR value of 0.4 W/kg using half-wave dipole antennas Footnote 1. As such, when simultaneous transmitter SAR evaluations include transmitters that have been exempt from routine SAR evaluation, the SAR must be estimating based on the ratio between the maximum tune-up tolerance limit of the transmitter that has been exempt and the exemption limit at the specific distance and frequency for that transmitter. This ratio must be multiplied by 0.4 W/kg (2.0 W/kg for controlled use and 1.0 W/kg for limb worn devices) in order to calculate the estimated SAR level.

The estimate SAR value is calculated based the following equation:

(maximum power level including tune-up tolerance for transmitter A / maximum power level of exemption at the same frequency and distance) * 0.4W/kg

1) [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f_{(GHz)}/x}$] W/kg, for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the *test separation distance* is > 50 mm.³⁷

The [\sum of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [\sum of MPE ratios] is \leq 1.0.

The SAR to peak location separation ratios of all simultaneously transmitting antenna pairs operating in portable device exposure conditions are all ≤ 0.04 , and the [\sum of MPE ratios] is ≤ 1.0 .

4.3 Calculation:

Test sepa	Test separation: 5mm								
	BLE 1Mbps								
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value			
2.402	5.412	5±1	6	3.981	1.234	3.0			
2.440	5.206	5±1	6	3.981	1.244	3.0			
2.480	5.046	5±1	6	3.981	1.254	3.0			

Test sepa	ration: 5mm			1		
			2.4G		11	(III)
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.425	-11.32	-11±1	-10	0.100	0.031	3.0
2.450	-11.18	-11±1	-10	0.100	0.031	3.0
2.475	-11.65	-12±1	-11	0.079	0.025	3.0

Frequency (MHz)	Max. Output Power (dBuV/m)	Max. Output Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Output power (Max. Turn-up Procedure) (mW)	
2425	83.94	-11.32	-11±1	-10	0.100	
2450	84.08	-11.18	-11±1	-10	0.100	
2475	83.61	-11.65	-12±1	-11	0.079	

Note: For conducted measurements below 1000 MHz, the field strength shall be computed as specified in item d), and then an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test range with a ground plane for frequencies between 30 MHz and 1000 MHz, or an additional 6dB shall be added for frequencies below 30MHz. 04.8

$E = \text{EIRP} - 20 \log d + 1$		(
-----------------------------------	--	---

d

where is the electric field strength in dBµV/m Е EIRP is the equivalent isotropically radiated power in dBm

is the specified measurement distance in m

So: EIRP=E+20log3-104.8-(4.7 or 6) Note: At separation distance of ≤5 mm

The measurement results comply with the FCC Limit per 47 CFR 2.1093 for the uncontrolled RF Exposure and SAR Exclusion Threshold per KDB 447498 D01 v06.

-- END OF THE REPORT---

