

Appendix B – SAR Test Data Plots

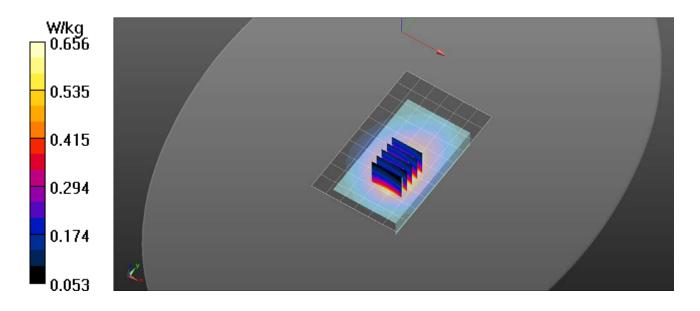
Plot 1

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 707.5 MHz; σ = 0.958 S/m; ϵ_r = 55.56; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

750 MHz B12 LTE/Front 1 RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.627 W/kg

750 MHz B12 LTE/Front 1 RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.01 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.733 W/kg SAR(1 g) = 0.558 W/kg; SAR(10 g) = 0.406 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.656 W/kg

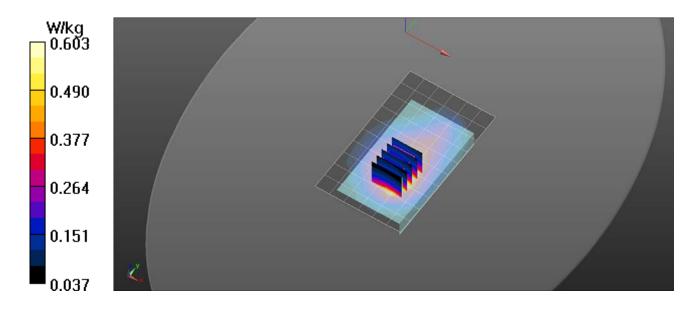
Plot 2

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 0.992 S/m; ϵ_r = 55.24; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

750 MHz B13 LTE/Front 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.574 W/kg

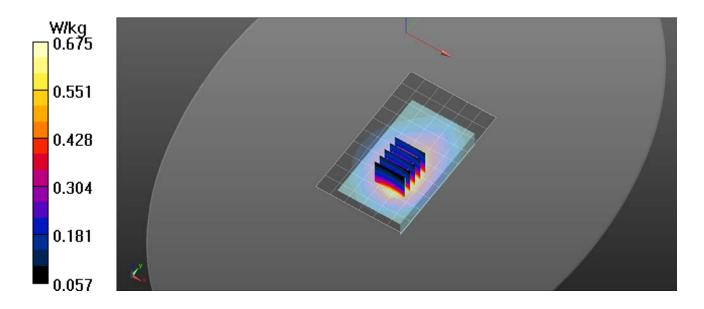
750 MHz B13 LTE/Front 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.13 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.684 W/kg **SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.346 W/kg**

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.603 W/kg

Plot 3

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 710 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 710 MHz; σ = 0.96 S/m; ϵ_r = 55.55; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

750 MHz B17 LTE/Front 1 RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.664 W/kg

750 MHz B17 LTE/Front 1 RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.57 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.753 W/kg SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.413 W/kg Maximum value of SAR (measured) = 0.675 W/kg

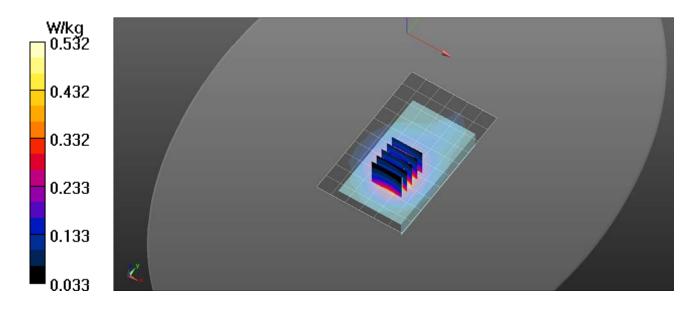
Plot 4

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 S/m; ϵ_r = 55.902; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz WCDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.473 W/kg

835 MHz WCDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.50 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.608 W/kg SAR(1 g) = 0.433 W/kg; SAR(10 g) = 0.295 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.532 W/kg

Plot 5

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: GPRS 2-Slot (GMSK); Frequency: 836.6 MHz; Duty Cycle: 1:4.00037 Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 S/m; ϵ_r = 55.902; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz GPRS/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.445 W/kg

835 MHz GPRS/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.17 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.553 W/kg SAR(1 g) = 0.390 W/kg; SAR(10 g) = 0.268 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.478 W/kg

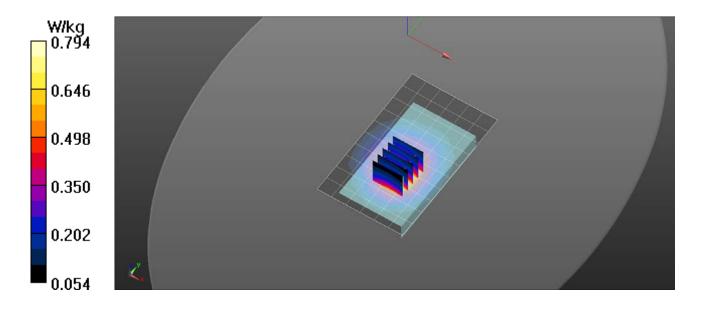
Plot 6

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.99 S/m; ϵ_r = 55.903; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

835 MHz B5 LTE/Front 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.768 W/kg

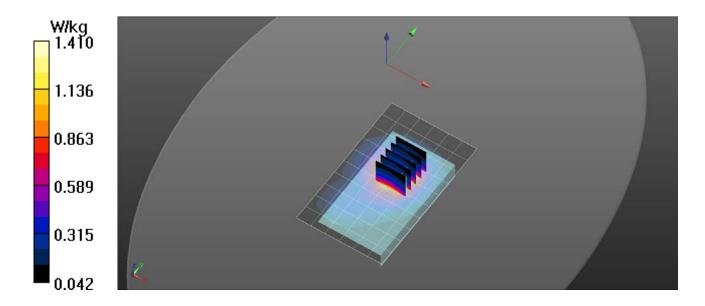
835 MHz B5 LTE/Front 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.44 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.900 W/kg SAR(1 g) = 0.660 W/kg; SAR(10 g) = 0.464 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.794 W/kg

Plot 7

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1770 MHz; σ = 1.53 S/m; ϵ_r = 53.22; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

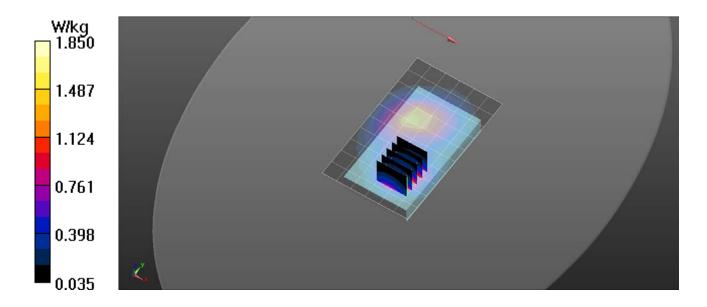
1750 MHz B66 LTE/Back 1RB High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.37 W/kg

1750 MHz B66 LTE/Back 1RB High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.98 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.706 W/kg Maximum value of SAR (measured) = 1.41 W/kg

Plot 8

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.54 S/m; ϵ_r = 52.52; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

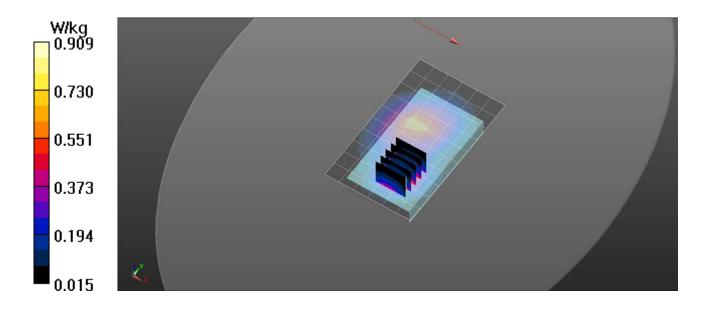
1900 MHz WCDMA/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.68 W/kg

1900 MHz WCDMA/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.57 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.29 W/kg SAR(1 g) = 1.36 W/kg; SAR(10 g) = 0.757 W/kg Maximum value of SAR (measured) = 1.85 W/kg

Plot 9

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: GPRS 2-Slot (GMSK); Frequency: 1880 MHz; Duty Cycle: 1:4.00037 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.54 S/m; ϵ_r = 52.52; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

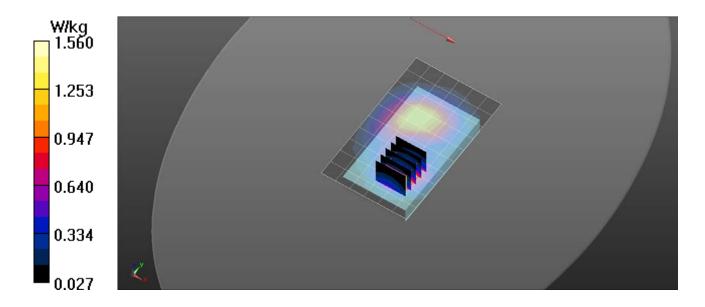
1900 MHz GPRS/Front Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.827 W/kg

1900 MHz GPRS/Front Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.39 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.13 W/kg **SAR(1 g) = 0.667 W/kg; SAR(10 g) = 0.372 W/kg** Maximum value of SAR (measured) = 0.909 W/kg

Plot 10

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1860 MHz; σ = 1.53 S/m; ϵ_r = 52.57; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1900 MHz B2 LTE/Front 1RB Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.41 W/kg

1900 MHz B2 LTE/Front 1RB Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.39 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.641 W/kg Maximum value of SAR (measured) = 1.56 W/kg

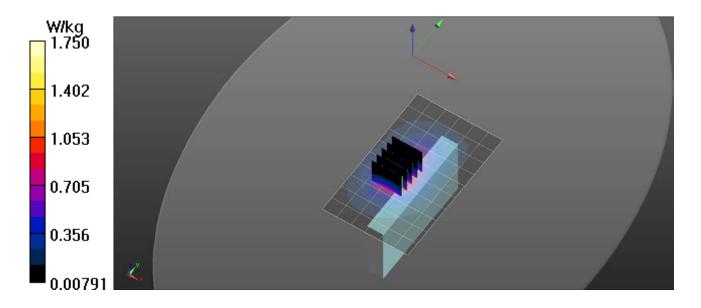
Plot 11

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (interpolated): f = 2535 MHz; σ = 2.09 S/m; ϵ_r = 52.43; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: ES3DV3 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

2600 MHz B7 LTE/Right 1RB Mid/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.40 W/kg

2600 MHz B7 LTE/Right 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.34 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 1.35 W/kg; SAR(10 g) = 0.665 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg

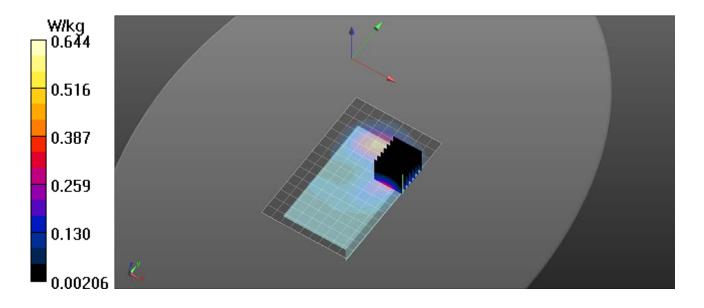
Plot 12

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; σ = 1.944 S/m; ϵ_r = 52.536; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/3/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(6.87, 6.87, 6.87); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

2450 MHz WiFi/Front Tx1 Mid/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.541 W/kg

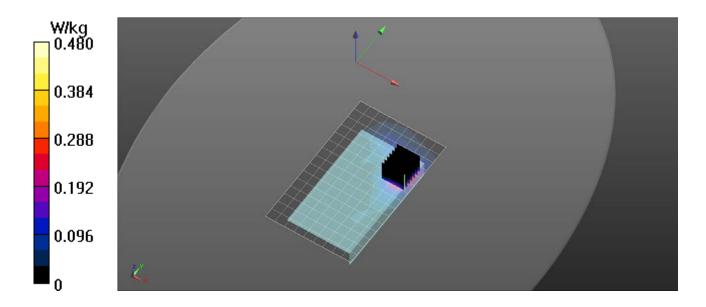
2450 MHz WiFi/Front Tx1 Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.165 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.890 W/kg SAR(1 g) = 0.413 W/kg; SAR(10 g) = 0.187 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.644 W/kg

Plot 13

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5220 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5220 MHz; σ = 5.32 S/m; ϵ_r = 48.86; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/5/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(4.03, 4.03, 4.03); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

5200 MHz WiFi/Front Tx1 44/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.410 W/kg

5200 MHz WiFi/Front Tx1 44/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.713 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.831 W/kg SAR(1 g) = 0.249 W/kg Maximum value of SAR (measured) = 0.480 W/kg

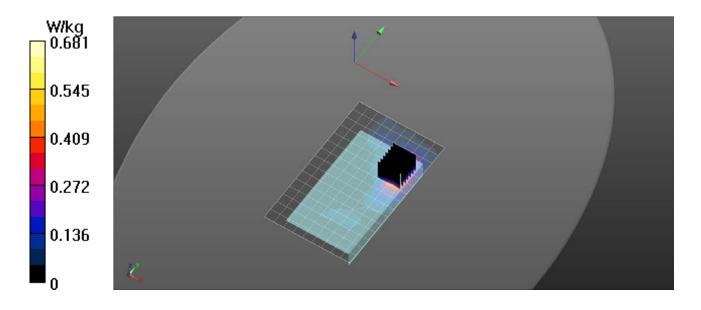
Plot 14

DUT: MIFI7000; Type: MIFI; Serial: SZ17061900013

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5785 MHz; σ = 6.008 S/m; ϵ_r = 48.073; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/5/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(3.49, 3.49, 3.49); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

5800 MHz WiFi/Front Tx1 157/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.624 W/kg

5800 MHz WiFi/Front Tx1 157/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.194 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.335 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.681 W/kg

Appendix C – SAR Test Setup Photos

Test Position Side A 10 mm Gap

Test Position Side B 10 mm Gap

Test Position Side C 10 mm Gap

Test Position Side D 10 mm Gap

Test Position Side E 10 mm Gap

Test and Antenna Locations

Report Number: SAR.20161204

Front of Device

Report Number: SAR.20161204

Back of Device

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RF Exposure Lab Client

Certificate No: ES3-3311_Feb16

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3311
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	February 16, 2016
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Jola .
Approved by:	Katja Pokovic	Technical Manager	Job Ky
			Issued: February 18, 2016
This calibration certificate	e shall not be reproduced except in	full without written approval of the labo	ratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3311

Manufactured: July 5, 2011 Calibrated:

February 16, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.28	1.07	0.47	± 10.1 %
DCP (mV) ^B	103.8	103.5	101.2	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊧]
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	220.4	±3.0 %
		Y	0.0	0.0	1.0		222.4	
		Z	0.0	0.0	1.0		211.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

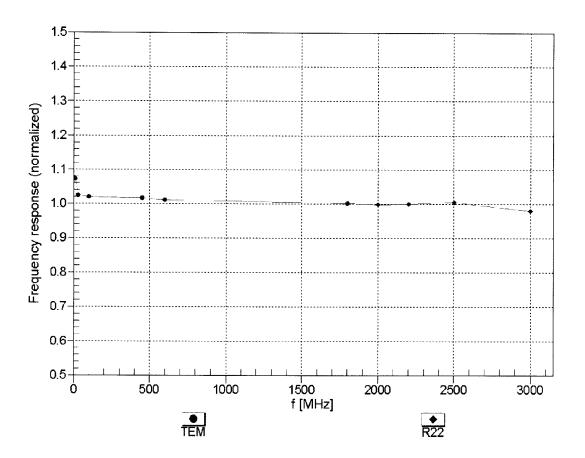
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	45.3	0.87	7.52	7.52	7.52	0.15	1.71	± 13.3 %
600	42.7	0.88	6.73	6.73	6.73	0.15	1.50	± 13.3 %
835	41.5	0.90	6.43	6.43	6.43	0.40	1.75	± 12.0 %
1640	40.3	1.29	5.49	5.49	5.49	0.47	1.54	± 12.0 %
2300	39.5	1.67	4.92	4.92	4.92	0.79	1.24	± 12.0 %
2450	39.2	1.80	4.64	4.64	4.64	0.80	1.30	± 12.0 %
2600	39.0	1.96	4.44	4.44	4.44	0.80	1.35	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

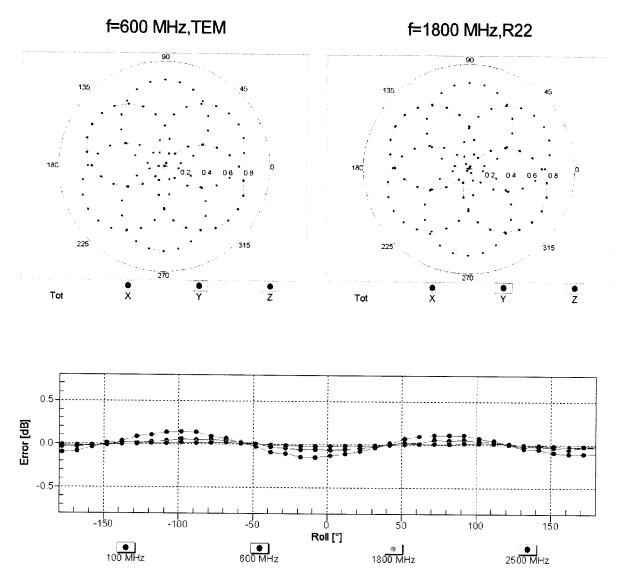
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

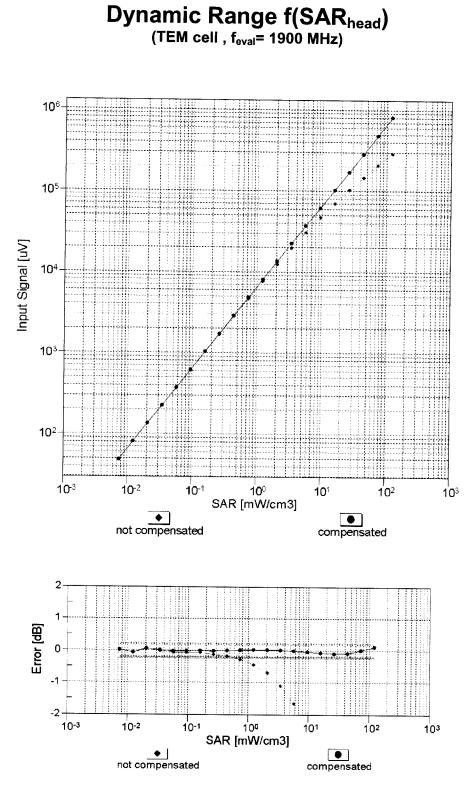

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	58.2	0.92	7.31	7.31	7.31	0.13	1.00	± 13.3 %
600	56.1	0.95	6.76	6.76	6.76	0.12	1.50	± 13.3 %
835	55.2	0.97	6.33	6.33	6.33	0.62	1.40	± 12.0 %
1640	53.8	1.40	5.33	5.33	5.33	0.51	1.53	± 12.0 %
2300	52.9	1.81	4.69	4.69	4.69	0.80	1.25	± 12.0 %
2450	52.7	1.95	4.43	4.43	4.43	0.80	1.20	± 12.0 %
2600	52.5	2.16	4.17	4.17	4.17	0.80	1.22	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	61.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RF Exposure Lab Client

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Jan16

Accreditation No.: SCS 0108

Client	RF Exposure Lab	Certificate No: EX3-3833_
CAL	IBRATION CERTIFICATE	

Object	EX3DV4 - SN:3833
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	January 27, 2016
	nts the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	= 6
		an a	anna an ann an ann an an an an ann an an
Approved by:	Katja Pokovic	Technical Manager	Letter -
		9,99,999,999,99,99,99,99,99,99,99,99,99	alalises sei be suutananan suuse suoma suuden see anan.
This calibration certificate	e shall not be reproduced except in	full without written approval of the labo	Issued: January 28, 2016 ratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
ϕ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., $\vartheta = 0$ is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3833

Calibrated:

Manufactured: November 7, 2011 January 27, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.49	0.35	± 10.1 %
DCP (mV) ^B	100.8	100.2	102.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊏] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	131.4	±2.5 %
		Y	0.0	0.0	1.0		134.5	
		Z	0.0	0.0	1.0		128.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

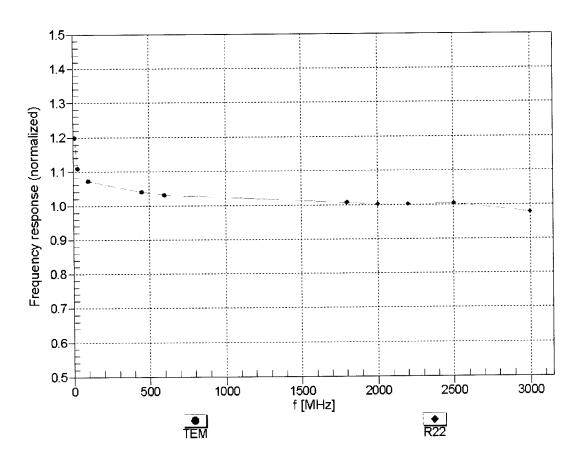
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.38	11.38	11.38	0.00	1.00	± 13.3 %
220	49.0	0.81	10.71	10.71	10.71	0.00	1.00	± 13.3 %
300	45.3	0.87	10.68	10.68	10.68	0.08	1.15	± 13.3 %
450	43.5	0.87	9.47	9.47	9.47	0.15	1.15	± 13.3 %
600	42.7	0.88	9.41	9.41	9.41	0.09	1.15	± 13.3 %
750	41.9	0.89	9.23	9.23	9.23	0.37	1.00	± 12.0 %
900	41.5	0.97	8.72	8.72	8.72	0.29	1.17	± 12.0 %
1640	40.3	1.29	7.85	7.85	7.85	0.41	0.88	± 12.0 %
1750	40.1	1.37	7.62	7.62	7.62	0.46	0.80	± 12.0 %
1900	40.0	1.40	7.27	7.27	7.27	0.45	0.80	± 12.0 %
2450	39.2	1.80	6.86	6.86	6.86	0.39	0.91	± 12.0 %
5200	36.0	4.66	4.64	4.64	4.64	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.47	4.47	4.47	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.23	4.23	4.23	0.40	1.80	± 13.1 %
5600	35.5	5.07	3.94	3.94	3.94	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.11	4.11	4.11	0.45	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

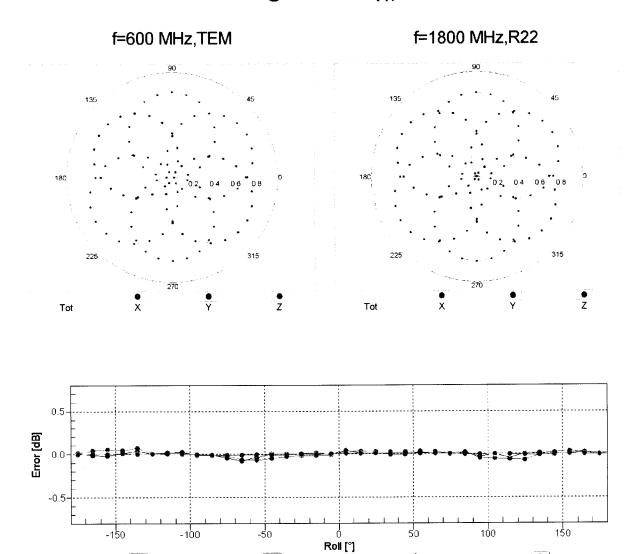
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.03	11.03	11.03	0.00	1.00	± 13.3 %
220	60.2	0.86	10.39	10.39	10.39	0.00	1. <u>00</u>	± 13.3 %
300	58.2	0.92	10.08	10.08	10.08	0.07	1.15	± 13.3 %
450	56.7	0.94	10.23	10.23	10.23	0.09	1.15	± 13.3 %
600	56.1	0.95	9.68	9.68	9.68	0.08	1.15	± 13.3 %
750	55.5	0.96	9.06	9.06	9.06	0.44	0.87	± 12.0 %
900	55.0	1.05	8.73	8.73	8.73	0.32	1.06	± 12.0 %
1640	53.8	1.40	7.77	7.77	7.77	0.38	0.82	± 12.0 %
1750	53.4	1.49	7.32	7.32	7.32	0.42	0.84	± 12.0 %
1900	53.3	1.52	7.13	7.13	7.13	0.38	0.80	± 12.0 %
2450	52.7	1.95	6.87	6.87	6.87	0.40	0.85	± 12.0 %
5200	49.0	5.30	4.03	4.03	4.03	0.45	1.90	± 13.1 %
5300	48.9	5.42	3.85	3.85	3.85	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.56	3.56	3.56	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.25	3.25	3.25	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.49	3.49	3.49	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

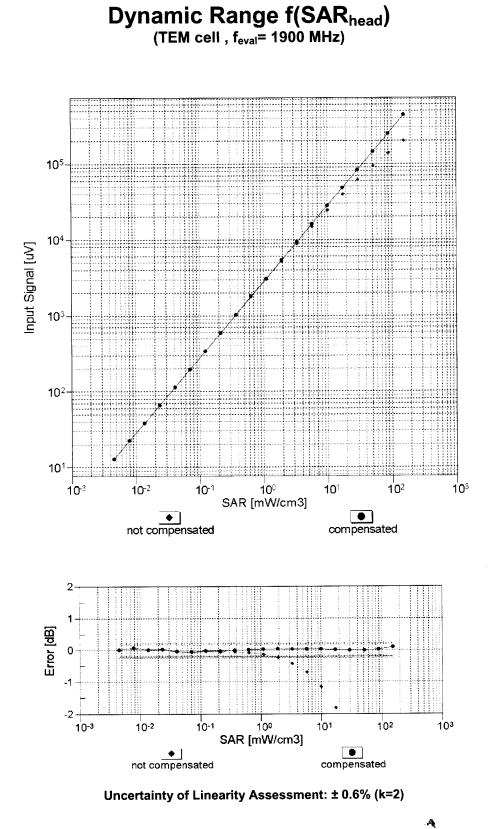
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

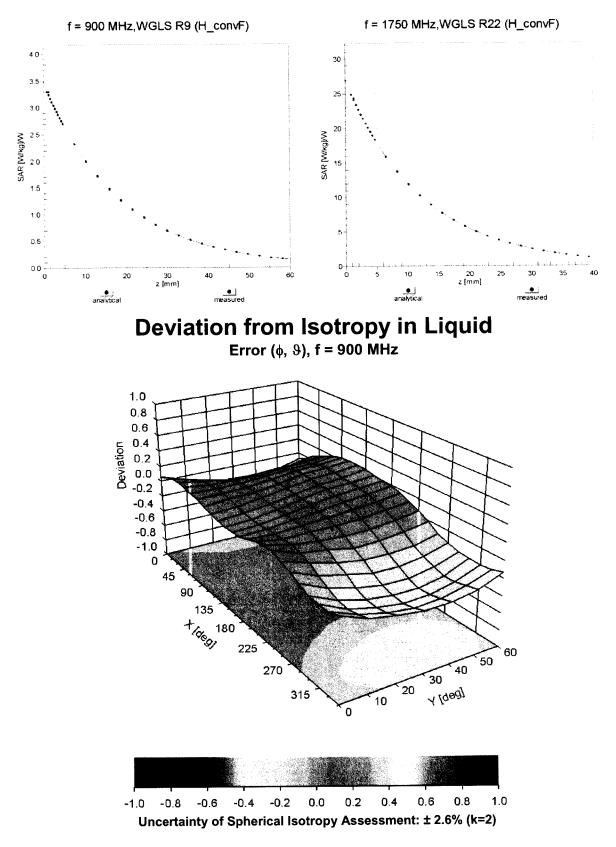

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

2500 MHz


Receiving Pattern (\phi), \vartheta = 0^{\circ}


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

1800 MHz

600 MHz

100 MHz

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	14.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Client RF Exposure Lab

Certificate No:	D750V3-1053	_Aug15
-----------------	-------------	--------

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object	D750V3 - SN: 1053						
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz						
Calibration date:	August 10, 2015						
The measurements and the uncer	tainties with confidence prediment of the closed laborator	onal standards, which realize the physical un robability are given on the following pages an y facility: environment temperature (22 ± 3)°C	d are part of the certificate.				
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15				
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15				
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15				
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16				
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16				
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15				
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15				
	l		_				
Secondary Standards	ID #	Check Date (in house)	Scheduled Check				
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16				
Network Analyzer HP 8753E	Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15						
	Name	Function	Signature				
Calibrated by:	Michael Weber	Laboratory Technician	H. Weber				
Approved by:	Katja Pokovic	Technical Manager	felly-				
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: August 12, 2015				

Certificate No: D750V3-1053_Aug15

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.03 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.25 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.3 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.48 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.59 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 0.4 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω - 2.5 jΩ
Return Loss	- 32.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.035 ns
	1.000 118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 08, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

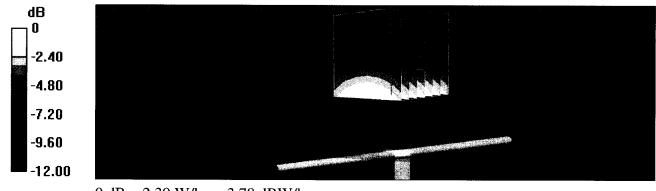
D750V3 SN: 1053 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/10/205	-27.5		54.4		-0.4	
8/9/2016	-25.9	-5.8	54.3	-0.1	-0.5	-0.1
			······································			
		D750V	3 SN: 1053 -	Body		
Date of Measurement	Return Loss (dB)	D750V ۵%	3 SN: 1053 - Impedance Real (Ω)	Body ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
			Impedance		· · ·	ΔΩ
Measurement	(dB)		Impedance Real (Ω)		Imaginary (jΩ)	

DASY5 Validation Report for Head TSL

Date: 10.08.2015

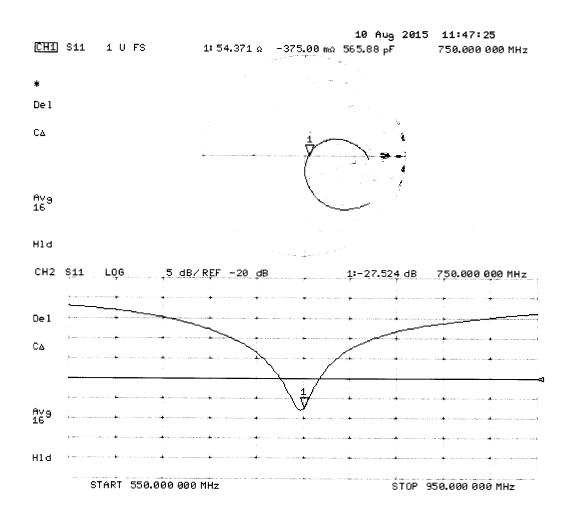
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1053


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 53.03 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.04 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.39 W/kg

0 dB = 2.39 W/kg = 3.78 dBW/kg

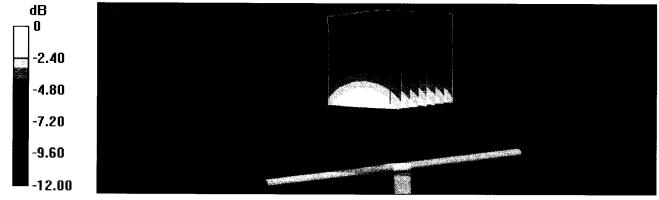
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.08.2015

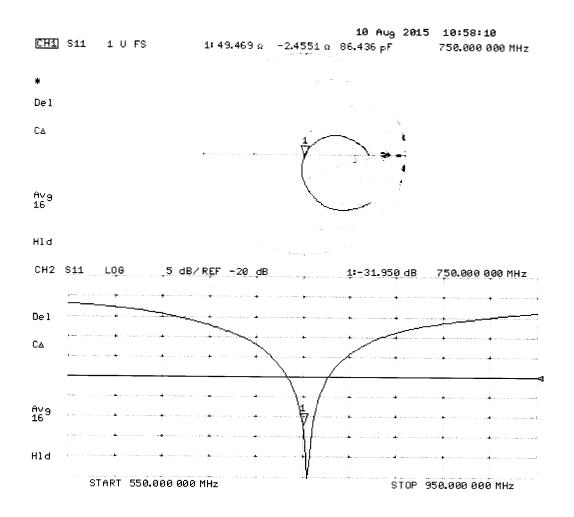
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1053


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 1$ S/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 52.22 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.55 W/kg

0 dB = 2.55 W/kg = 4.07 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Client RF Exposure Lab

Certificate No: D835V2-4d131_Aug15

Object	D835V2 - SN: 4d131			
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits ab	ove 700 MHz	
Calibration date:	August 10, 2015			
This calibration certificate docurr	nents the traceability to nati	ional standards, which realize the physical un	nits of measurements (SI).	
	ertainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.	
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%.	
	cted in the closed laborato		C and humidity < 70%.	
All calibrations have been condu	cted in the closed laborato		C and humidity < 70%. Scheduled Calibration	
Il calibrations have been conducation Equipment used (M& rimary Standards	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°(
Il calibrations have been condu alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A	cted in the closed laborato TE critical for calibration)	ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	Scheduled Calibration	
all calibrations have been conducation Equipment used (M& <u>trimary Standards</u> <u>tower meter EPM-442A</u> <u>tower sensor HP 8481A</u> <u>tower sensor HP 8481A</u>	cted in the closed laborato TE critical for calibration) ID # GB37480704	ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15	
all calibrations have been conducation Equipment used (M& trimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A deference 20 dB Attenuator	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	ry facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Scheduled Calibration Oct-15 Oct-15 Oct-15	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-15 (No. 217-02131)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16	
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	· · · · · · · · · · · · · · · · · · ·
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	· · · · · · · · · · · · · · · · · · ·
Frequency	835 MHz ± 1 MHz	<u> </u>

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m		
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.93 mho/m ± 6 %		
Head TSL temperature change during test	< 0.5 °C				

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.23 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.01 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m		
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	1.02 mho/m ± 6 %		
Body TSL temperature change during test	< 0.5 °C				

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω - 1.6 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 3.8 jΩ
Return Loss	- 26.8 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.394 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

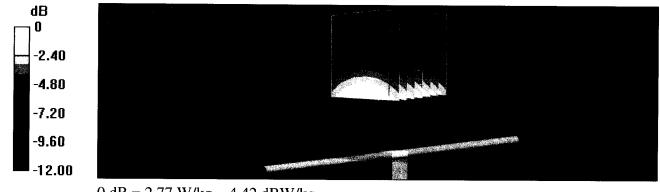
D835V2 SN: 4d131 - Head										
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ				
8/10/2015	-31.2		52.3		-1.6					
8/9/2016	-29.2	-6.4	51.3	-1.0	-1.8	-0.2				
0/3/2010			SN: 4d131	- Body						
			SN: 4d131	- Body						
Date of Measurement	Return Loss (dB)		SN: 4d131	- Body ΔΩ	Impedance Imaginary (jΩ)	ΔΩ				
Date of	Return Loss	D835V2	Impedance		Impedance Imaginary (jΩ) -3.8	ΔΩ				
Date of Measurement	Return Loss (dB)	D835V2	Impedance Real (Ω)		Imaginary (jΩ)	<u>ΔΩ</u> 0.0				

DASY5 Validation Report for Head TSL

Date: 10.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.93 S/m; ϵ_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

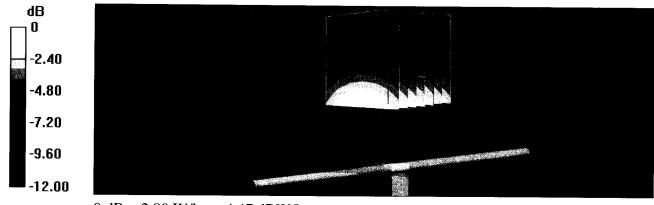
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.08.2015

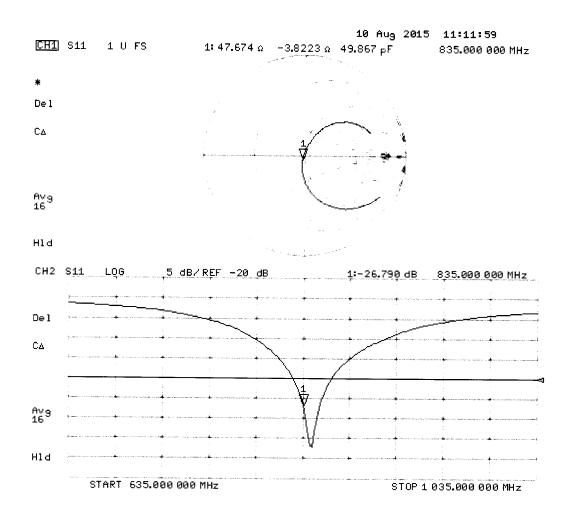
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 54.25 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.51 W/kg **SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg** Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

RF Exposure Lab

Client

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1750V2-1061_Aug15

C	AL	IE	BR	A'	TI	0	N	(C	E	R	Т	IF	10	T	E	

Object	D1750V2 - SN:10)61 . A state of the state of	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits above	700 MHz
Calibration date:	August 13, 2015		
		onal standards, which realize the physical units o	
The measurements and the uncer	tainties with confidence pr	robability are given on the following pages and ar	e part of the certificate.
All calibrations have been conduct	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C an	id humidity < 70%.
Calibration Equipment used (M&TI	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Charle Data (in house)	
RF generator R&S SMT-06	100005	Check Date (in house)	Scheduled Check
Network Analyzer HP 8753E	US37390585 S4206	04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	In house check: Oct-16 In house check: Oct-15
Network Analyzer The 0755E	0337390303 34200	18-OCI-01 (III house check Oci-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician 7	
Calibratos by.			> Chinese
Approved by:	Katja Pokovic	Technical Manager	Velle -
	and a second second Second second second Second second		
			Issued: August 13, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

Accreditation No.: SCS 0108

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

	<u> </u>	
DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω + 1.2 jΩ
Return Loss	- 37.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 0.8 jΩ
Return Loss	- 30.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.220 ns
,,, _,, _	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 15, 2010

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

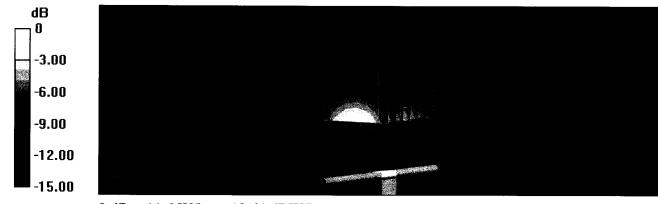
D1750V2 SN: 1061 - Head							
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ	
8/13/2015	-37.8		50.5		1.2		
8/12/2016	-39.4	4.2	49.2	-1.3	0.7	-0.5	
- 		D1750\	 /2 SN: 1061	- Body			
Date of Measurement	Return Loss (dB)	D1750\ Δ%	/2 SN: 1061 Impedance Real (Ω)	- Body ΔΩ	Impedance Imaginary (jΩ)	ΔΩ	
			Impedance			ΔΩ	

DASY5 Validation Report for Head TSL

Date: 13.08.2015

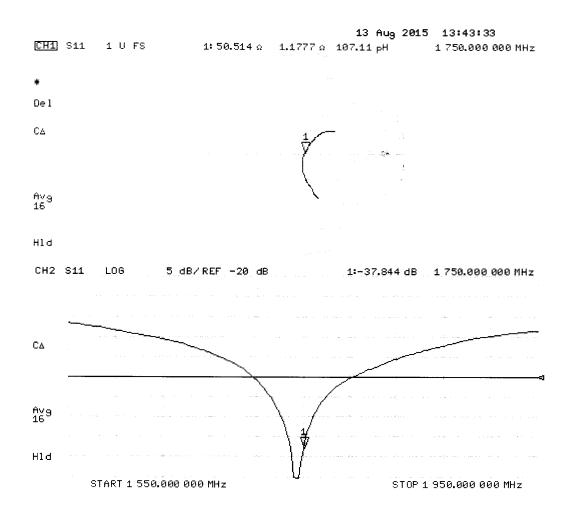
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.55 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.9 W/kg Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.6 W/kg = 10.64 dBW/kg

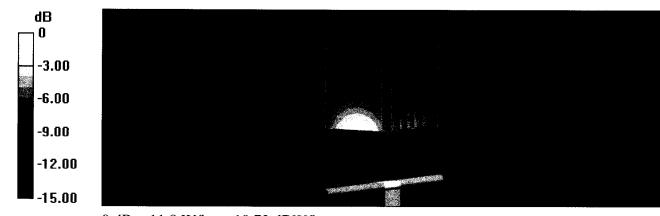
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2015

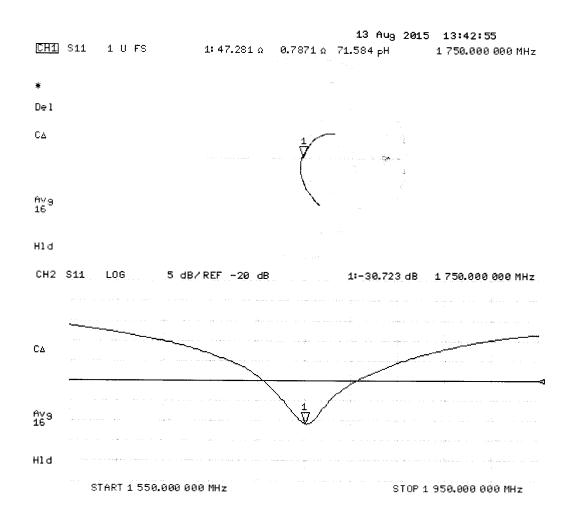
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 93.33 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.43 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

RF Exposure Lab

Client

Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swies Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d147 Aug15

CALIBRATION CERTIFICATE D1900V2 - SN:5d147 Object Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 13, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Scheduled Check Check Date (in house) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician

Approved by:

Issued: August 13, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ٠ connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	u
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	41.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 6.2 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 6.5 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.193 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D1900V2 SN: 5d147 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/13/2015	-23.5		53.1		6.2	
8/12/2016	-24.9	6.0	53.9	0.8	5.4	-0.8
· · · · · · · · · · · · · · · · · · ·		D1900V	2 SN: 5d147	- Body		
Date of Measurement	Return Loss (dB)	D1900V	2 SN: 5d147 Impedance Real (Ω)	- Body ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
	Return Loss		Impedance			ΔΩ
Measurement	Return Loss (dB)		Impedance Real (Ω)		Imaginary (jΩ)	ΔΩ 0.4

Certificate No: D1900V2-5d147 Aug15

Pane 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.08.2015

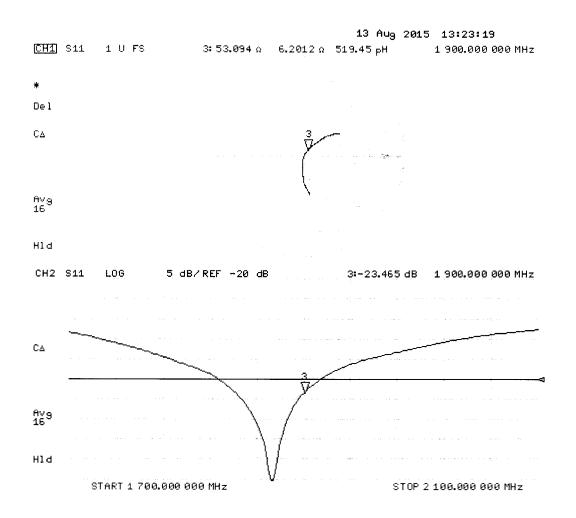
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.47 W/kg Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

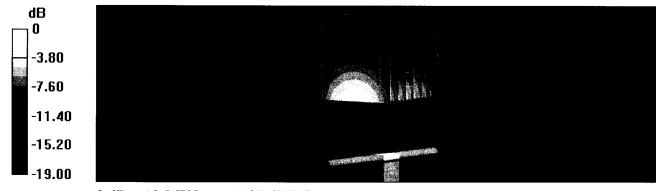
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2015

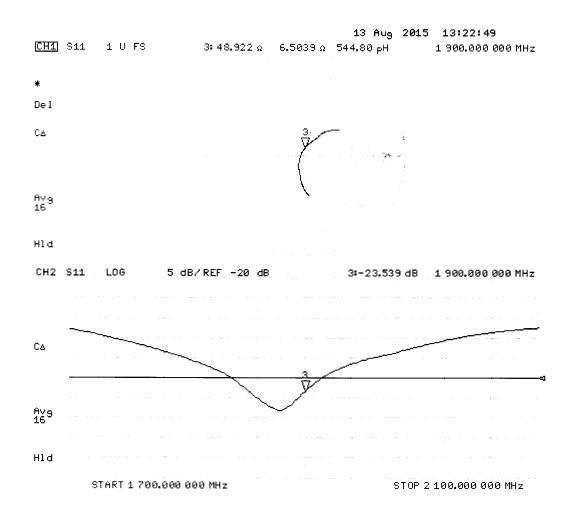
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.51 S/m; ϵ_r = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Client **RF Exposure Lab**

Certificate No: D2450V2-881_Aug15

CALIBRATION CERTIFICATE			
Object	D2450V2 - SN: 8	381	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	August 10, 2015		
The measurements and the uncer	tainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages and	d are part of the certificate.
All calibrations have been conduct	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)°C	c and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MULLES
Approved by:	Katja Pokovic	Technical Manager	Lelly-
			Issued: August 12, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-881_Aug15

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	- · · · · · · · · · · · · · · · · · · ·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.1 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.27 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω + 2.4 jΩ	
Return Loss	- 26.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9 Ω + 4.4 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 18, 2010

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

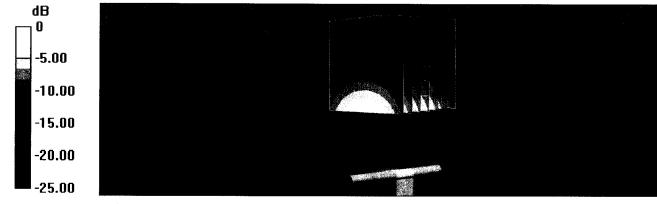
D2450V2 SN: 881 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/10/2015	-26.2		54.5		2.4	
8/9/2016	-25.4	-3.1	52.8	-1.7	2.9	0.5
	l	D2450	 V2 SN: 881 -	Body	1	
Date of Measurement	Return Loss (dB)	D2450 ۵%	Impedance	Body ΔΩ	Impedance	ΔΩ
	Return Loss (dB) -27.0			-	Impedance Imaginary (jΩ) 4.4	ΔΩ
Measurement	(dB)		Impedance Real (Ω)	-	Imaginary (jΩ)	<u>ΔΩ</u>

DASY5 Validation Report for Head TSL

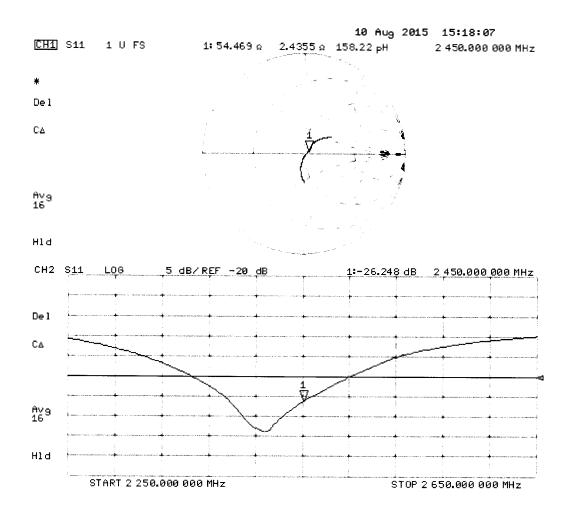
Date: 10.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 881


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.87 S/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 101.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.43 W/kg Maximum value of SAR (measured) = 18.1 W/kg

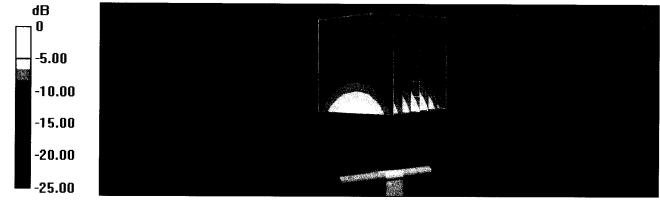
0 dB = 18.1 W/kg = 12.58 dBW/kg

DASY5 Validation Report for Body TSL

Date: 10.08.2015

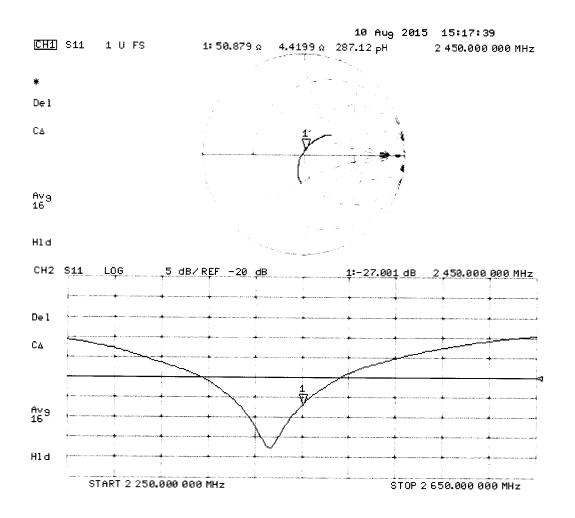
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 881


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.03 S/m; ϵ_r = 50.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.26 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.27 W/kg Maximum value of SAR (measured) = 17.7 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D2550V2-1003_Aug15

CALIBRATION (CERTIFICATI		
Object	D2550V2 - SN:	1003	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits at	oove 700 MHz
Calibration date:	August 10, 2015		
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical u probability are given on the following pages a ry facility: environment temperature (22 ± 3)	and are part of the certificate.
		Ty racinty, environment temperature (22 ± 3)	°C and numidity < 70%.
Calibration Equipment used (M&T	FE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
Calibrated by:	Name Michael Weber	Function Laboratory Technician	Signature M. Webes
Approved by:	Katja Pokovic	Technical Manager	Alle
			Issued: August 12, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	2.14 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 1.3 jΩ
Return Loss	- 37.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 1.2 jΩ
Return Loss	- 29.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 01, 2010

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D2550V2 SN: 1003 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/10/2015	-37.2		49.6		-1.3	
8/9/2016	-35.9	-3.5	48.2	-1.4	-1.6	-0.3
D2550V2 SN: 1003 - Body Date of Return Loss Impedance Impedance						
Measurement	(dB)	Δ%	(Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/10/2015	1	Δ%	1 . 1	ΔΩ		ΔΩ
	(dB)	Δ%	(Ω)	ΔΩ -1.7	Imaginary (jΩ)	<u>ΔΩ</u> -0.6

Certificate No: D2550V2-1003 Aug 15

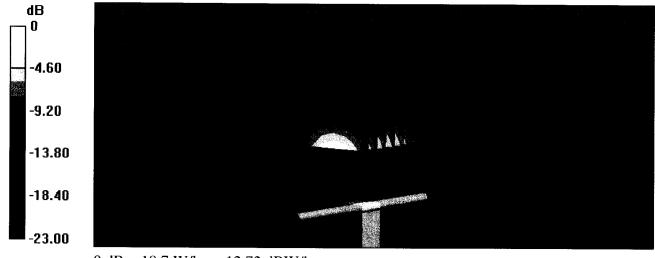
Page 4 of

DASY5 Validation Report for Head TSL

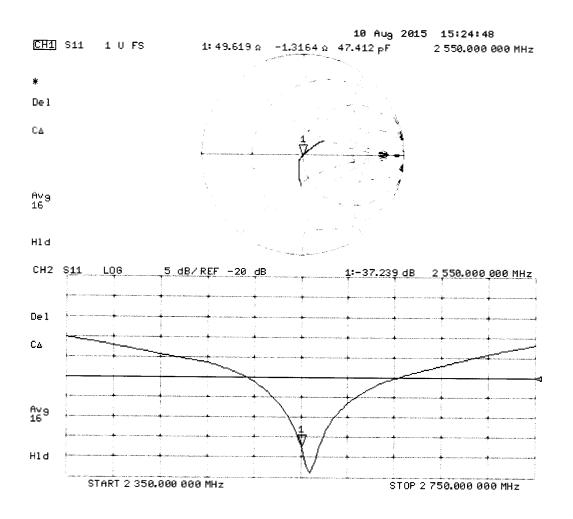
Date: 10.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1003


Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; σ = 1.95 S/m; ϵ_r = 40.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.43 W/kg Maximum value of SAR (measured) = 18.7 W/kg

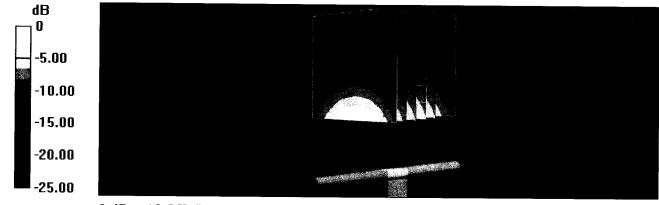
0 dB = 18.7 W/kg = 12.72 dBW/kg

DASY5 Validation Report for Body TSL

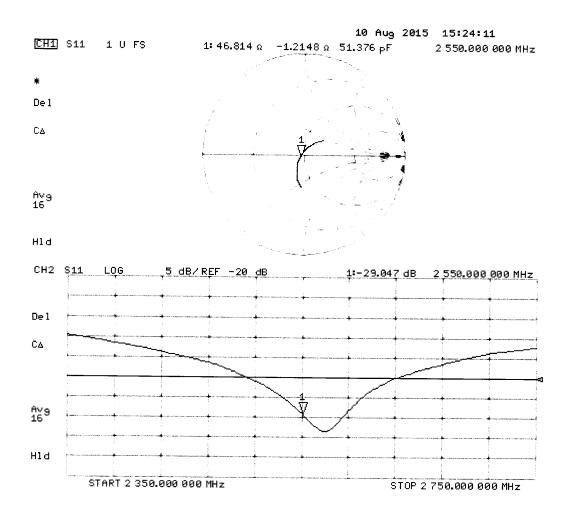
Date: 10.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1003


Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; σ = 2.14 S/m; ϵ_r = 50.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.2, 4.2, 4.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.70 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.38 W/kg Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 18.5 W/kg = 12.67 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D5GHzV2-1119_Aug15

CALIBRATION (CERTIFICAT	E		
Object	D5GHzV2 - SN: 1119			
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	edure for dipole validation kits	between 3-6 GHz	
Calibration date:	August 11, 2015			
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physic probability are given on the following page ry facility: environment temperature (22 :	es and are part of the certificate.	
Primary Standards	ID #	Cal Date (Certificate No.)		
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Scheduled Calibration	
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15	
Power sensor HP 8481A	MY41092317	•	Oct-15	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Oct-14 (No. 217-02021)	Oct-15	
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02131)	Mar-16	
Reference Probe EX3DV4	SN: 3503	01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-3503_Dec14)	Mar-16	
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Dec-15 Aug-15	
_			Aug-15	
Secondary Standards	ID #	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15	
	Name	Function	Signature	
Calibrated by:	Israe Elnaouq	Laboratory Technician		
			Mon Charles	
Approved by:	Katja Pokovic	Technical Manager	Signature	
	the reproduced and the	full without written approval of the labora	Issued: August 11, 2015	

Certificate No: D5GHzV2-1119_Aug15

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

•

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.3 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.31 W/kg

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	5.43 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.56 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.79 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.82 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm 3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	82.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D5GHzV2 SN: 1119 - Head							
Date of Measurement	Frequency	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/11/2015		-21.5		51.6		-8.4	
8/10/2016	5200 MHz	-21.3	-0.9	51.2	-0.4	-8.7	-0.3
8/11/2015		-27.8		51.4		-3.9	
8/10/2016	5300 MHz	-26.4	-5.0	49.8	-1.6	-4.8	-0.9
8/11/2015		-25.8		54.2		-3.4	
8/10/2016	5500 MHz	-24.3	-5.8	52.6	-1.6	-3.9	-0.5
8/11/2015		-24.3		56.3		-1.5	
8/10/2016	5600 MHz	-23.9	-1.6	55.0	-1.3	-2.1	-0.6
8/11/2015		-23.4		56.6		-2.8	
8/10/2016	5800 MHz	-24.3	3.8	54.9	-1.7	-4.1	-1.3
· · · · · · · · · · · · · · · · · · ·		D5GH	zV2 SN	l: 1119 - Body	,		
Date of		Return Loss		Impedance		Impedance	
Measurement	Frequency	(dB)	Δ%	Real (Ω)	ΔΩ	Imaginary (jΩ)	ΔΩ
8/11/2015		-22.8		51.6		-7.2	····
8/10/2016	5200 MHz	-21.5	-5.7	51.2	-0.4	-7.9	-0.7
8/11/2015		-30.8		51.1		-2.7	
8/10/2016	5300 MHz	-29.6	-3.9	51.3	0.2	-3.2	-0.5
8/11/2015		-27.4		54.3		-1.3	
8/10/2016	5500 MHz	-26.3	-4.0	53.3	-1.0	-2.0	-0.7
8/11/2015		-24.4		56.4		-0.1	
8/10/2016	5600 MHz	-23.6	-3.3	55.9	-0.5	-0.9	-0.8
8/11/2015		-23.1		57.5		-0.9	
0/10/10010	5000 M						

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.6 Ω - 8.4 jΩ
Return Loss	- 21.5 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	51.4 Ω - 3.9 jΩ
Return Loss	- 27.8 dB

Antenna Parameters with Head TSL at 5500 MHz

-

Impedance, transformed to feed point	54.2 Ω - 3.4 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.3 Ω - 1.5 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.6 Ω - 2.8 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.6 Ω - 7.2 jΩ
Return Loss	- 22.8 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	51.1 Ω - 2.7 jΩ
Return Loss	- 30.8 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	54.3 Ω - 1.3 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.4 Ω - 0.1 jΩ
Return Loss	- 24.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	57.5 Ω - 0.9 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns
	1.200 TIS

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

Date: 10.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.53 S/m; ϵ_r = 35.5; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.63 S/m; ϵ_r = 35.4; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.82 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.93 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.14 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2014, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12.2014, ConvF(5.12, 5.12, 5.12); Calibrated: 30.12.2014, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2014, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.84 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 18.6 W/kg

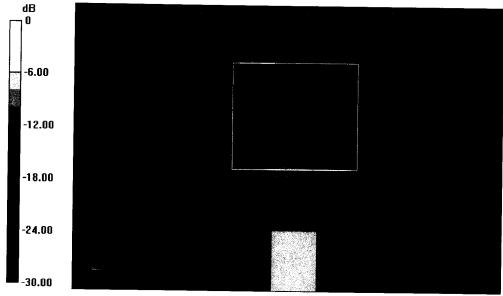
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.35 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.46 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.30 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 33.6 W/kg SAR(1 g) = 8.5 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

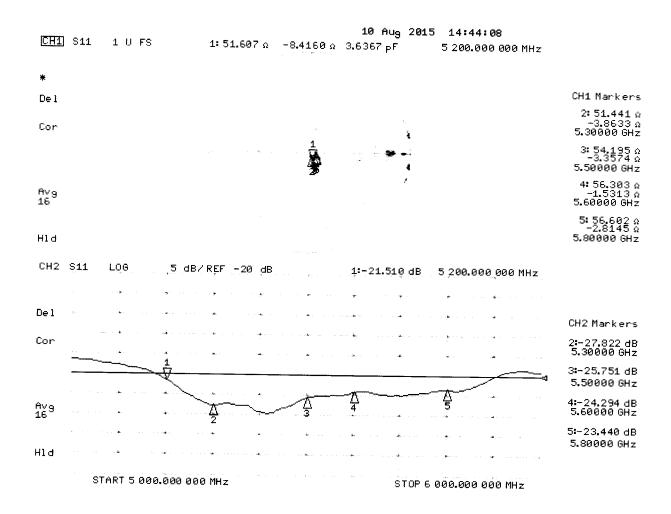
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 65.73 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.46 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.40 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 33.5 W/kg


SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg

Impedance Measurement Plot for Head TSL

Date: 11.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

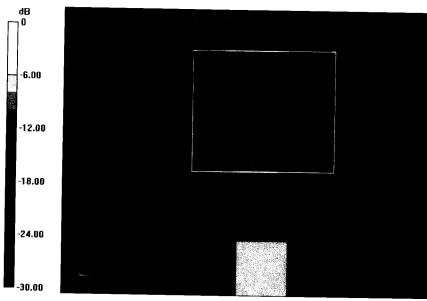
Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.43 S/m; ε_r = 47.9; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 5.56 S/m; ε_r = 47.7; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.82 S/m; ε_r = 47.3; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.95 S/m; ε_r = 47.2; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.23 S/m; ε_r = 46.9; ρ = 1000 kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30.12.2014, ConvF(4.78, 4.78, 4.78); Calibrated: 30.12.2014, ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014, ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2014, ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

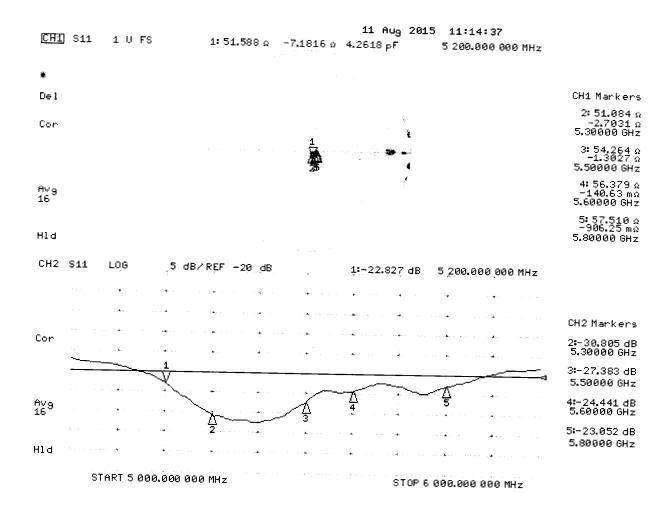
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.11 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.1 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.89 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.26 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 35.5 W/kg SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.24 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 35.5 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.25 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 57.15 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 19.6 W/kg

0 dB = 18.1 W/kg = 12.58 dBW/kg

Impedance Measurement Plot for Body TSL

Appendix F – Phantom Calibration Data Sheets

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	Oval Flat Phantom ELI 4.0	
Type No	QD OVA 001 B	
Series No	1003 and higher	
Manufacturer	Untersee Composites	
	Knebelstrasse 8	
	CH-8268 Mannenbach, Switzerland	

Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

Test	Requirement	Details	Units tested
Material	Compliant with the standard	Bottom plate:	all
thickness	requirements	2.0mm +/- 0.2mm	
Material	Dielectric parameters for required	< 6 GHz: Rel. permittivity = 4	Material
parameters	frequencies	+/-1, Loss tangent ≤ 0.05	sample
Material	The material has been tested to be	DGBE based simulating	Equivalent
resistivity	compatible with the liquids defined in	liquids.	phantoms,
	the standards if handled and cleaned	Observe Technical Note for	Material
	according to the instructions.	material compatibility.	sample
Shape	Thickness of bottom material,	Bottom elliptical 600 x 400 mm	Prototypes,
	Internal dimensions,	Depth 190 mm,	Sample
	Sagging	Shape is within tolerance for	testing
	compatible with standards from	filling height up to 155 mm,	
	minimum frequency	Eventual sagging is reduced or	
1		eliminated by support via DUT	

Standards

- CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices – Human models, Instrumentation and Procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
- [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT. S p a a g

Doc No 881 - QD OVA 001 B - D

Page 1 (1)