
Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u>

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

Page: 6/13

6.3 <u>MECHANICAL DIMENSIONS</u>

Frequency MHz	equency MHz L mm		h m	ım	d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	86.2 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	51.79	30.4 ±1 %.	30.69	3.6 ±1 %.	3.60
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	-		-		-	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

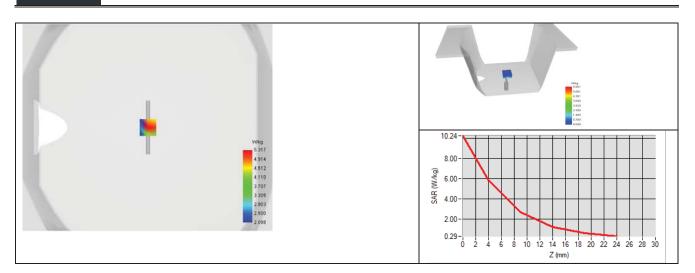
7.1 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative permittivity (ϵ_r ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	
1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %	38.9	1.80 ±10 %	1.79
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3300	38.2 ±10 %		2.71 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	
3700	37.7 ±10 %		3.12 ±10 %	
3900	37.5 ±10 %		3.32 ±10 %	
4200	37.1 ±10 %		3.63 ±10 %	
4600	36.7 ±10 %		4.04 ±10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

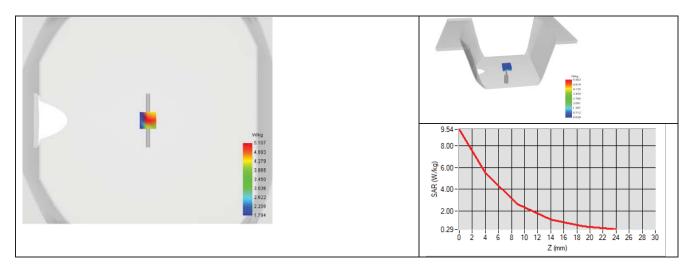


Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 38.9 sigma : 1.79
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR	1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.76 (5.38)	24	24.32 (2.43)
2600	55.3		24.6	
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	

Page: 9/13

Page: 10/13


7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ɛr')		Conductiv	i ty (σ) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	
2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %	52.7	1.95 ±10 %	1.94
2600	52.5 ±10 %		2.16 ±10 %	
3000	52.0 ±10 %		2.73 ±10 %	
3300	51.6 ±10 %		3.08 ±10 %	
3500	51.3 ±10 %		3.31 ±10 %	
3700	51.0 ±10 %		3.55 ±10 %	
3900	50.8 ±10 %		3.78 ±10 %	
4200	50.4 ±10 %		4.13 ±10 %	
4600	49.8 ±10 %		4.60 ±10 %	
4900	49.4 ±10 %		4.95 ±10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 52.7 sigma : 1.94
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	50.33 (5.03)	23.38 (2.34)

LIST OF EQUIPMENT 8

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025	
Reference Probe	MVG	SN 41/18 EPGO333	10/2022	10/2023	
Multimeter	Keithley 2000	1160271	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

SAR Reference Dipole Calibration Report

Ref : ACR.200.3.24.BES.B

Cancel and replace the report ACR.200.3.24.BES.A

WALTEK TESTING GROUP (SHENZHEN) CO., LTD

1/F., ROOM 101, BUILDING 1, HONGWEI INDUSTRIAL PARK, LIUXIAN 2ND ROAD, BLOCK 70 BAO'AN DISTRICT, SHENZHEN, GUANGDONG , CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2600 MHZ SERIAL NO.: SN 28/21 DIP 2G600-590

> Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 07/11/2024

Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	7/11/2024	JS
Checked by :	Jérôme Luc	Technical Manager	7/11/2024	JS
Approved by :	Yann Toutain	Laboratory Director	7/15/2024	Gann TOUTAAN

^{2024.07.11} 15:51:25 +01'05'

	Customer Name
Distribution :	Waltek Testing Group (Shenzhen) Co., Ltd

Issue	Name	Date	Modifications
А	Jérôme Luc	7/11/2024	Initial release
В	Jérôme Luc	7/12/2024	Change customer name/address

TABLE OF CONTENTS

Intro	oduction4	
Dev	ice Under Test4	
Proc	luct Description4	
3.1	General Information	4
Mea	surement Method	
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
Mea	surement Uncertainty	
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
Cali	bration Measurement Results	
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	7
Vali	dation measurement7	
7.1	Head Liquid Measurement	8
7.2	SAR Measurement Result With Head Liquid	8
7.3	Body Liquid Measurement	11
7.4	SAR Measurement Result With Body Liquid	12
List	of Equipment13	
	Dev Prod 3.1 Mea 4.1 4.2 Mea 5.1 5.2 5.3 Cali 6.1 6.2 6.3 Vali 7.1 7.2 7.3 7.4	Measurement Method .5 4.1 Return Loss Requirements 4.2 Mechanical Requirements Measurement Uncertainty .5 5.1 Return Loss 5.2 Dimension Measurement 5.3 Validation Measurement Results Calibration Measurement Results .6 6.1 Return Loss and Impedance In Head Liquid 6.2 Return Loss and Impedance In Body Liquid 6.3 Mechanical Dimensions Validation measurement .7 7.1 Head Liquid Measurement 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement

Page: 3/13

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE		
Manufacturer	MVG		
Model	SID2600		
Serial Number	SN 28/21 DIP 2G600-590		
Product Condition (new / used)	New		

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

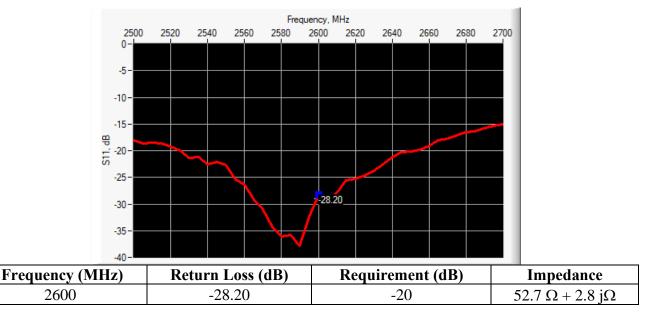
Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 **DIMENSION MEASUREMENT**

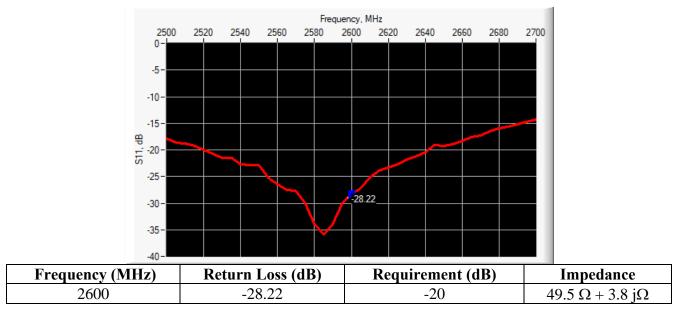
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT


The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13


Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

Page: 6/13

6.3 <u>MECHANICAL DIMENSIONS</u>

Frequency MHz	requency MHz L mm		Lmm hmm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.	48.79	28.8 ±1 %.	28.60	3.6 ±1 %.	3.61
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	-		-		-	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

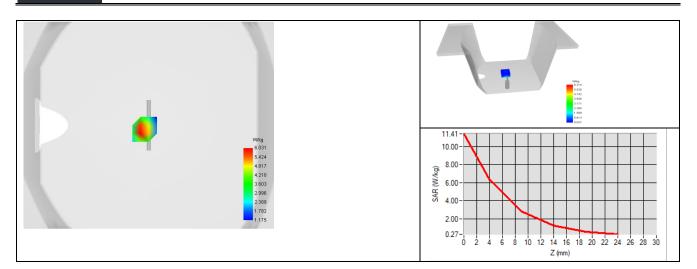
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

7.1 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative permittivity (ϵ_r ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	
1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %		1.80 ±10 %	
2600	39.0 ±10 %	41.5	1.96 ±10 %	2.03
3000	38.5 ±10 %		2.40 ±10 %	
3300	38.2 ±10 %		2.71 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	
3700	37.7 ±10 %		3.12 ±10 %	
3900	37.5 ±10 %		3.32 ±10 %	
4200	37.1 ±10 %		3.63 ±10 %	
4600	36.7 ±10 %		4.04 ±10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



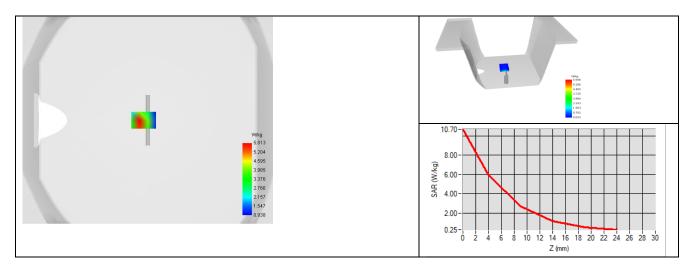
Software	OPENSAR V5		
Phantom	SN 13/09 SAM68		
Probe	SN 41/18 EPGO333		
Liquid	Head Liquid Values: eps': 41.5 sigma : 2.03		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm		
Frequency	2600 MHz		
Input power	20 dBm		
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

Frequency MHz 1 g SAR (W/k		(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3	56.81 (5.68)	24.6	24.63 (2.46)
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	

Page: 9/13

Page: 10/13

7.3 **BODY LIQUID MEASUREMENT**


Frequency MHz	Relative permittivity (ϵ_r')		Conductivi	i ty (σ) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	
2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %		1.95 ±10 %	
2600	52.5 ±10 %	52.7	2.16 ±10 %	2.36
3000	52.0 ±10 %		2.73 ±10 %	
3300	51.6 ±10 %		3.08 ±10 %	
3500	51.3 ±10 %		3.31 ±10 %	
3700	51.0 ±10 %		3.55 ±10 %	
3900	50.8 ±10 %		3.78 ±10 %	
4200	50.4 ±10 %		4.13 ±10 %	
4600	49.8 ±10 %		4.60 ±10 %	
4900	49.4 ±10 %		4.95 ±10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

Page: 11/13

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 52.7 sigma : 2.36
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	' 1 g SAR (W/kg/W) 10 g SAR (W/kg/W)	
	measured	measured
2600	55.79 (5.58)	23.42 (2.34)

LIST OF EQUIPMENT 8

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025
Reference Probe	MVG	SN 41/18 EPGO333	10/2023	10/2024
Multimeter	Keithley 2000	1160271	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2024	06/2027
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027

SAR Reference Dipole Calibration Report

Ref : ACR.200.5.24.BES.B

Cancel and replace the report ACR.200.5.24.BES.A

WALTEK TESTING GROUP (SHENZHEN) CO., LTD

1/F., ROOM 101, BUILDING 1, HONGWEI INDUSTRIAL PARK, LIUXIAN 2ND ROAD, BLOCK 70 BAO'AN DISTRICT, SHENZHEN, GUANGDONG , CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 3500 MHZ

SERIAL NO.: SN 28/21 DIP 3G500-592

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 07/11/2024

Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	7/11/2024	JS
Checked by :	Jérôme Luc	Technical Manager	7/11/2024	Jes
Approved by :	Yann Toutain	Laboratory Director	7/11/2024	Gann TOUTAAN
				0

^{2024.07.11} 15:51:25 +01'05'

	Customer Name
Distribution :	Waltek Testing Group (Shenzhen) Co., Ltd

Issue	Name	Date	Modifications
А	Jérôme Luc	7/11/2024	Initial release

TABLE OF CONTENTS

Intro	oduction4	
Dev	ice Under Test4	
Proc	luct Description4	
3.1	General Information	4
Mea	surement Method	
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
Mea	surement Uncertainty	
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
Cali	bration Measurement Results	
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	7
Vali	dation measurement7	
7.1	Head Liquid Measurement	8
7.2	SAR Measurement Result With Head Liquid	8
7.3	Body Liquid Measurement	11
7.4	SAR Measurement Result With Body Liquid	12
List	of Equipment13	
	Dev Prod 3.1 Mea 4.1 4.2 Mea 5.1 5.2 5.3 Cali 6.1 6.2 6.3 Vali 7.1 7.2 7.3 7.4	Measurement Method .5 4.1 Return Loss Requirements 4.2 Mechanical Requirements Measurement Uncertainty .5 5.1 Return Loss 5.2 Dimension Measurement 5.3 Validation Measurement Results Calibration Measurement Results .6 6.1 Return Loss and Impedance In Head Liquid 6.2 Return Loss and Impedance In Body Liquid 6.3 Mechanical Dimensions Validation measurement .7 7.1 Head Liquid Measurement 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vH This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 3500 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model SID3500		
Serial Number	SN 28/21 DIP 3G500-592	
Product Condition (new / used)	New	

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

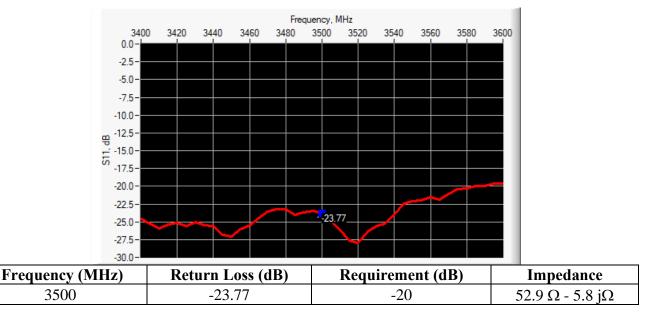
Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.08 LIN		

5.2 **DIMENSION MEASUREMENT**

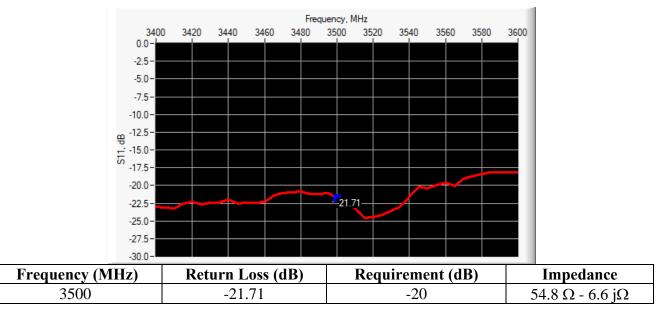
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT


The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13


Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

Page: 6/13

6.3 <u>MECHANICAL DIMENSIONS</u>

Frequency MHz	Ln	nm	h m	ım	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	-		-		-	
3500	37.0±1 %.	37.05	26.4 ±1 %.	26.19	3.6 ±1 %.	3.59
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

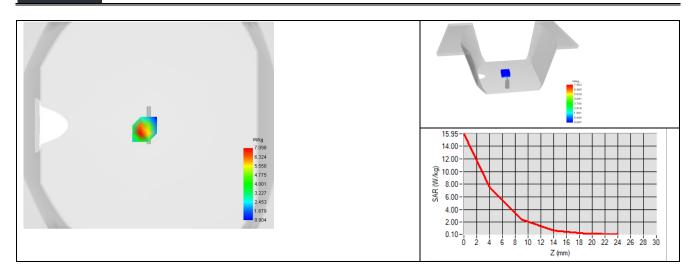
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

7.1 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative permittivity (ϵ_r ')		Conductiv	i ty (σ) S/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	
1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %		1.80 ±10 %	
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3300	38.2 ±10 %		2.71 ±10 %	
3500	37.9 ±10 %	36.5	2.91 ±10 %	3.07
3700	37.7 ±10 %		3.12 ±10 %	
3900	37.5 ±10 %		3.32 ±10 %	
4200	37.1 ±10 %		3.63 ±10 %	
4600	36.7 ±10 %		4.04 ±10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



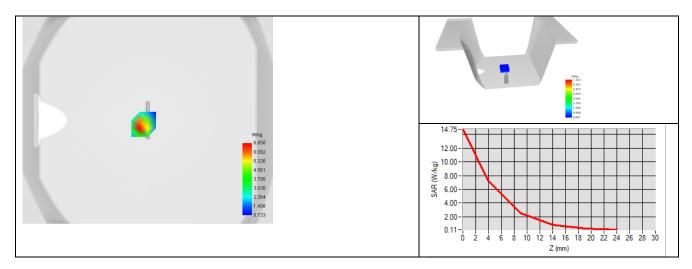
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 36.5 sigma : 3.07
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=4mm
Frequency	3500 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)			(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured		
300	2.85		1.94			
450	4.58		3.06			
750	8.49		5.55			
835	9.56		6.22			
900	10.9		6.99			
1450	29		16			
1500	30.5		16.8			
1640	34.2		18.4			
1750	36.4	19.3				
1800	38.4	20.1				
1900	39.7	20.5				
1950	40.5	20.9				
2000	41.1	21.1				
2100	43.6	21.9				
2300	48.7	23.3				
2450	52.4	24				
2600	55.3	24.6				
3000	63.8	25.7				
3300	-	-				
3500	67.1	68.86 (6.89)	25	25.61 (2.56)		
3700	67.4		24.2			
3900	-	-				
4200	-	-				
4600	-		-			
4900	-		-			

Page: 9/13

Page: 10/13

7.3 **BODY LIQUID MEASUREMENT**


Frequency MHz	Relative permittivity (ϵ_r')		Conductiv	i ty (σ) S/m
	required	measured	required	measured
150	61.9 ±10 %	0.80 ±10 %		
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %	1.52 ±10 %		
2100	53.2 ±10 %	1.62 ±10 %		
2300	52.9 ±10 %	1.81 ±10 %		
2450	52.7 ±10 %	1.95 ±10 %		
2600	52.5 ±10 %	2.16 ±10 %		
3000	52.0 ±10 %		2.73 ±10 %	
3300	51.6 ±10 %	3.08 ±10 %		
3500	51.3 ±10 %	48.6	3.31 ±10 %	3.29
3700	51.0 ±10 %		3.55 ±10 %	
3900	50.8 ±10 %		3.78 ±10 %	
4200	50.4 ±10 %	4.13 ±10 %		
4600	49.8 ±10 %	4.60 ±10 %		
4900	49.4 ±10 %	4.95 ±10 %		
5200	49.0 ±10 %	5.30 ±10 %		
5300	48.9 ±10 %	5.42 ±10 %		
5400	48.7 ±10 %	5.53 ±10 %		
5500	48.6 ±10 %	5.65 ±10 %		
5600	48.5 ±10 %	5.77 ±10 %		
5800	48.2 ±10 %	6.00 ±10 %		

Page: 11/13

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 48.6 sigma : 3.29
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=4mm
Frequency	3500 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
3500	64.68 (6.47)	24.43 (2.44)

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vH

LIST OF EQUIPMENT 8

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025	
Reference Probe	MVG	SN 41/18 EPGO333	10/2023	10/2024	
Multimeter	Keithley 2000	1160271	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2024	06/2027	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027	

SAR Reference Dipole Calibration Report

Ref : ACR.200.6.24.BES.B

Cancel and replace the report ACR.200.6.24.BES.A

WALTEK TESTING GROUP (SHENZHEN) CO., LTD

1/F., ROOM 101, BUILDING 1, HONGWEI INDUSTRIAL PARK, LIUXIAN 2ND ROAD, BLOCK 70 BAO'AN DISTRICT, SHENZHEN, GUANGDONG , CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 3700 MHZ SERIAL NO.: SN 28/21 DIP 3G700-593

> Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 07/11/2024

Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	7/11/2024	JS
Checked by :	Jérôme Luc	Technical Manager	7/11/2024	JES
Approved by :	Yann Toutain	Laboratory Director	7/11/2024	Gann TOUTAAN

^{2024.07.11} 15:51:25 +01'05'

	Customer Name
Distribution :	Waltek Testing Group (Shenzhen) Co., Ltd

Issue	Name	Date	Modifications
А	Jérôme Luc	7/11/2024	Initial release

TABLE OF CONTENTS

Intro	oduction4	
Dev	ice Under Test4	
Proc	luct Description4	
3.1	General Information	4
Mea	surement Method	
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
Mea	surement Uncertainty	
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
Cali	bration Measurement Results	
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	7
Vali	dation measurement7	
7.1	Head Liquid Measurement	8
7.2	SAR Measurement Result With Head Liquid	8
7.3	Body Liquid Measurement	11
7.4	SAR Measurement Result With Body Liquid	12
List	of Equipment13	
	Dev Prod 3.1 Mea 4.1 4.2 Mea 5.1 5.2 5.3 Cali 6.1 6.2 6.3 Vali 7.1 7.2 7.3 7.4	Measurement Method .5 4.1 Return Loss Requirements 4.2 Mechanical Requirements Measurement Uncertainty .5 5.1 Return Loss 5.2 Dimension Measurement 5.3 Validation Measurement Results Calibration Measurement Results .6 6.1 Return Loss and Impedance In Head Liquid 6.2 Return Loss and Impedance In Body Liquid 6.3 Mechanical Dimensions Validation measurement .7 7.1 Head Liquid Measurement 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vH This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 3700 MHz REFERENCE DIPOLE		
Manufacturer	MVG		
Model	SID3700		
Serial Number SN 28/21 DIP 3G700-593			
Product Condition (new / used) New			

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 **DIMENSION MEASUREMENT**

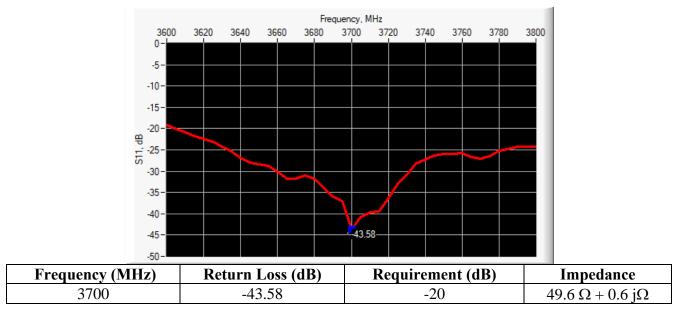
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13


Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

Page: 6/13

6.3 MECHANICAL DIMENSIONS

Frequency MHz		nm	h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	-		-		-	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.	34.70	26.4 ±1 %.	26.25	3.6 ±1 %.	3.61
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vH

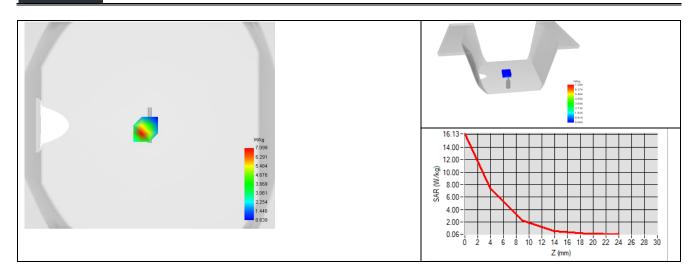
7.1 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative permittivity (ϵ_r ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	
1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %		1.80 ±10 %	
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3300	38.2 ±10 %		2.71 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	
3700	37.7 ±10 %	35.2	3.12 ±10 %	3.35
3900	37.5 ±10 %		3.32 ±10 %	
4200	37.1 ±10 %		3.63 ±10 %	
4600	36.7 ±10 %		4.04 ±10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vH



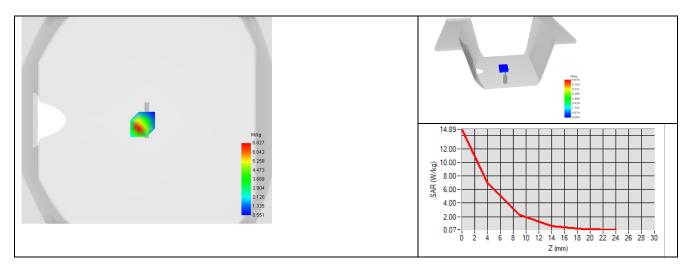
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 35.2 sigma : 3.35
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=4mm
Frequency	3700 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4	67.40 (6.74)	24.2	24.21 (2.42)
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	

Page: 9/13

Page: 10/13

7.3 **BODY LIQUID MEASUREMENT**


Frequency MHz	Relative permittivity (ϵ_r')		Conductivi	i ty (σ) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	
2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %		1.95 ±10 %	
2600	52.5 ±10 %		2.16 ±10 %	
3000	52.0 ±10 %		2.73 ±10 %	
3300	51.6 ±10 %		3.08 ±10 %	
3500	51.3 ±10 %		3.31 ±10 %	
3700	51.0 ±10 %	47.1	3.55 ±10 %	3.62
3900	50.8 ±10 %		3.78 ±10 %	
4200	50.4 ±10 %		4.13 ±10 %	
4600	49.8 ±10 %		4.60 ±10 %	
4900	49.4 ±10 %		4.95 ±10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

Page: 11/13

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 47.1 sigma : 3.62
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=4mm
Frequency	3700 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
3700	63.34 (6.33)	23.05 (2.30)

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vH

LIST OF EQUIPMENT 8

Equipment Summary Sheet							
I Identification No.		Current Calibration Date	e Next Calibration Date				
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025			
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027			
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025			
Reference Probe	MVG	SN 41/18 EPGO333	10/2023	10/2024			
Multimeter	Keithley 2000	1160271	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2024	06/2027			
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027			

SAR Reference Dipole Calibration Report

Ref : ACR.202.4.24.BES.B

Cancel and replace the report ACR.202.4.24.BES.A

WALTEK TESTING GROUP (SHENZHEN) CO., LTD

1/F., ROOM 101, BUILDING 1, HONGWEI INDUSTRIAL PARK, LIUXIAN 2ND ROAD, BLOCK 70 BAO'AN DISTRICT, SHENZHEN, GUANGDONG , CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 5200-5800 MHZ SERIAL NO.: SN 02/21 DIP 5G000-543

> Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 07/11/2024

Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

	Name Function		Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	7/11/2024	JES
Checked by :	Jérôme Luc	Technical Manager	7/11/2024	Jes
Approved by :	Yann Toutain	Laboratory Director	7/11/2024	Gann TOUTAAN
				2024 07 11

2024.07.11 15:51:25 +01'05'

	Customer Name
Distribution :	Waltek Testing Group (Shenzhen) Co., Ltd

Issue	Name	Date	Modifications
А	Jérôme Luc	7/11/2024	Initial release

Page: 2/14

TABLE OF CONTENTS

Intro	oduction	
Dev	ice Under Test4	
Proc	luct Description4	
3.1	General Information	4
Mea	surement Method	
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
Mea	surement Uncertainty	
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
Cali	bration Measurement Results	
6.1	Return Loss In Head Liquid	6
6.2	Return Loss In Body Liquid	6
6.3	Mechanical Dimensions	7
Vali	dation measurement7	
7.1	Head Liquid Measurement	7
7.2	SAR Measurement Result With Head Liquid	8
7.3	Body Liquid Measurement	11
7.4	SAR Measurement Result With Body Liquid	11
List	of Equipment14	
	Dev: Prod 3.1 Mea 4.1 4.2 Mea 5.1 5.2 5.3 Cali 6.1 6.2 6.3 Vali 7.1 7.2 7.3 7.4	Measurement Method .5 4.1 Return Loss Requirements 4.2 Mechanical Requirements Measurement Uncertainty .5 5.1 Return Loss 5.2 Dimension Measurement 5.3 Validation Measurement Results Calibration Measurement Results .6 6.1 Return Loss In Head Liquid 6.2 Return Loss In Body Liquid 6.3 Mechanical Dimensions Validation measurement .7 7.1 Head Liquid Measurement 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole5GHz vB This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 **DEVICE UNDER TEST**

	Device Under Test
Device Type	COMOSAR 5200-5800 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID5000
Serial Number	SN 02/21 DIP 5G000-543
Product Condition (new / used)	New

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/14

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss				
400-6000MHz	0.08 LIN				

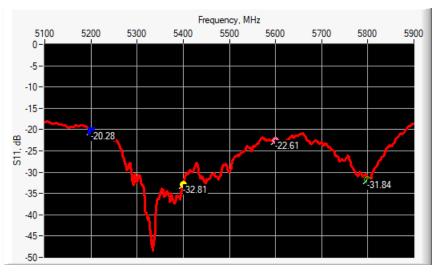
5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

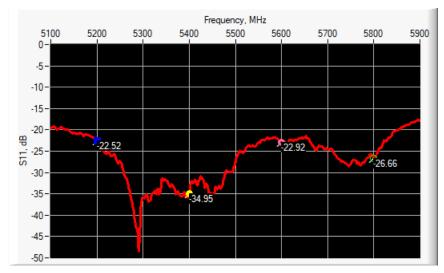
Length (mm)	Expanded Uncertainty on Length		
0 - 300	0.20 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS IN HEAD LIQUID</u>

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-20.28	-20	50.15 Ω - 9.64 jΩ
5400	-32.81	-20	52.29 Ω - 0.09 jΩ
5600	-22.61	-20	53.96 Ω - 6.22 jΩ
5800	-31.84	-20	$49.17 \Omega + 2.42 j\Omega$

6.2 <u>RETURN LOSS IN BODY LIQUID</u>

Page: 6/14

Frequency (MHz)	Return Loss (dB)	Requirement (dB) Impedance	
5200	-22.52	-20	50.89 Ω - 7.40 jΩ
5400	-34.95	-20	$51.59 \Omega + 0.81 j\Omega$
5600	-22.92	-20	56.03 Ω - 3.77 jΩ
5800	-26.66	-20	$49.02 \Omega + 4.53 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
5000 to 6000	20.6±1 %.	20.78	40.3 ±1 %.	40.41	3.6 ±1 %.	3.58

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

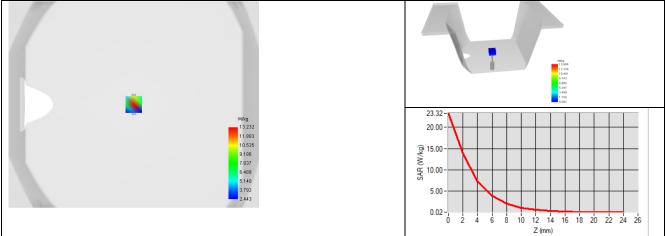
7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r ')		Conductivity (σ) S/m	
	required	measured	required	measured
5000	36.2 ±10 %		4.45 ±10 %	
5100	36.1 ±10 %		4.56 ±10 %	
5200	36.0 ±10 %	34.06	4.66 ±10 %	4.70
5300	35.9 ±10 %		4.76 ±10 %	
5400	35.8 ±10 %	33.39	4.86 ±10 %	4.91
5500	35.6 ±10 %		4.97 ±10 %	
5600	35.5 ±10 %	32.77	5.07 ±10 %	5.13
5700	35.4 ±10 %		5.17 ±10 %	
5800	35.3 ±10 %	32.40	5.27 ±10 %	5.34
5900	35.2 ±10 %		5.38 ±10 %	
6000	35.1 ±10 %		5.48 ±10 %	

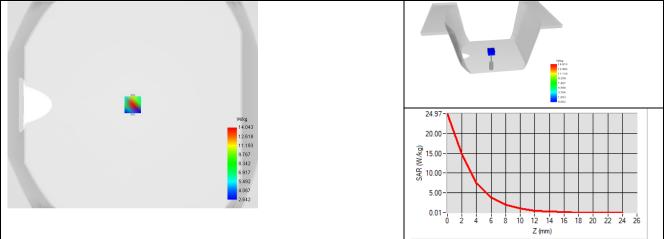
Page: 7/14

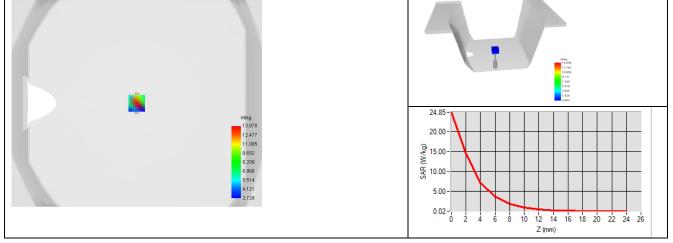
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

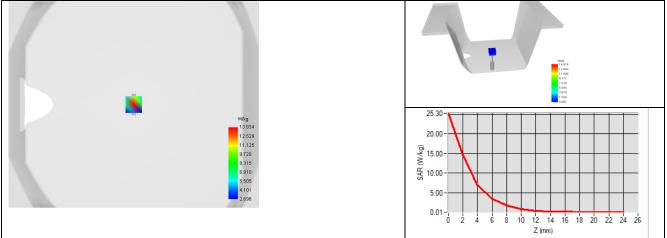

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values 5200 MHz: eps' :34.06 sigma : 4.70 Head Liquid Values 5400 MHz: eps' :33.39 sigma : 4.91 Head Liquid Values 5600 MHz: eps' :32.77 sigma : 5.13 Head Liquid Values 5800 MHz: eps' :32.40 sigma : 5.34
Distance between dipole and liquid	10 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency (MHz)	1 g SAR (W/kg)		10 g SAR (W/kg)	
	required	measured	required	measured
5200	76.50	75.31 (7.53)	21.60	22.23 (2.22)
5400	-	79.56 (7.96)	-	23.40 (2.34)
5600	-	78.31 (7.83)	-	23.25 (2.33)
5800	78.00	78.05 (7.80)	21.90	22.86 (2.29)


This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


SAR MEASUREMENT PLOTS @ 5200 MHz

SAR MEASUREMENT PLOTS @ 5400 MHz


SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 9/14

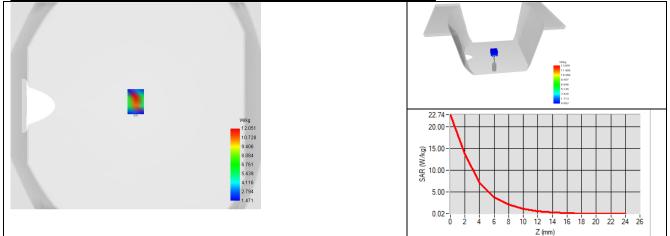
SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 10/14

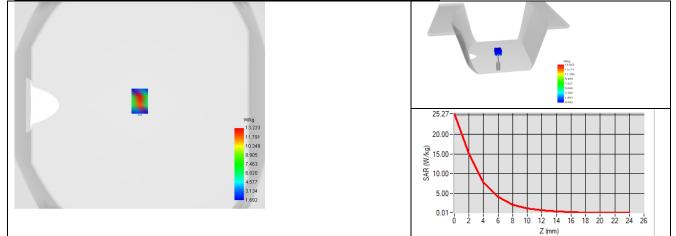
7.3 BODY LIQUID MEASUREMENT

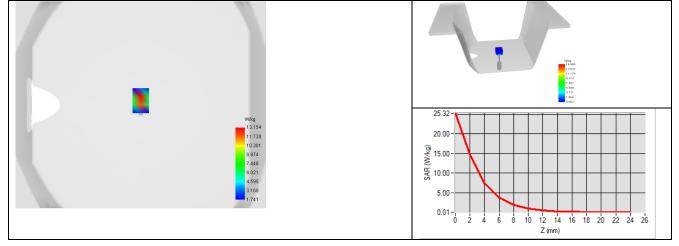
Frequency MHz	Relative permittivity (ϵ_r ')		Conductivity (σ) S/m	
	required	measured	required	measured
5200	49.0 ±10 %	45.50	5.30 ±10 %	5.63
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %	44.78	5.53 ±10 %	5.95
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %	44.85	5.77 ±10 %	6.26
5800	48.2 ±10 %	44.45	6.00 ±10 %	6.58

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID


Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Body Liquid Values 5200 MHz: eps' :45.50 sigma : 5.63 Body Liquid Values 5400 MHz: eps' :44.78 sigma : 5.95 Body Liquid Values 5600 MHz: eps' :44.85 sigma : 6.26 Body Liquid Values 5800 MHz: eps' :44.45 sigma : 6.58	
Distance between dipole and liquid	10 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

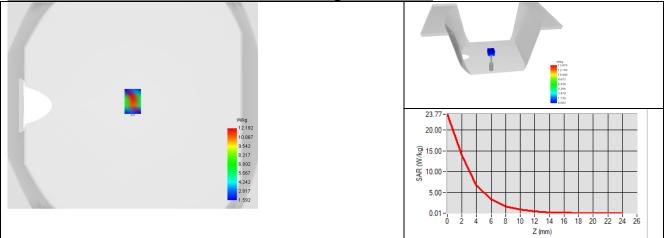
Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	72.47 (7.25)	21.16 (2.12)
5400	79.06 (7.91)	22.85 (2.29)
5600	78.50 (7.85)	22.96 (2.30)
5800	72.20 (7.22)	21.13 (2.11)


Page: 11/14


BODY SAR MEASUREMENT PLOTS @ 5200 MHz

BODY SAR MEASUREMENT PLOTS @ 5400 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz



Page: 12/14

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole5GHz vB ent shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is

BODY SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 13/14

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025	
Reference Probe	MVG	SN 41/18 EPGO333	10/2023	10/2024	
Multimeter	Keithley 2000	1160271	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2024	06/2027	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027	

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole5GHz vB