APPENDIX A: SAR TEST DATA

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.908 \text{ S/m}; \ \epsilon_r = 41.726; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 06/29/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

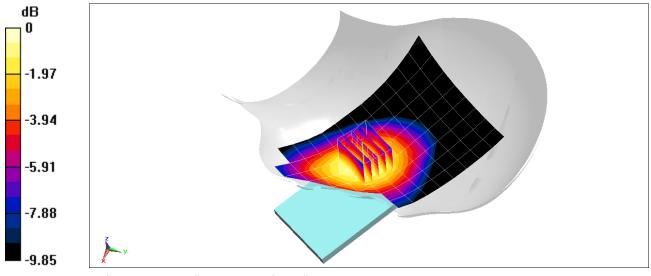
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.6 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.98 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.164 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

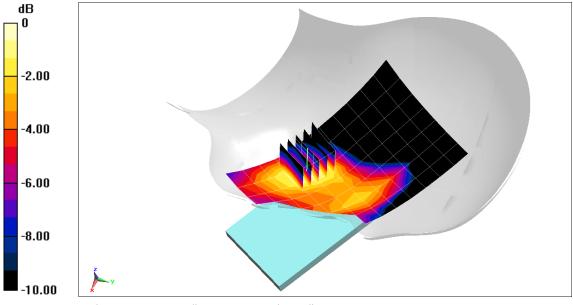
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.388 \text{ S/m}; \ \epsilon_r = 40.304; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 06/26/2020; Ambient Temp: 24.6°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.987 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.063 W/kg

0 dB = 0.0855 W/kg = -10.68 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.908 \text{ S/m}; \ \epsilon_r = 41.726; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 06/29/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

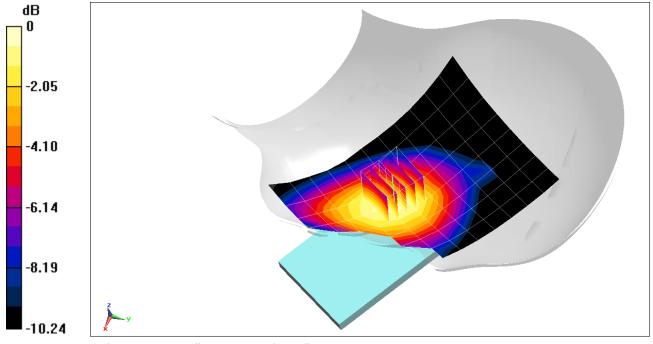
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.6 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Left Head, Cheek, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.29 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.202 W/kg

0 dB = 0.236 W/kg = -6.27 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

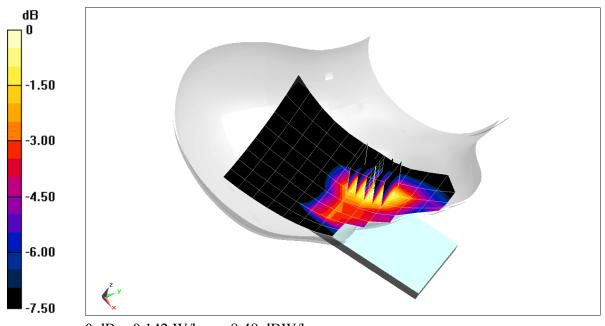
Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.388 \text{ S/m}; \ \epsilon_r = 40.304; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 06/26/2020; Ambient Temp: 24.6°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.599 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.162 W/kg

SAR(1 g) = 0.109 W/kg

0 dB = 0.142 W/kg = -8.48 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

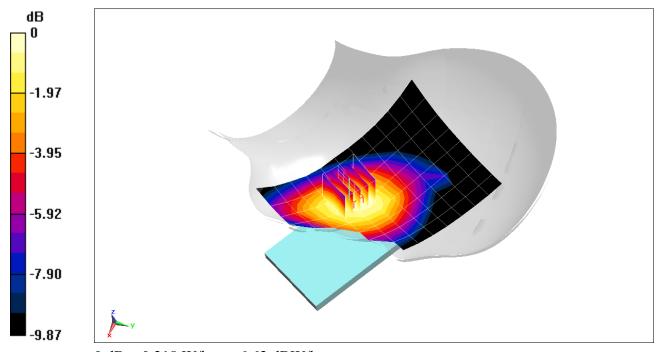
Communication System: UID 0, Cellular CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.908 \text{ S/m}; \ \epsilon_r = 41.728; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 06/29/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.52 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Cell. CDMA, BC 0, Left Head, Cheek, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.69 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.188 W/kg

0 dB = 0.218 W/kg = -6.62 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

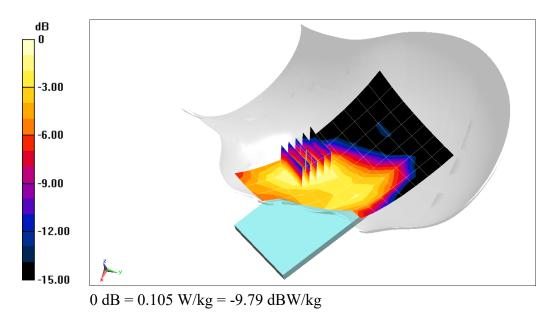
Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.388 \text{ S/m}; \ \epsilon_r = 40.304; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 06/26/2020; Ambient Temp: 24.6°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: PCS CDMA, Left Head, Cheek, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.719 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.077 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.868 \text{ S/m}; \ \epsilon_r = 43.149; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07/05/2020; Ambient Temp: 20.3°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3589; ConvF(8.7, 8.7, 8.7) @ 707.5 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1558; Calibrated: 1/13/2020
Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.80 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.142 W/kg

SAR(1 g) = 0.108 W/kg

0 dB = 0.130 W/kg = -8.86 dBW/kg

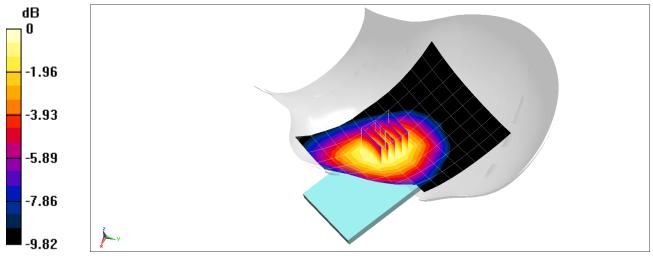
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.89 \text{ S/m}; \ \epsilon_r = 42.96; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07/05/2020; Ambient Temp: 20.3°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN3589; ConvF(8.7, 8.7, 8.7) @ 782 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1558; Calibrated: 1/13/2020
Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.08 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.161 W/kg

0 dB = 0.191 W/kg = -7.19 dBW/kg

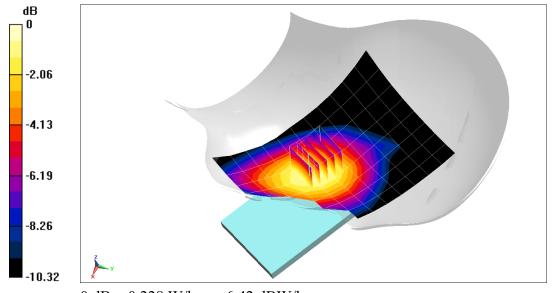
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.908 \text{ S/m}; \ \epsilon_r = 41.728; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 06/29/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), ULCA, Left Head, Cheek, PCC: Ch. 20525, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset SCC: Ch. 20453, 5 MHz Bandwidth, QPSK, 1 RB, 24 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.46 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.196 W/kg

0 dB = 0.228 W/kg = -6.42 dBW/kg

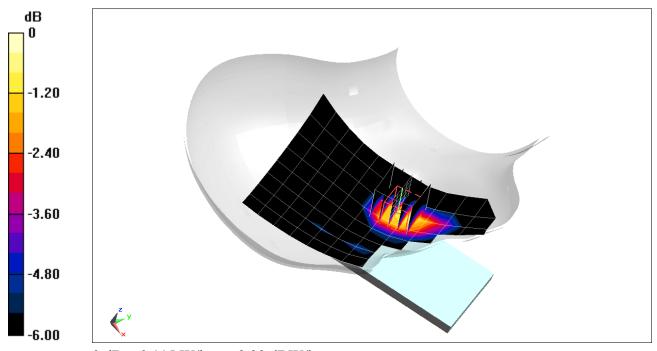
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.325 \text{ S/m}; \ \epsilon_r = 40.764; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07/02/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(7.55, 7.55, 7.55) @ 1770 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1558; Calibrated: 1/13/2020
Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Right Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.120 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.087 W/kg

0 dB = 0.115 W/kg = -9.39 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.388 \text{ S/m}; \ \epsilon_r = 40.304; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 06/26/2020; Ambient Temp: 24.6°C; Tissue Temp: 21.8°C

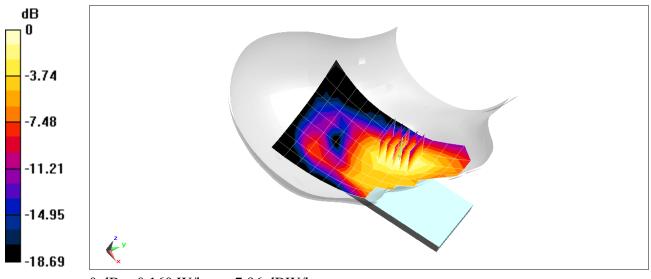
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Right Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.16 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.122 W/kg

0 dB = 0.160 W/kg = -7.96 dBW/kg

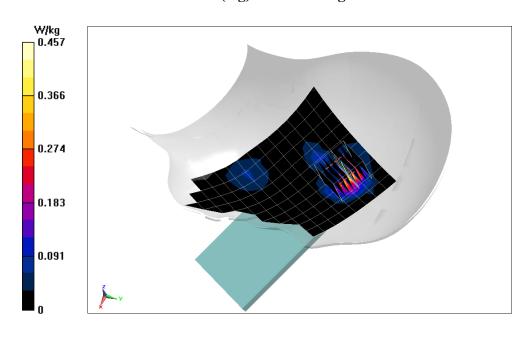
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04948

Communication System: UID 0, LTE Band 48; Frequency: 3560 MHz; Duty Cycle: 1:1.58 Medium: 3600 Head; Medium parameters used: $f = 3560 \text{ MHz}; \ \sigma = 2.922 \text{ S/m}; \ \epsilon_r = 39.303; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07/24/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7488; ConvF(7.3, 7.3, 7.3) @ 3560 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/13/2020
Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 48, Left Head, Tilt, Low.ch, QPSK, 20 MHz Bandwidth, 1 RB, 0 RB Offset, Dual Display Configuration #3


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 10.95 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.605 W/kg

SAR(1 g) = 0.237 W/kg

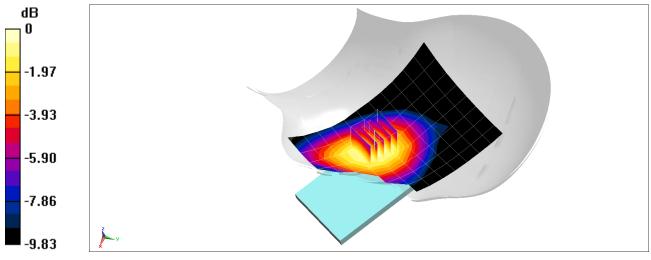
DUT: ZNFG900VM; Type: Portable Handset; Serial: 01217

Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.908 \text{ S/m}; \ \epsilon_r = 41.728; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 06/29/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n5, Left Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 50 RB, 28 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.66 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.166 W/kg

SAR(1 g) = 0.130 W/kg

0 dB = 0.154 W/kg = -8.12 dBW/kg

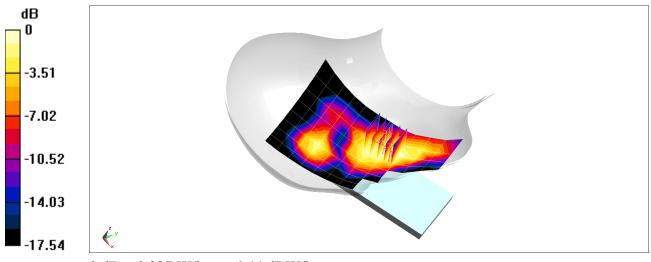
DUT: ZNFG900VM; Type: Portable Handset; Serial: 01217

Communication System: UID 0, NR Band n66; Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.325 \text{ S/m}; \ \epsilon_r = 40.764; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07/02/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(7.55, 7.55, 7.55) @ 1770 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1558; Calibrated: 1/13/2020
Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n66, Right Head, Cheek, Dual Display Configuration #3 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 354000, 1 RB, 104 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.48 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.177 W/kg

0 dB = 0.227 W/kg = -6.44 dBW/kg

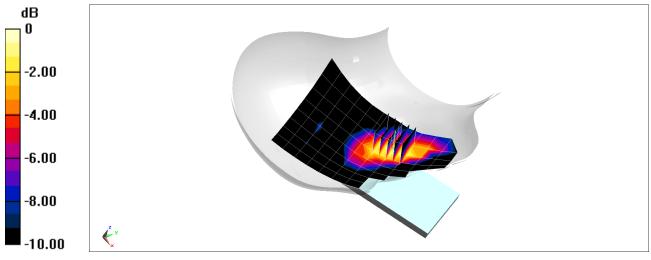
DUT: ZNFG900VM; Type: Portable Handset; Serial: 05002

Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.346 \text{ S/m}; \ \epsilon_r = 40.142; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07/03/2020; Ambient Temp: 23.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1860 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n2, Right Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 372000, 50 RB, 28 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.14 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.139 W/kg

0 dB = 0.187 W/kg = -7.28 dBW/kg

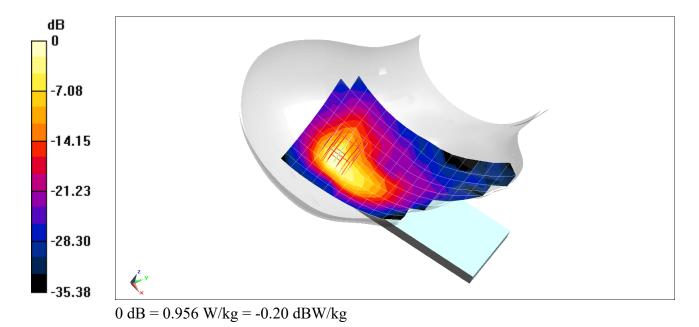
DUT: ZNFG900VM; Type: Sample; Serial: 04732

Communication System: UID 0, _IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f=2437 \text{ MHz}; \ \sigma=1.832 \text{ S/m}; \ \epsilon_r=38.62; \ \rho=1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07/15/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7565; ConvF(7.04, 7.04, 7.04) @ 2437 MHz; Calibrated: 11/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 11/13/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, Antenna 2, 22 MHz Bandwidth, Right Head, Cheek, Ch 6, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.83 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.560 W/kg

DUT: ZNFG900VM; Type: Sample; Serial: 04732

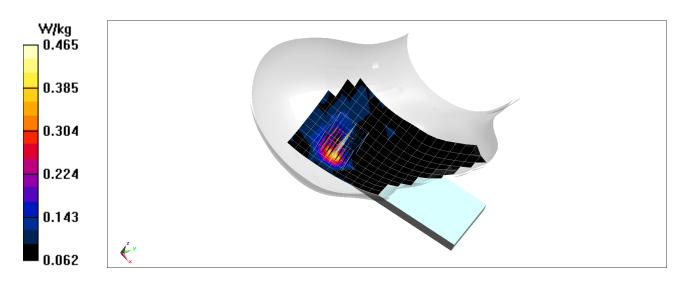
Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5510 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: $f = 5510 \text{ MHz}; \ \sigma = 4.795 \text{ S/m}; \ \epsilon_r = 35.806; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 06/29/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7402; ConvF(4.75, 4.75, 4.75) @ 5510 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1502; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11n, Antenna 2, U-NII-2C, 40 MHz Bandwidth, Right Head, Cheek, Ch 102


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 6.472 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.795 W/kg

SAR(1 g) = 0.239 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04740

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 1.814 \text{ S/m}; \ \epsilon_r = 41.119; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

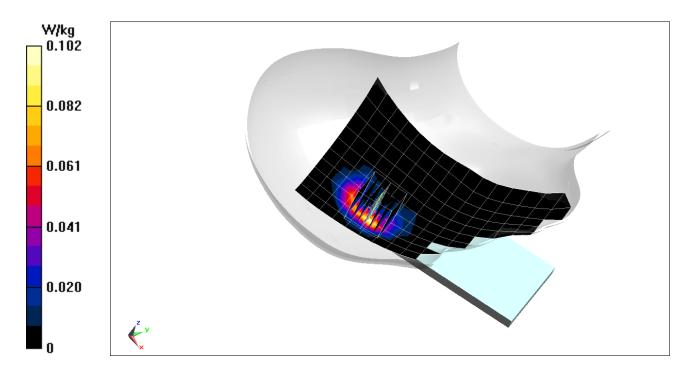
Test Date: 06/28/2020; Ambient Temp: 22.9°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2441 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Right Head, Cheek, Ch 39, 1 Mbps


Area Scan (11x19x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.038 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.138 W/kg

SAR(1 g) = 0.056 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04948

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.984 \text{ S/m}; \ \epsilon_r = 53.921; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

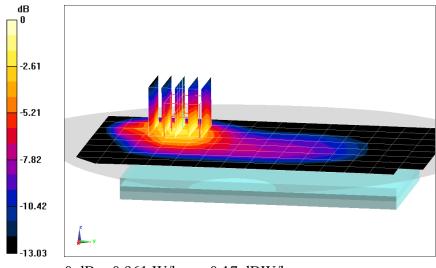
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.63 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.665 W/kg

0 dB = 0.961 W/kg = -0.17 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.542 \text{ S/m}; \ \epsilon_r = 53.956; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 23.5°C

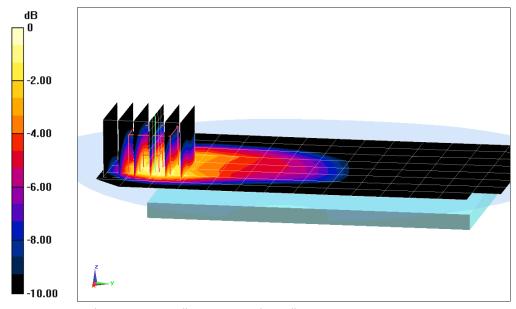
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1880 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.25 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.756 W/kg

SAR(1 g) = 0.450 W/kg

0 dB = 0.600 W/kg = -2.22 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1909.8 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used: $f = 1910 \text{ MHz}; \ \sigma = 1.575 \text{ S/m}; \ \epsilon_r = 53.855; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 23.5°C

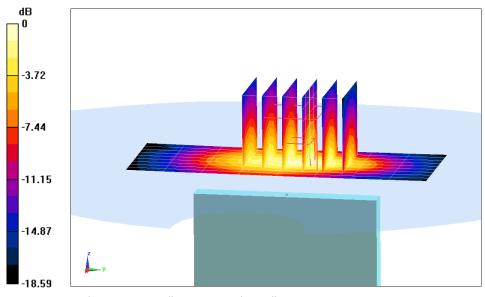
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1909.8 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Body SAR, Bottom Edge, High.ch, 2 Tx Slots


Area Scan (10x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.58 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.951 W/kg

0 dB = 1.39 W/kg = 1.43 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04955

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.954 \text{ S/m}; \ \epsilon_r = 53.246; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/01/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.8°C

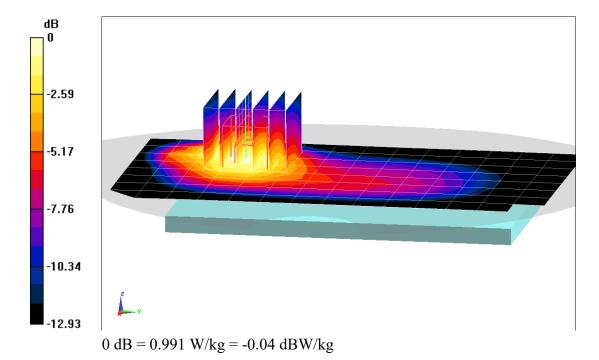
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.16 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.707 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.534 \text{ S/m}; \ \epsilon_r = 52.79; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/14/2020; Ambient Temp: 24.0°C; Tissue Temp: 23.1°C

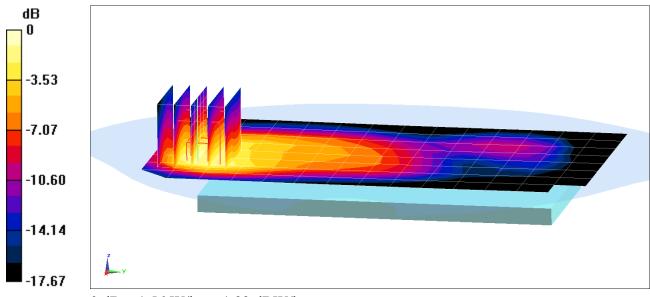
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1880 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.70 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 1.07 W/kg

0 dB = 1.56 W/kg = 1.93 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

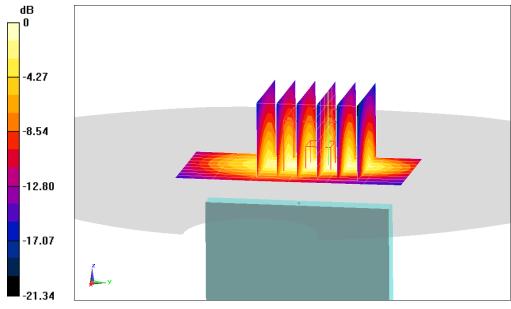
Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.54 \text{ S/m}; \ \epsilon_r = 52.492; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/03/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Body SAR, Bottom Edge, Mid.ch


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.99 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.01 W/kg

0 dB = 1.48 W/kg = 1.70 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04955

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.953 \text{ S/m}; \ \epsilon_r = 54.523; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

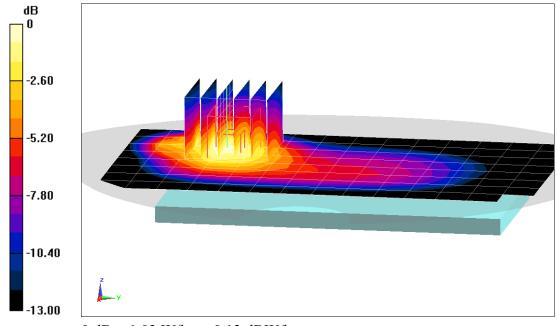
Test Date: 07/06/2020; Ambient Temp: 22.0°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.52 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: Cell. CDMA, BC 0, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.26 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.730 W/kg

0 dB = 1.03 W/kg = 0.13 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04955

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.953 \text{ S/m}; \ \epsilon_r = 54.523; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

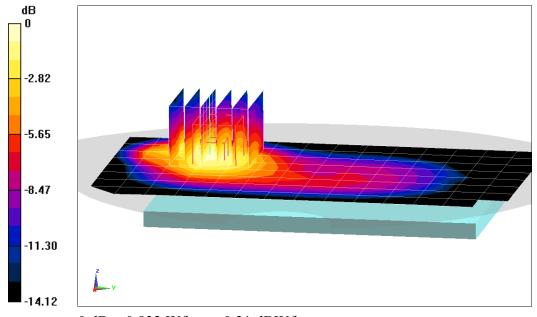
Test Date: 07/06/2020; Ambient Temp: 22.0°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.52 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: Cell. EVDO, BC 0, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.21 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.671 W/kg

0 dB = 0.932 W/kg = -0.31 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1851.25 \text{ MHz}; \ \sigma = 1.51 \text{ S/m}; \ \epsilon_r = 54.038; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 23.5°C

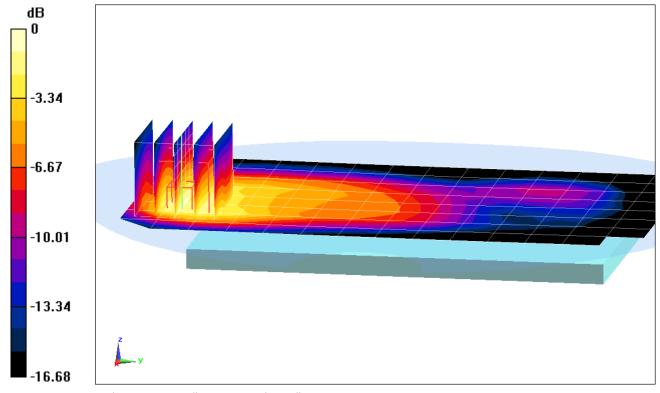
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1851.25 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: PCS CDMA, Body SAR, Back side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.74 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.916 W/kg

0 dB = 1.33 W/kg = 1.24 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

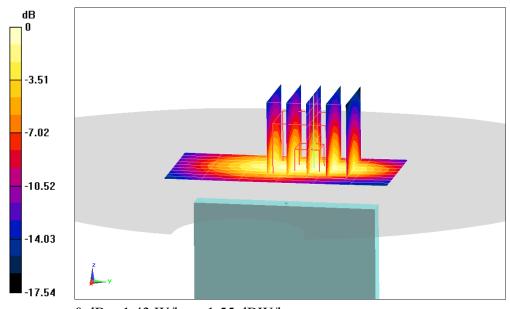
Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.54 \text{ S/m}; \ \epsilon_r = 52.492; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/03/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: PCS EVDO, Body SAR, Bottom Edge, Mid.ch


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.42 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.978 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

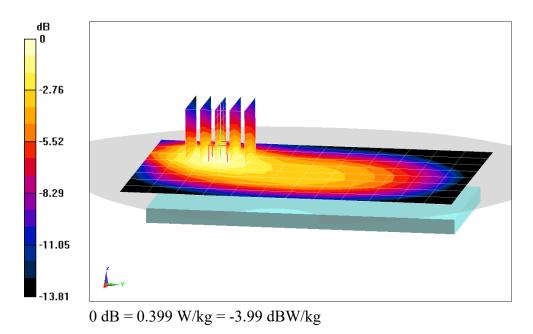
Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.939 \text{ S/m}; \ \epsilon_r = 54.069; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/01/2020; Ambient Temp: 23.7°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 707.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.48 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.454 W/kg

SAR(1 g) = 0.298 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

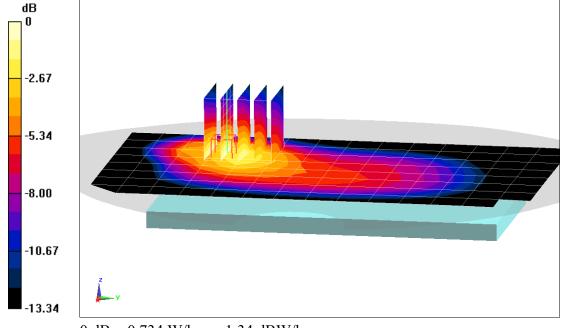
Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.966 \text{ S/m}; \ \epsilon_r = 53.908; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/01/2020; Ambient Temp: 23.7°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 782 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.93 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.848 W/kg

SAR(1 g) = 0.541 W/kg

0 dB = 0.734 W/kg = -1.34 dBW/kg

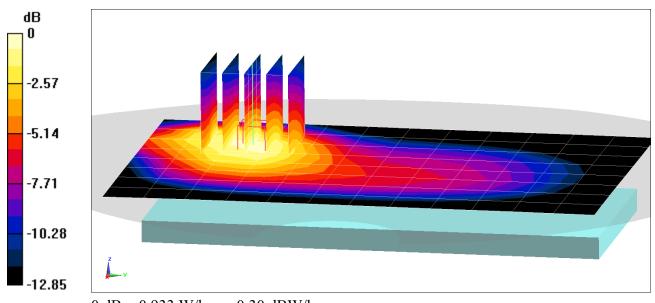
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04955

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.953 \text{ S/m}; \ \epsilon_r = 53.633; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/04/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, PCC: Ch. 20525, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset SCC: Ch. 20453, 5 MHz Bandwidth, QPSK, 1 RB, 24 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.85 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.662 W/kg

0 dB = 0.933 W/kg = -0.30 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04930

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1745 \text{ MHz}; \ \sigma = 1.492 \text{ S/m}; \ \epsilon_r = 51.533; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/07/2020; Ambient Temp: 23.2°C; Tissue Temp: 21.2°C

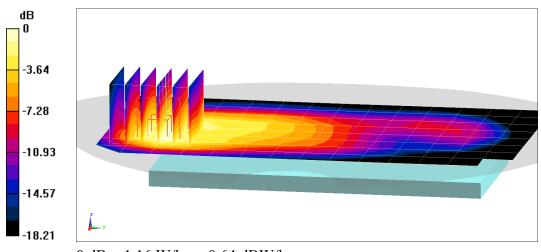
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1745 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.62 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.854 W/kg

0 dB = 1.16 W/kg = 0.64 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04930

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.517 \text{ S/m}; \ \epsilon_r = 51.434; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/07/2020; Ambient Temp: 23.2°C; Tissue Temp: 21.2°C

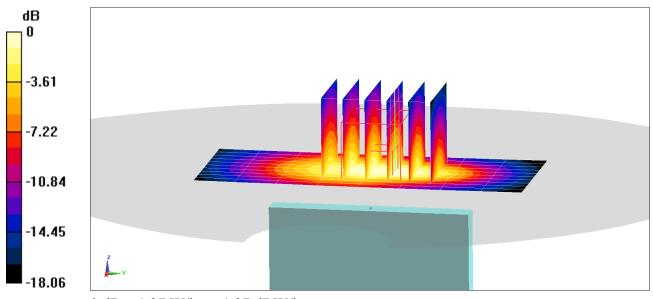
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1770 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset


Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.06 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.940 W/kg

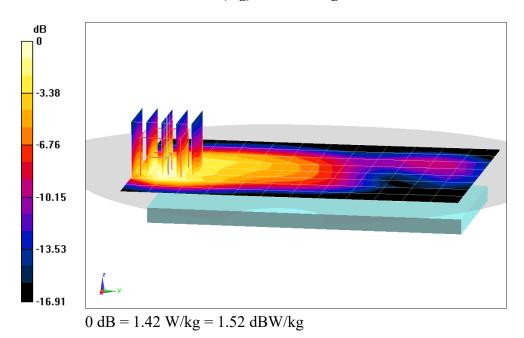
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.554 \text{ S/m}; \ \epsilon_r = 52.277; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/21/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.45 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 1.03 W/kg

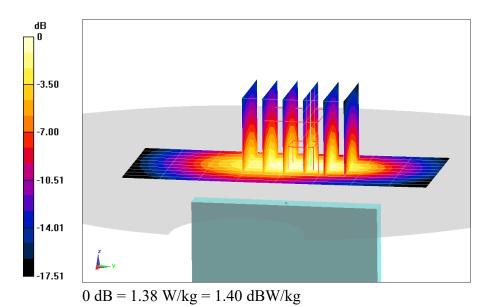
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04914

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.561 \text{ S/m}; \ \epsilon_r = 52.419; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/03/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 50 RB Offset


Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.76 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.932 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04948

Communication System: UID 0, LTE Band 48; Frequency: 3560 MHz; Duty Cycle: 1:1.58 Medium: 3600 Body Medium parameters used: $f = 3560 \text{ MHz}; \ \sigma = 3.411 \text{ S/m}; \ \epsilon_r = 49.232; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/21/2020; Ambient Temp: 24.2°C; Tissue Temp: 23.7°C

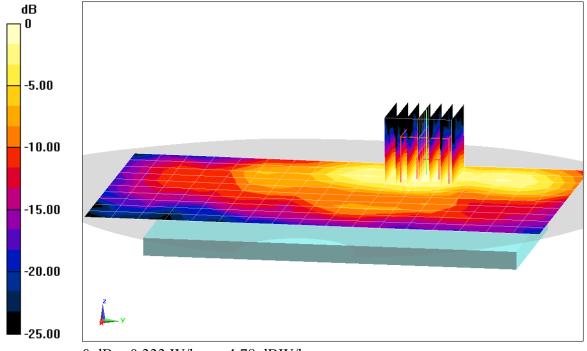
Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3560 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1646

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 48, Body SAR, Back side, Low.ch, Dual Display Configuration #1 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 7.404 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.466 W/kg

SAR(1 g) = 0.180 W/kg

0 dB = 0.333 W/kg = -4.78 dBW/kg

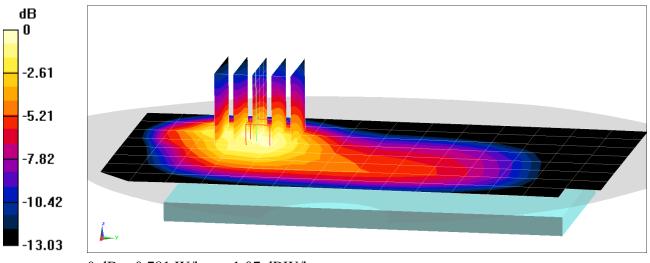
DUT: ZNFG900VM; Type: Portable Handset; Serial: 05002

Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.953 \text{ S/m}; \ \epsilon_r = 54.523; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/06/2020; Ambient Temp: 22.0°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n5, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 50 RB, 28 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.75 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.914 W/kg

SAR(1 g) = 0.566 W/kg

0 dB = 0.781 W/kg = -1.07 dBW/kg

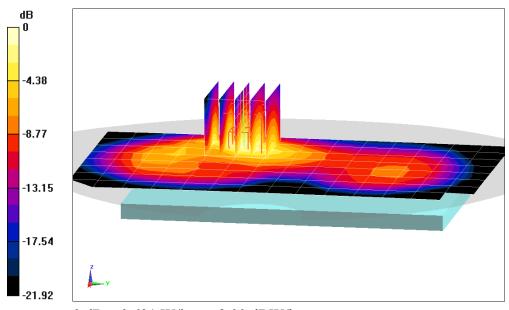
DUT: ZNFG900VM; Type: Portable Handset; Serial: 05002

Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1720 \text{ MHz}; \ \sigma = 1.491 \text{ S/m}; \ \epsilon_r = 51.611; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/19/2020; Ambient Temp: 23.5°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7551; ConvF(8.13, 8.13, 8.13) @ 1720 MHz; Calibrated: 9/19/2019
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 9/17/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n66, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 50 RB, 28 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.98 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.775 W/kg

SAR(1 g) = 0.418 W/kg

0 dB = 0.631 W/kg = -2.00 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 05002

Communication System: UID 0, NR Band n66; Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1745 \text{ MHz}; \ \sigma = 1.505 \text{ S/m}; \ \epsilon_r = 51.59; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

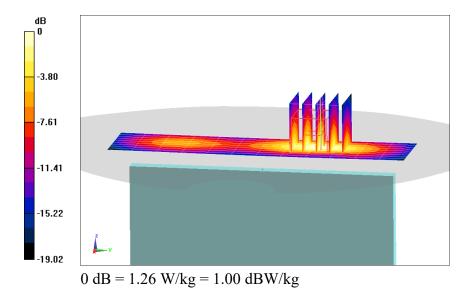
Test Date: 08/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1745 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/12/2020
Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n66, Body SAR, Right Edge, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 349000, 1 RB, 104 RB Offset, Dual Display Configuration #1


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.98 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.846 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 05002

Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.52 \text{ S/m}; \ \epsilon_r = 54.013; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 23.5°C

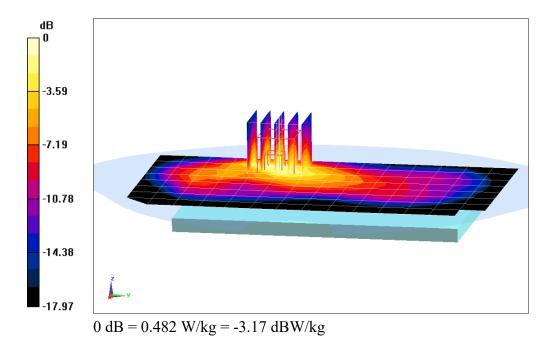
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n2, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 372000, 50 RB, 28 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.50 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.587 W/kg

SAR(1 g) = 0.330 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 05002

Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.52 \text{ S/m}; \ \epsilon_r = 54.013; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 23.5°C

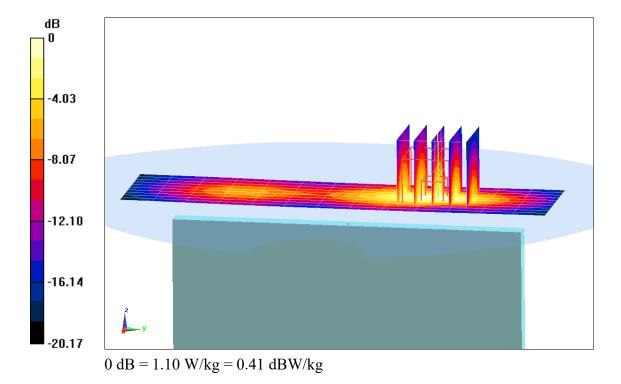
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n2, Body SAR, Right Edge, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 372000, 1 RB, 1 RB Offset


Area Scan (11x14x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.81 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.693 W/kg

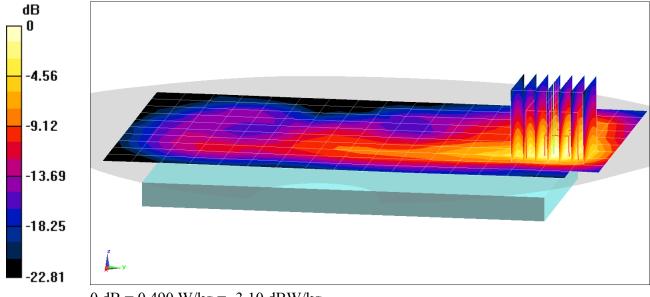
DUT: ZNFG900VM; Type: Sample; Serial: 04732

Communication System: UID 0, _IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.018 \text{ S/m}; \ \epsilon_r = 51.14; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/07/2020; Ambient Temp: 21.0°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7565; ConvF(7.1, 7.1, 7.1) @ 2437 MHz; Calibrated: 11/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1466; Calibrated: 11/13/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, Antenna 2, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Back Side


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.90 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.615 W/kg

SAR(1 g) = 0.300 W/kg

0 dB = 0.490 W/kg = -3.10 dBW/kg

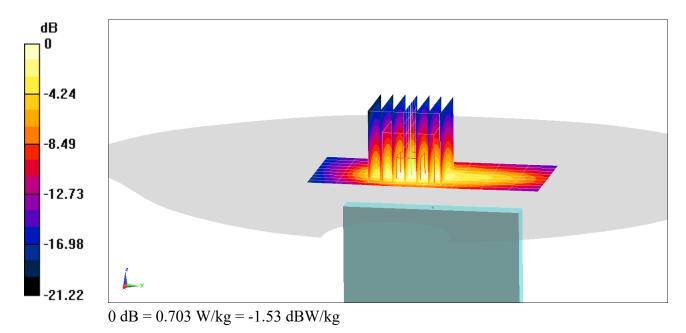
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04732

Communication System: UID 0, _IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.018 \text{ S/m}; \ \epsilon_r = 51.14; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/07/2020; Ambient Temp: 21.0°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7565; ConvF(7.1, 7.1, 7.1) @ 2437 MHz; Calibrated: 11/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 11/13/2019
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, Antenna 2, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Top Edge


Area Scan (10x9x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.46 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.870 W/kg

SAR(1 g) = 0.427 W/kg

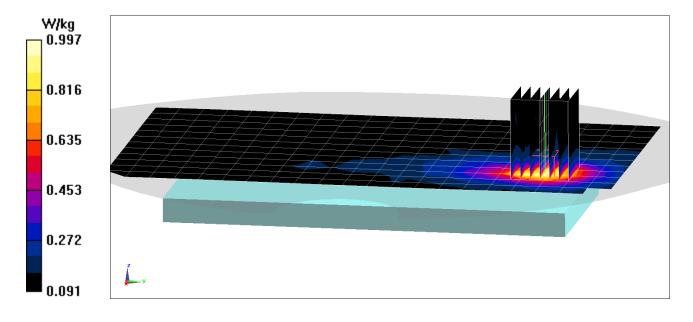
DUT: ZNFG900VM; Type: Sample; Serial: 04732

Communication System: UID 0, _IEEE 802.11n; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used: $f = 5785 \text{ MHz}; \ \sigma = 6.19 \text{ S/m}; \ \epsilon_r = 47.418; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/02/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7402; ConvF(4.27, 4.27, 4.27) @ 5785 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1502; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11n, MIMO, UNII-3, 20 MHz Bandwidth, Body SAR, Ch 157, 13 Mbps, Back Side


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 9.438 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 0.516 W/kg

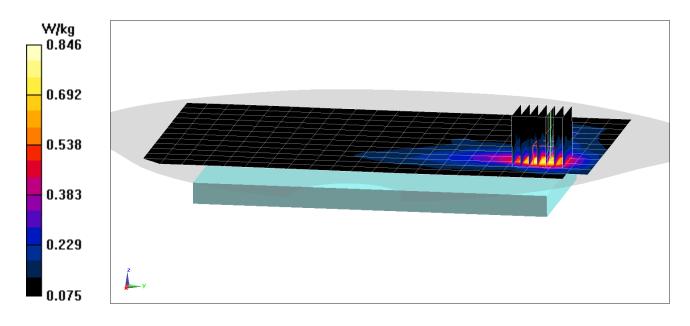
DUT: ZNFG900VM; Type: Sample; Serial: 04732

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used: $f = 5200 \text{ MHz}; \ \sigma = 5.378 \text{ S/m}; \ \epsilon_r = 48.421; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/02/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7402; ConvF(4.66, 4.66, 4.66) @ 5200 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1502; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11a, Antenna 1, UNII-1, 20 MHz Bandwidth, Body SAR, Ch 40, 6 Mbps, Back Side


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 9.435 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.441 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04740

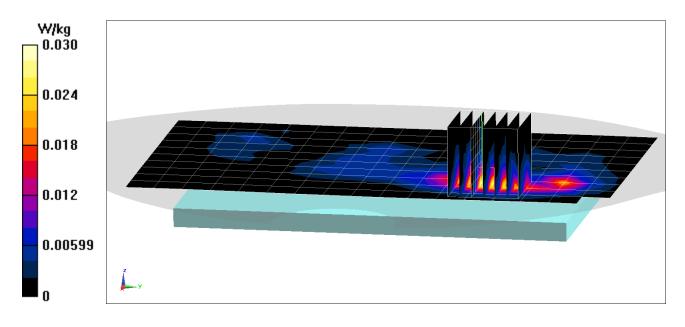
Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 2.034 \text{ S/m}; \ \epsilon_r = 50.979; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/14/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7409; ConvF(7.24, 7.24, 7.24) @ 2441 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2020
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Back Side


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.563 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.0650 W/kg

SAR(1 g) = 0.020 W/kg

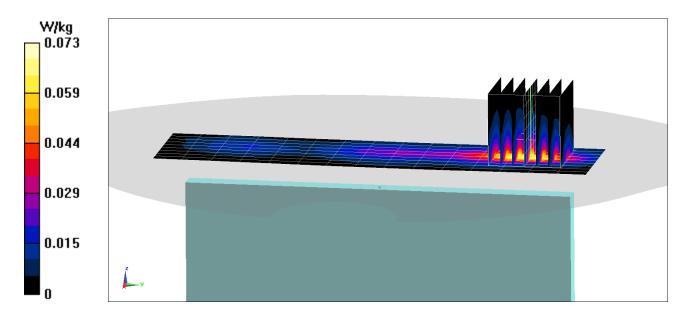
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04740

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 2.034 \text{ S/m}; \ \epsilon_r = 50.979; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/14/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7409; ConvF(7.24, 7.24, 7.24) @ 2441 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2020
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Left Edge


Area Scan (10x16x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.959 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.0930 W/kg

SAR(1 g) = 0.043 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04930

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.547 \text{ S/m}; \ \epsilon_r = 52.082; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

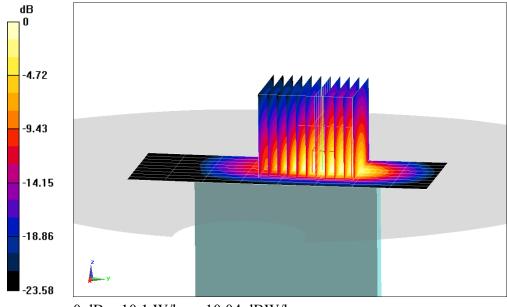
Test Date: 08/05/2020; Ambient Temp: 24.5°C; Tissue Temp: 23.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: PCS EVDO, Phablet SAR, Bottom Edge, Mid.ch, Dual Display Configuration #1


Area Scan (10x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x11x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 63.83 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 15.6 W/kg

SAR(10 g) = 2.79 W/kg

0 dB = 10.1 W/kg = 10.04 dBW/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04930

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.54 \text{ S/m}; \ \epsilon_r = 52.492; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08/03/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

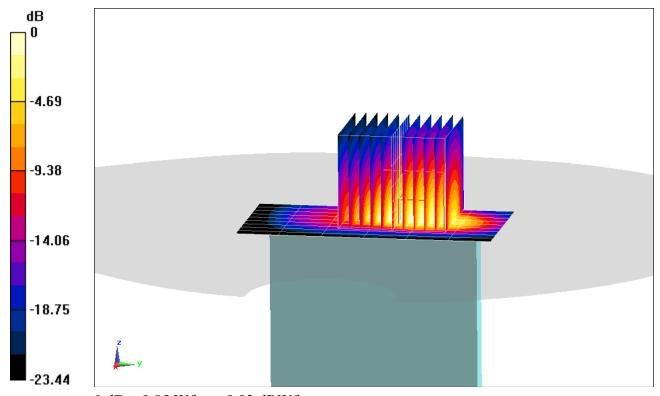
Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Phablet SAR, Bottom Edge, Mid.ch, Dual Display Configuration #1


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x11x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 63.66 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 13.6 W/kg

SAR(10 g) = 2.7 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 04948

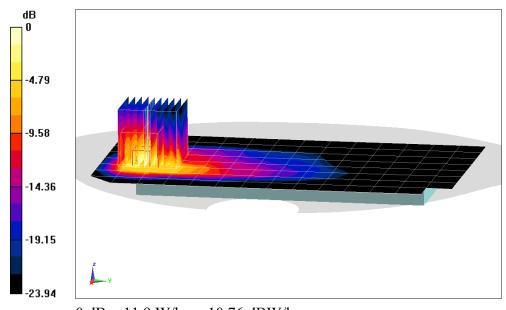
Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.532 \text{ S/m}; \ \epsilon_r = 51.508; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1770 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Phablet SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Dual Display Configuration #1


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 59.69 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 15.9 W/kg

SAR(10 g) = 2.85 W/kg

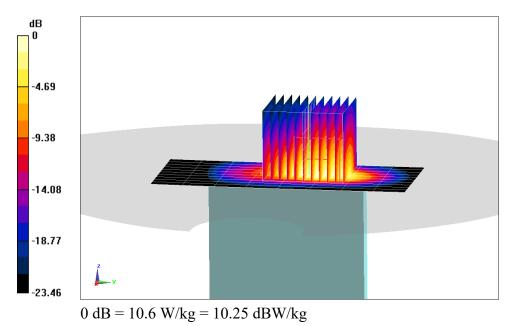
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04922

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.547 \text{ S/m}; \ \epsilon_r = 52.082; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08/05/2020; Ambient Temp: 24.5°C; Tissue Temp: 23.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1880 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 2 (PCS), Phablet SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset, Dual Display Configuration #1


Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x11x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 67.49 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 15.6 W/kg

SAR(10 g) = 2.97 W/kg

DUT: ZNFG900VM; Type: Portable Handset; Serial: 05002

Communication System: UID 0, NR Band n66; Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1745 \text{ MHz}; \ \sigma = 1.505 \text{ S/m}; \ \epsilon_r = 51.59; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 08/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.4°C

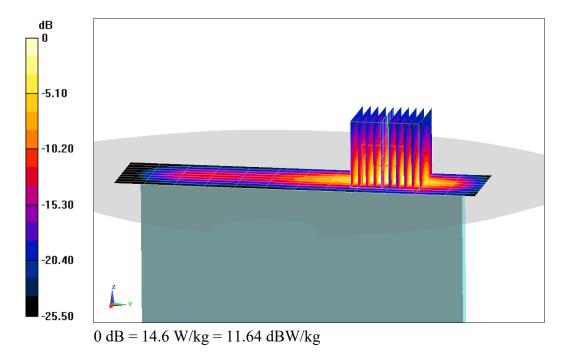
Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1745 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: NR Band n66, Phablet SAR, Right Edge, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 349000, 1 RB, 104 RB Offset, Dual Display Configuration #1


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 79.06 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 24.9 W/kg

SAR(10 g) = 2.81 W/kg

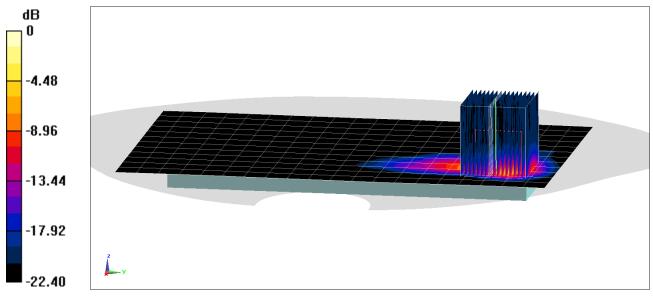
DUT: ZNFG900VM; Type: Portable Handset; Serial: 04732

Communication System: UID 0, _IEEE 802.11n; Frequency: 5720 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used: $f = 5720 \text{ MHz}; \ \sigma = 6.079 \text{ S/m}; \ \epsilon_r = 47.556; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07/02/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7402; ConvF(4.27, 4.27, 4.27) @ 5720 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1502; Calibrated: 4/15/2020
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11n, U-NII-2C, MIMO, 20 MHz Bandwidth, Phablet SAR, Ch 144, 13 Mbps, Back Side


Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (18x17x8)/Cube 0: Measurement grid: dx=1.9mm, dy=1.9mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 24.46 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(10 g) = 1.25 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used: f = 750 MHz; $\sigma = 0.883$ S/m; $\epsilon_r = 43.064$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07/05/2020; Ambient Temp: 20.3°C; Tissue Temp: 21.9°C

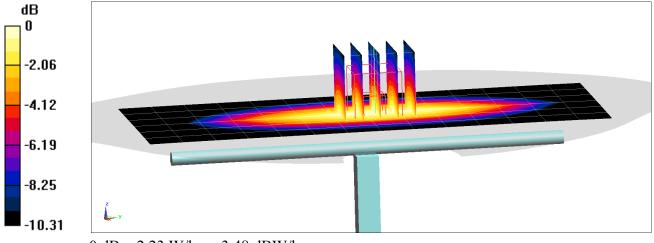
Probe: EX3DV4 - SN3589; ConvF(8.7, 8.7, 8.7) @ 750 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 1.67 W/kg

Deviation(1 g) = -4.90%

0 dB = 2.23 W/kg = 3.48 dBW/kg

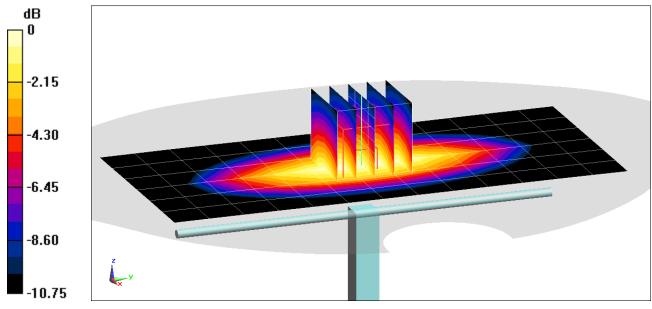
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.906 \text{ S/m}; \ \epsilon_r = 41.748; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 06/29/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966


Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.87 W/kgSAR(1 g) = 1.92 W/kgDeviation(1 g) = -0.52%

0 dB = 2.56 W/kg = 4.08 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.314 \text{ S/m}; \ \epsilon_r = 40.794; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/02/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

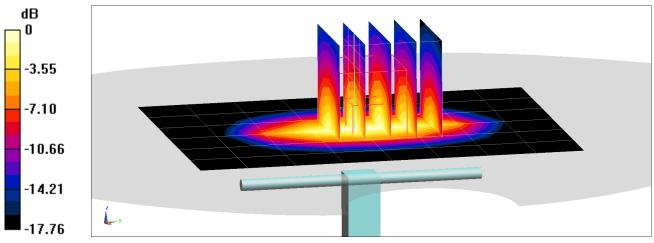
Probe: EX3DV4 - SN3589; ConvF(7.55, 7.55, 7.55) @ 1750 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.05 W/kg

SAR(1 g) = 3.39 W/kg

Deviation(1 g) = -7.12%

0 dB = 5.09 W/kg = 7.07 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used $f = 1900 \text{ MHz}; \ \sigma = 1.401 \text{ S/m}; \ \epsilon_r = 40.275; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/26/2020; Ambient Temp: 24.6°C; Tissue Temp: 21.8°C

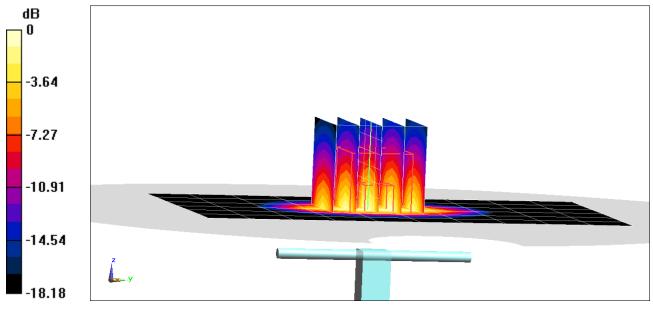
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1900 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.59 W/kg

SAR(1 g) = 4.12 W/kg

Deviation(1 g) = 5.37%

0 dB = 6.31 W/kg = 8.00 dBW/kg

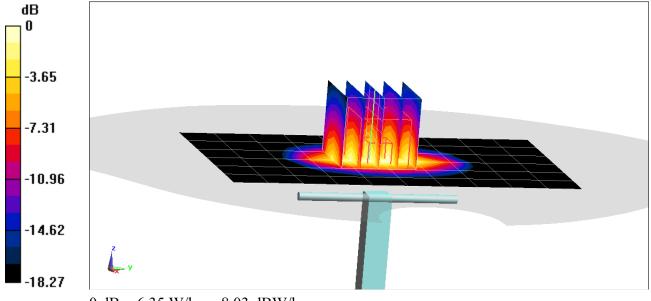
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.371 \text{ S/m}; \ \epsilon_r = 40.081; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/03/2020; Ambient Temp: 23.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1900 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.59 W/kg

SAR(1 g) = 4.17 W/kg

Deviation(1 g) = 6.65%

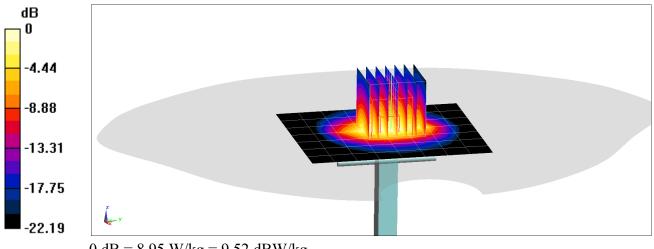
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.821 \text{ S/m}; \ \epsilon_r = 41.109; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/28/2020; Ambient Temp: 22.9°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020


Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.34 W/kg

Deviation(1 g) = 0.56%

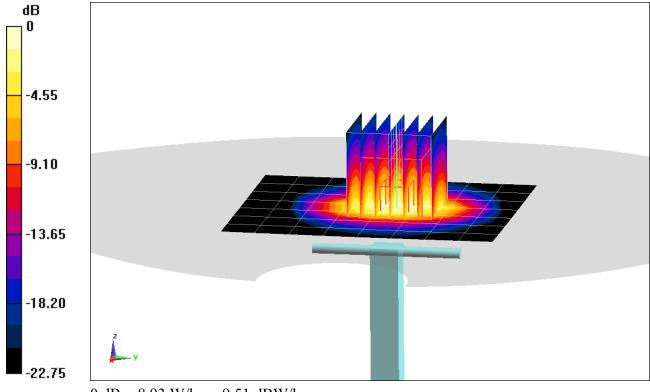
0 dB = 8.95 W/kg = 9.52 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.845 \text{ S/m}; \ \epsilon_r = 38.576; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/15/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7565; ConvF(7.04, 7.04, 7.04) @ 2450 MHz; Calibrated: 11/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)


Electronics: DAE4 Sn1466; Calibrated: 11/13/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.23 W/kg Deviation(1 g) = -1.13%

0 dB = 8.93 W/kg = 9.51 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059

Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Head Medium parameters used: $f = 3500 \text{ MHz}; \ \sigma = 2.872 \text{ S/m}; \ \epsilon_r = 39.373; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

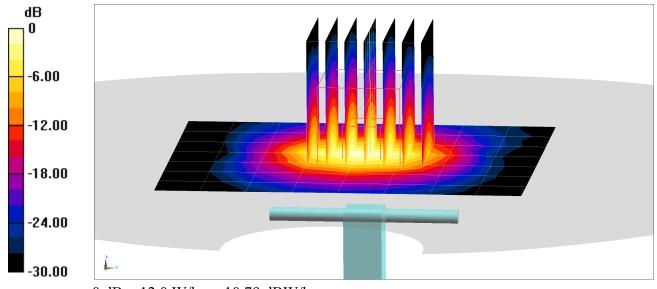
Test Date: 07/24/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7488; ConvF(7.3, 7.3, 7.3) @ 3500 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687

Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)


3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 6.18 W/kgDeviation(1 g) = -4.33%

0 dB = 12.0 W/kg = 10.79 dBW/kg

DUT: Dipole D5GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5250 MHz; $\sigma = 4.584$ S/m; $\epsilon_r = 35.782$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

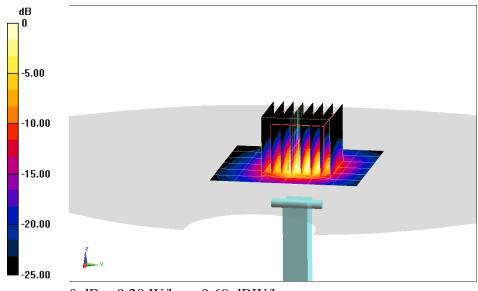
Test Date: 06/25/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7402; ConvF(5.14, 5.14, 5.14) @ 5250 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.6 W/kg

SAR(1 g) = 3.9 W/kg Deviation(1 g) = -2.86%

0 dB = 9.28 W/kg = 9.68 dBW/kg

DUT: Dipole D5GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5600 MHz; $\sigma = 4.889$ S/m; $\varepsilon_r = 35.655$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/29/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.5°C

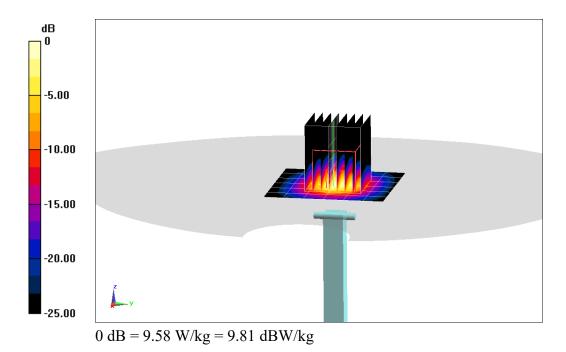
Probe: EX3DV4 - SN7402; ConvF(4.75, 4.75, 4.75) @ 5600 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 3.96 W/kg

SAR(1 g) = 3.96 W/kg Deviation(1 g) = -5.26%

DUT: Dipole D5GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5750 MHz; $\sigma = 5.105$ S/m; $\varepsilon_r = 35.051$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/25/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.3°C

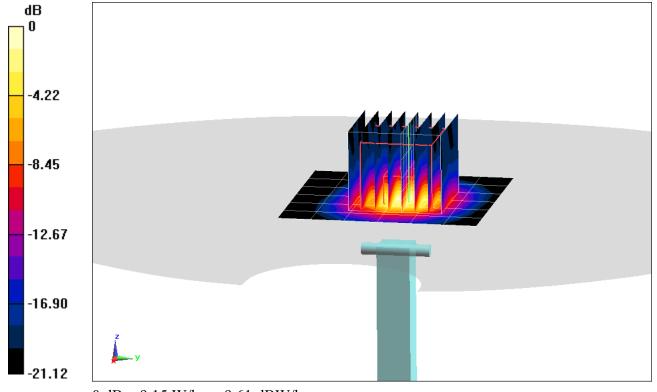
Probe: EX3DV4 - SN7402; ConvF(4.7, 4.7, 4.7) @ 5750 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1502; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 3.78 W/kg

Deviation(1 g) = -5.97%

0 dB = 9.15 W/kg = 9.61 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used: f = 750 MHz; $\sigma = 0.955$ S/m; $\epsilon_r = 53.959$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

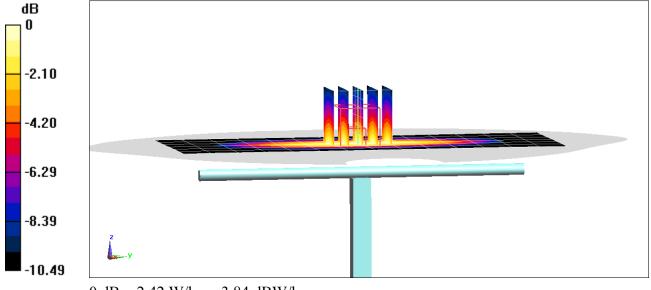
Test Date: 07/01/2020; Ambient Temp: 23.7°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 750 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 1.8 W/kgDeviation(1 g) = 5.51%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

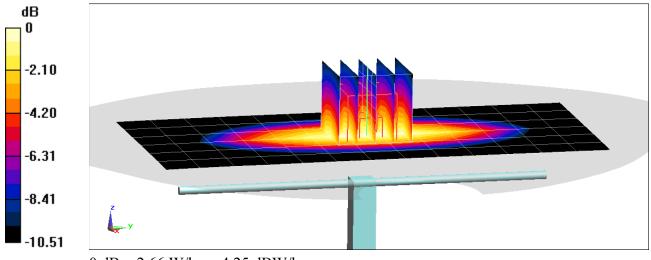
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: f = 835 MHz; $\sigma = 0.952$ S/m; $\epsilon_r = 53.263$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07/01/2020; Ambient Temp: 22.9°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.04 W/kgSAR(1 g) = 1.99 W/kgDeviation(1 g) = -0.10%

0 dB = 2.66 W/kg = 4.25 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.951 \text{ S/m}; \ \epsilon_r = 53.647; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07/04/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.9°C

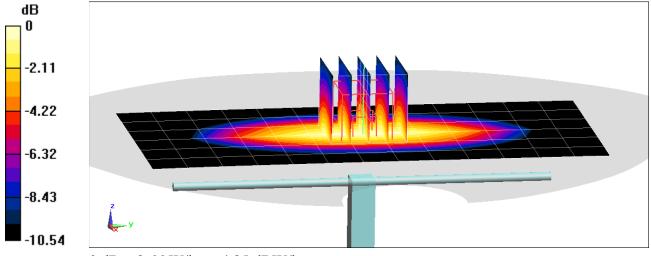
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.02 W/kg

SAR(1 g) = 1.98 W/kg

Deviation(1 g) = -0.60%

0 dB = 2.66 W/kg = 4.25 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

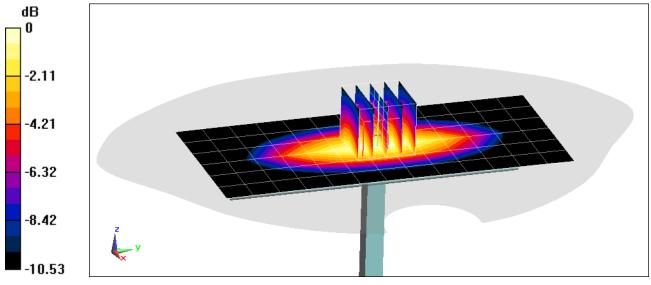
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.951 \text{ S/m}; \ \epsilon_r = 54.538; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07/06/2020; Ambient Temp: 22.0°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.18 W/kgSAR(1 g) = 2.02 W/kgDeviation(1 g) = 1.41%

0 dB = 2.76 W/kg = 4.41 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

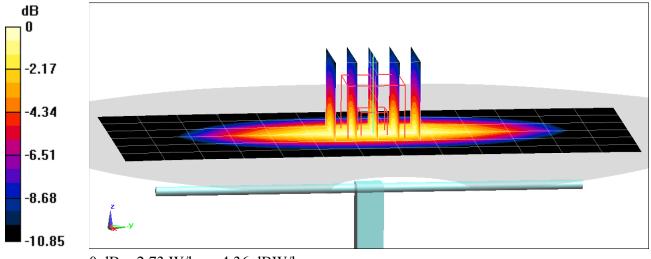
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.983 \text{ S/m}; \ \epsilon_r = 53.925; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

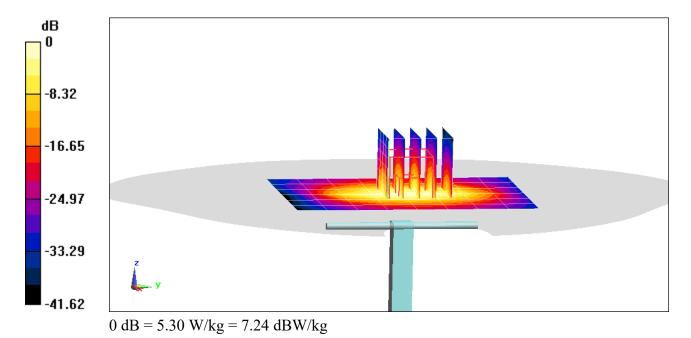
Peak SAR (extrapolated) = 3.12 W/kgSAR(1 g) = 2.02 W/kgDeviation(1 g) = 6.65%

0 dB = 2.73 W/kg = 4.36 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.497 \text{ S/m}; \ \epsilon_r = 51.513; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/07/2020; Ambient Temp: 23.2°C; Tissue Temp: 21.2°C


Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

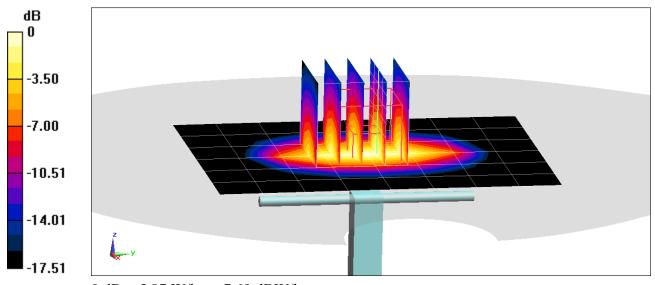
Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.35 W/kg SAR(1 g) = 3.55 W/kg Deviation(1 g) = -5.08%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.524 \text{ S/m}; \ \epsilon_r = 51.487; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/19/2020; Ambient Temp: 23.5°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7551; ConvF(8.13, 8.13, 8.13) @ 1750 MHz; Calibrated: 9/19/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

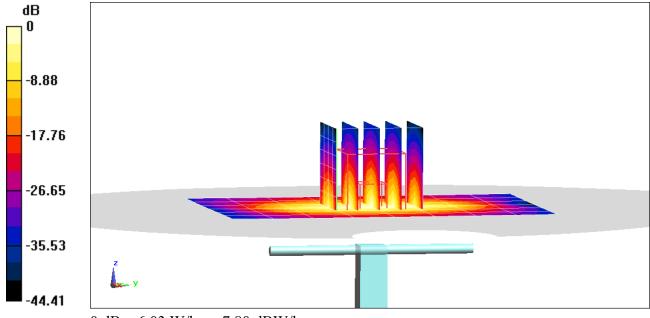
Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.04 W/kg SAR(1 g) = 3.9 W/kg Deviation(1 g) = 6.56%

0 dB = 5.87 W/kg = 7.69 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.511 \text{ S/m}; \ \epsilon_r = 51.574; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.4°C


Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.15 W/kg SAR(1 g) = 3.93 W/kg; SAR(10 g) = 2.06 W/kg Deviation(1 g) = 5.08%; Deviation(10 g) = 3.52%

0 dB = 6.03 W/kg = 7.80 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

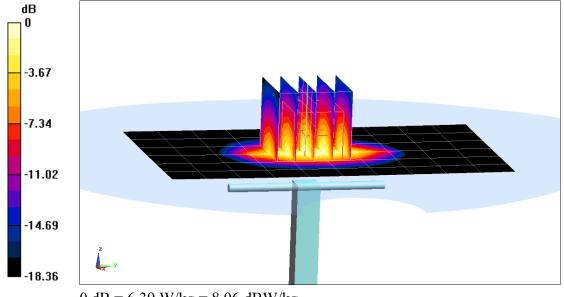
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.556 \text{ S/m}; \ \epsilon_r = 52.729; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/14/2020; Ambient Temp: 24.0°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

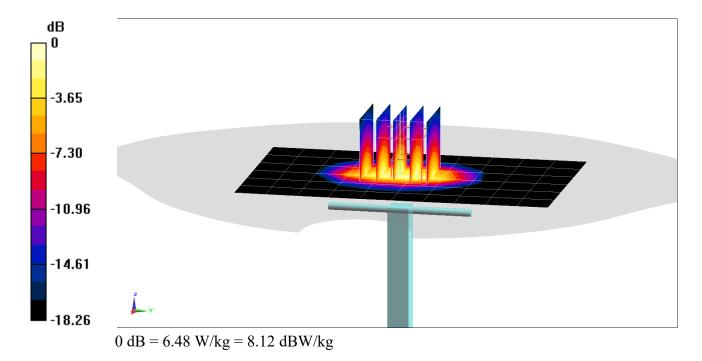
Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.81 W/kg

SAR(1 g) = 4.16 W/kg

Deviation(1 g) = 6.12%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.576 \text{ S/m}; \ \epsilon_r = 52.214; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 07/21/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.65 W/kg SAR(1 g) = 4.2 W/kgDeviation(1 g) = 7.14%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.564 \text{ S/m}; \ \epsilon_r = 53.89; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/22/2020; Ambient Temp: 22.7°C; Tissue Temp: 23.5°C

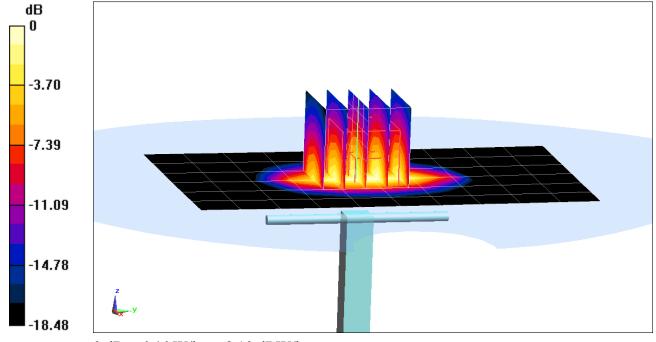
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.80 W/kg

SAR(1 g) = 4.27 W/kg

Deviation(1 g) = 8.93%

0 dB = 6.46 W/kg = 8.10 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.561 \text{ S/m}; \ \epsilon_r = 52.419; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

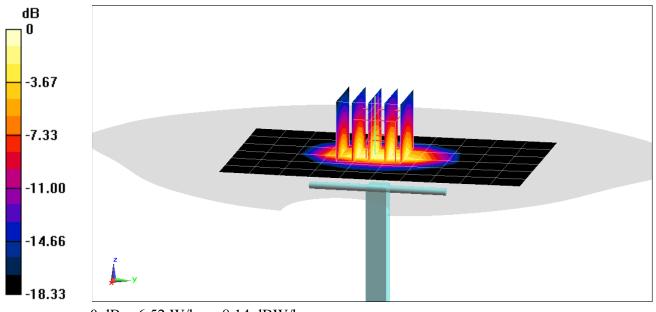
Test Date: 08/03/2020; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.69 W/kg

SAR(1 g) = 4.25 W/kg; SAR(10 g) = 2.2 W/kg

Deviation(1 g) = 7.87%; Deviation(10 g) = 6.28%

0 dB = 6.52 W/kg = 8.14 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.569 \text{ S/m}; \ \epsilon_r = 52.007; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

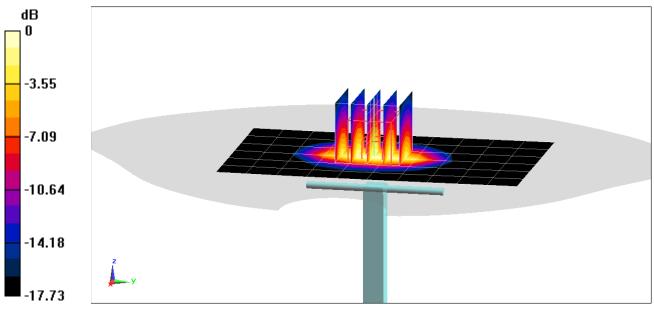
Test Date: 08/05/2020; Ambient Temp: 24.5°C; Tissue Temp: 23.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.26 W/kg

SAR(10 g) = 2.08 W/kg

Deviation(10 g) = 0.97%

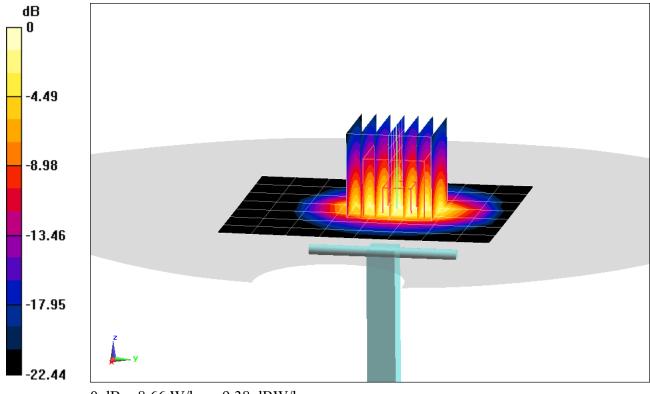
0 dB = 6.15 W/kg = 7.89 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.033 \text{ S/m}; \ \epsilon_r = 51.099; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/07/2020; Ambient Temp: 21.0°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7565; ConvF(7.1, 7.1, 7.1) @ 2450 MHz; Calibrated: 11/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)


Electronics: DAE4 Sn1466; Calibrated: 11/13/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868

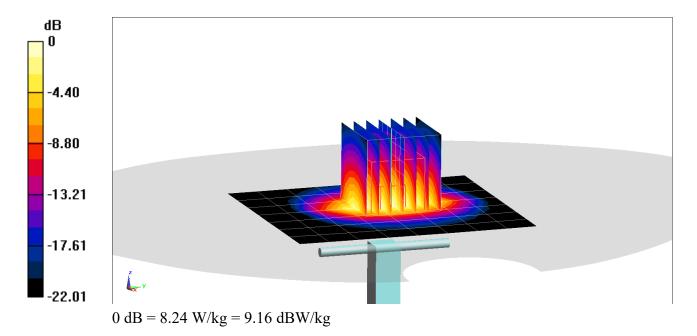
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.08 W/kg Deviation(1 g) = -1.36%

0 dB = 8.66 W/kg = 9.38 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.045 \text{ S/m}; \ \epsilon_r = 50.954; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/14/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7409; ConvF(7.24, 7.24, 7.24) @ 2450 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2020
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.3 W/kg SAR(1 g) = 4.93 W/kg Deviation(1 g) = -2.95%

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059

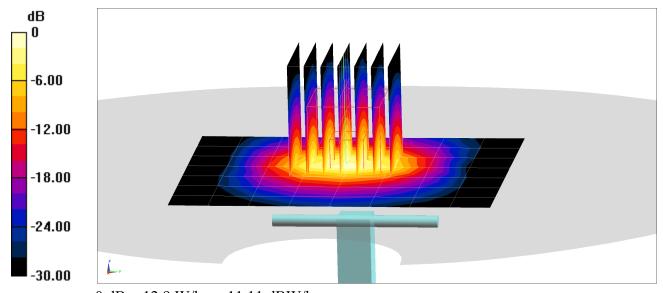
Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: $f = 3500 \text{ MHz}; \ \sigma = 3.348 \text{ S/m}; \ \epsilon_r = 49.334; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/21/2020; Ambient Temp: 24.2°C; Tissue Temp: 23.7°C

Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3500 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1646

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 6.6 W/kgDeviation(1 g) = 1.38%

0 dB = 12.9 W/kg = 11.11 dBW/kg

DUT: Dipole D5GHz; Type: D5GHzV2; Serial: 1120

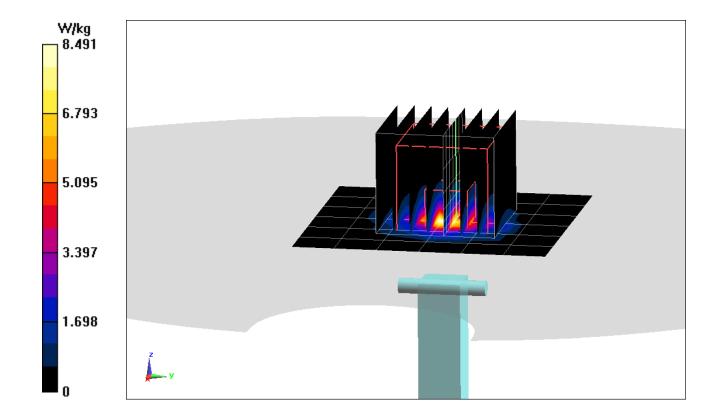
Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $f = 5250 \text{ MHz}; \ \sigma = 5.47 \text{ S/m}; \ \epsilon_r = 48.324; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/02/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7402; ConvF(4.66, 4.66, 4.66) @ 5250 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.5 W/kgSAR(1 g) = 3.59 W/kg; SAR(10 g) = 1.04 W/kgDeviation(1 g) = -4.01%; Deviation(10 g) = -0.48%

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1120

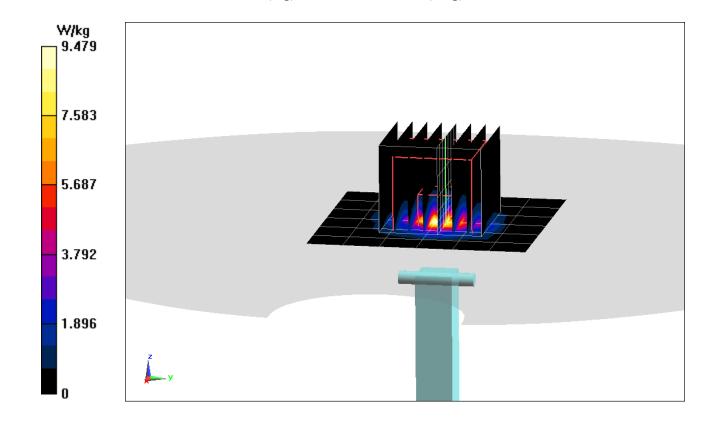
Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5600 MHz; $\sigma = 5.935$ S/m; $\varepsilon_r = 47.832$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/02/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7402; ConvF(4.01, 4.01, 4.01) @ 5600 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.6 W/kgSAR(1 g) = 3.92 W/kg; SAR(10 g) = 1.08 W/kgDeviation(1 g) = 0.51%; Deviation(10 g) = 0.00%

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1120

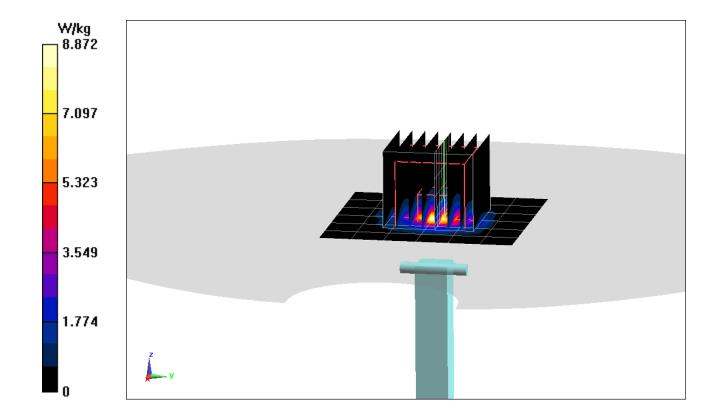
Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $f = 5750 \text{ MHz}; \ \sigma = 6.127 \text{ S/m}; \ \epsilon_r = 47.515; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/02/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7402; ConvF(4.27, 4.27, 4.27) @ 5750 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1868


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.9 W/kgSAR(1 g) = 3.68 W/kg; SAR(10 g) = 1.11 W/kgDeviation(1 g) = -1.87%; Deviation(10 g) = 6.22%

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

2 Mixtures escription: Aqueous solution with eclarable, or hazardous compon		
CAS: 107-21-1 EINECS: 203-473-3 Reg.nr.: 01-2119456816-28-0000	Ethanediol STOT RE 2, H373; Acute Tox. 4, H302	>1.0-4.9%
CAS: 68608-26-4 EINECS: 271-781-5 Reg.nr.: 01-2119527859-22-0000	Sodium petroleum sulfonate Eye Irrit. 2, H319	< 2.9%
CAS: 107-41-5 EINECS: 203-489-0 Reg.nr.: 01-2119539582-35-0000	Hexylene Glycol / 2-Methyl-pentane-2,4-diol Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.9%
CAS: 68920-66-1 NLP: 500-236-9 Reg.nr.: 01-2119489407-26-0000	Alkoxylated alcohol, > C ₁₆ Aquatic Chronic 2, H411; Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.0%

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: ZNFG900VM	PCTEST*	SAR EVALUATION REPORT	① LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX C:
06/25/20 - 08/05/20	Portable Handset			Page 1 of 3

© 2020 PCTEST REV 21.4 M 09/11/2019

Figure C-2 600 – 5800 MHz Body Tissue Equivalent Matter

0.3

2.2

5250 48.0 18.3 5.34 49.0 5.36 -1.9 -0.4

5300

5600 47.3 18.8 5.84

5700

47.9

5500 47.5

18.4 5.41 48.9

18.6

18.9

5.42 -2.0 -0.2

48.3

8.0

-2.3 1.3

52.8 1.85

52.8

1.94

2.03

14.6 2.07 52.6 2.09

2350 53.0 14.5 1.89

52.9

52.7

2600 52.6 14.7 2.12 52.5

FCC ID: ZNFG900VM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX C:
06/25/20 - 08/05/20	Portable Handset			Page 2 of 3

© 2020 PCTEST REV 21.4 M 09/11/2019

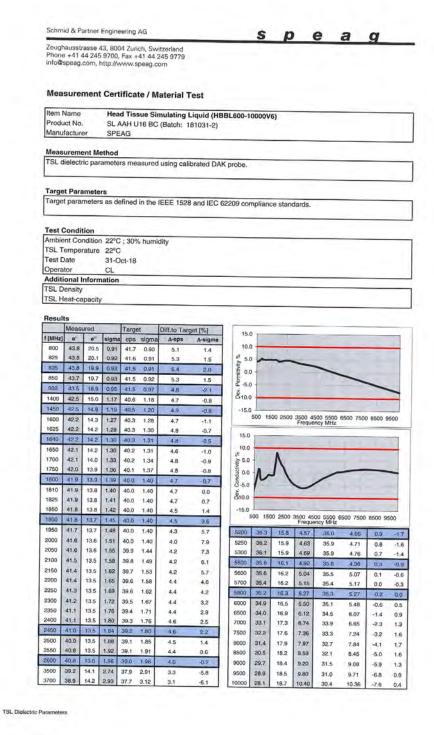


Figure C-3 600 – 5800 MHz Head Tissue Equivalent Matter

FCC ID: ZNFG900VM

PCTEST
SAR EVALUATION REPORT

Quality Manager

Test Dates:
06/25/20 - 08/05/20

Portable Handset

Approved by:
Quality Manager

APPENDIX C:
Page 3 of 3

© 2020 PCTEST REV 21.4 M 09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D-1
SAR System Validation Summary – 1g

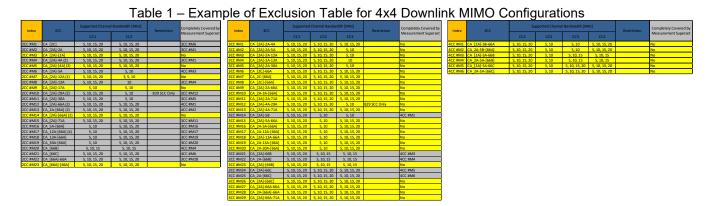
	Freq.	eq. Cond. Perm. CW VALIDATION				N	Mo	DD. VALIDATIO	ON				
SAR System	(MHz)	Date	Probe SN	Probe C	Cal Point	(σ)	(εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
E	750	2/20/2020	3589	750	Head	0.889	43.647	PASS	PASS	PASS	N/A	N/A	N/A
L	835	9/24/2019	7410	835	Head	0.911	42.199	PASS	PASS	PASS	GMSK	PASS	N/A
E	1750	2/20/2020	3589	1750	Head	1.390	41.519	PASS	PASS	PASS	N/A	N/A	N/A
L	1900	9/24/2019	7410	1900	Head	1.442	39.947	PASS	PASS	PASS	GMSK	PASS	N/A
E	2450	2/5/2020	3589	2450	Head	1.823	38.835	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
RK	2450	4/9/2020	7565	2450	Head	1.885	39.550	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
D	3500	2/4/2020	7488	3500	Head	2.882	36.886	PASS	PASS	PASS	TDD	PASS	N/A
RK	5250	6/11/2020	7402	5250	Head	4.534	35.720	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
RK	5600	6/11/2020	7402	5600	Head	4.872	35.230	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
RK	5750	6/11/2020	7402	5750	Head	5.030	35.060	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
L	750	8/20/2019	7410	750	Body	0.941	54.921	PASS	PASS	PASS	N/A	N/A	N/A
Р	835	9/26/2019	7551	835	Body	0.991	54.104	PASS	PASS	PASS	GMSK	PASS	N/A
ı	1750	6/17/2020	7570	1750	Body	1.518	52.030	PASS	PASS	PASS	N/A	N/A	N/A
Р	1750	9/26/2019	7551	1750	Body	1.483	52.663	PASS	PASS	PASS	N/A	N/A	N/A
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A
Н	1900	6/1/2020	7357	1900	Body	1.555	51.210	PASS	PASS	PASS	GMSK	PASS	N/A
RK	2450	4/3/2020	7565	2450	Body	2.030	51.890	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2450	7/7/2020	7409	2450	Body	2.018	51.180	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
D	3500	2/12/2020	7488	3500	Body	3.373	50.003	PASS	PASS	PASS	TDD	PASS	N/A
RK	5250	6/19/2020	7402	5250	Body	5.447	48.780	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
RK	5600	6/19/2020	7402	5600	Body	5.851	47.890	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
RK	5750	6/19/2020	7402	5750	Body	6.159	47.840	PASS	PASS	PASS	OFDM/TDD	PASS	PASS

Table D-2 SAR System Validation Summary – 10g

	Freq.					Cond.	Perm.	С	W VALIDATIO	N	MOD. VALIDATION			
SAR System	(MHz)	Date	Probe SN	Probe C	al Point	(σ)	(Er)			PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR	
1	1750	6/17/2020	7570	1750	Body	1.518	52.030	PASS	PASS	PASS	N/A	N/A	N/A	
Н	1900	6/1/2020	7357	1900	Body	1.555	51.210	PASS	PASS	PASS	GMSK	PASS	N/A	
RK	5250	6/19/2020	7402	5250	Body	5.447	48.780	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
RK	5600	6/19/2020	7402	5600	Body	5.851	47.890	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
RK	5750	6/19/2020	7402	5750	Body	6.159	47.840	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: ZNFG900VM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
06/25/20 — 08/05/20	Portable Handset			Page 1 of 1
)	est Dates:	### Proof to be part of ● element Proof to be part of ● element Proof to be part of ● element	Food to be part of contents SAR EVALUATION REPORT Food to be part of contents SAR EVALUATION REPORT Food to be part of contents SAR EVALUATION REPORT Ford to be part of contents Ford	SAR EVALUATION REPORT Food to be part of selement SAR EVALUATION REPORT Food to be part of selement SAR EVALUATION REPORT Food to be part of selement SAR EVALUATION REPORT Food to be part of selement SAR EVALUATION REPORT


APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA 2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4x4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Note: [CC] indicates component carrier with 4x4 DL MIMO antenna configuration

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier

FCC ID: ZNFG90	0VM	Proud to be part of element	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:		DUT Type:			APPENDIX F:
06/25/20 - 08/05/	20	Portable Handset			Page 1 of 3

aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

LTE Downlink Carrier Aggregation was fully addressed in the original filing. Per FCC Guidance, only combinations that were impacted with respect to this permissive change were additionally evaluated. Refer RF Exposure Technical Report S/N 1M2004230076-01-R1.ZNF for the excluded combinations which have been addressed per KDB 941225 D05A and April 2018 TCBC Workshop guidance.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

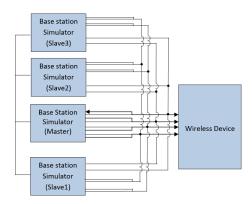


Figure 1
DL CA with DL 4x4 MIMO Power Measurement Setup

FCC ID: ZNFG900VM	Proud to be part of @ element	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
06/25/20 — 08/05/20	Portable Handset			Page 2 of 3

1.3 DL CA with DL 4x4 MIMO RF Conduction Powers

This device supports downlink 4x4 MIMO operations for some LTE bands. Uplink transmission is limited to a single output stream. When carrier aggregation was applicable, the general test selection and setup procedures described in Section 1.2 were applied.

Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive.

1.3.1 **LTE Band 13 as PCC**

			PCC									SCC 1							SCC 2			Power	
Comb	bination	PCC Band	PCC BW [MHz]	PCC	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC	SCC (DL) Freq. [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled	LTE Single Carrier Tx Power (dBm)
CA_13	3A-[48C]	LTE B13	5	23230	782	QPSK	1	24	5230	751	2x2	LTE B48	20	55990	3625	4x4	LTE B48	20	56188	3644.8	4x4	25.23	25.38

1.3.2 LTE Band 66 as PCC

ı		PCC											SCC 1					SCC 2			Power		
	Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL#	PCC UL RB Offset	PCC	PCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled	LTE Single Carrier Tx Power (dBm)
ſ	CA_[48C]-66A	LTE B66	20	132572	1770	QPSK	1	0	67036	2170	2x2	LTE B48	20	55990	3625	4x4	LTE B48	20	56188	3644.8	4x4	25.10	25.32

FCC ID: ZNFG900VM	Proud to be part of @ element	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
06/25/20 - 08/05/20	Portable Handset			Page 3 of 3

© 2020 PCTEST REV 21.3 M 02/15/2019

POWER REDUCTION VERIFICATION **APPENDIX G**

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

Power Verification Procedure G.1

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered. For licensed modes, the device state index as displayed on the device UI was recorded before and after the mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the licensed modes combination cases, one mechanism was switched to a 'triggered' state at a time; the device state index was confirmed to be corresponding to the 'triggered' state after each additional mechanism was activated.

Distance Verification Procedure G.2

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom. For licensed modes, the device state index on the device UI was monitored to determine the triggering state.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: ZNFG900VM	Proud to be part of element	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/25/20 - 08/05/20	Portable Handset			Page 1 of 4

© 2020 PCTFST REV 20.05 M

G.3 Main Antenna Verification Summary

Table G-1
Power Measurement Verification for Main Antenna

Mechanism(s)			Device System Index				
1st	2nd	3rd	Mode/Band	Un-triggered	Mechanism #1	Mechanism #2	Mechanism #3
250	2110	5.0		(Max)	(Reduced)	(Reduced)	(Reduced)
Hotspot On			UMTS 1900	1	5		
Hotspot On	Grip	DD Cause 190°	UMTS 1900	1	5	5	7
Hotspot On Hotspot On	Grip Grip	DD Cover 180° DD Cover 360°	UMTS 1900 UMTS 1900	1	5	5	7 6
Hotspot On	Grip	DD Cover 0°	UMTS 1900	1	5	5	6
Hotspot On	DD Cover 180°		UMTS 1900	1	5	7	
Hotspot On	DD Cover 180°	Grip	UMTS 1900	1	5	7	7
Hotspot On Hotspot On	DD Cover 360° DD Cover 360°	Grip	UMTS 1900 UMTS 1900	1	5	6	6
Hotspot On	DD Cover 0°	СПР	UMTS 1900	1	5	6	Ü
Hotspot On	DD Cover 0°	Grip	UMTS 1900	1	5	6	6
Grip			UMTS 1900	1	8		
Grip	Hotspot On	DD Cours 190°	UMTS 1900 UMTS 1900	1	8	5	7
Grip Grip	Hotspot On Hotspot On	DD Cover 180° DD Cover 360°	UMTS 1900	1	8	5	6
Grip	Hotspot On	DD Cover 0°	UMTS 1900	1	8	5	6
Grip	DD Cover 180°		UMTS 1900	1	8	7	
Grip	DD Cover 180°	Hotspot On	UMTS 1900	1	8	7	7
Grip	DD Cover 360° DD Cover 360°	Hotspot On	UMTS 1900 UMTS 1900	1	8	6	6
Grip Grip	DD Cover 0°	notspot Off	UMTS 1900	1	8	6	0
Grip	DD Cover 0°	Hotspot On	UMTS 1900	1	8	6	6
DD Cover 180°			UMTS 1900	1	7		
DD Cover 180°	Hotspot On		UMTS 1900	1	7	7	
DD Cover 180°	Hotspot On	Grip	UMTS 1900	1	7	7	7
DD Cover 180° DD Cover 180°	Grip Grip	Hotspot On	UMTS 1900 UMTS 1900	1	7	7	7
DD Cover 360°	СПР	Hotspot Oil	UMTS 1900	1	6	,	,
DD Cover 360°	Hotspot On		UMTS 1900	1	6	6	
DD Cover 360°	Hotspot On	Grip	UMTS 1900	1	6	6	6
DD Cover 360°	Grip		UMTS 1900	1	6	6	
DD Cover 360°	Grip	Hotspot On	UMTS 1900	1	6	6	6
DD Cover 0° DD Cover 0°	Hotspot On		UMTS 1900 UMTS 1900	1	6	6	
DD Cover 0°	Hotspot On	Grip	UMTS 1900	1	6	6	6
DD Cover 0°	Grip		UMTS 1900	1	6	6	
DD Cover 0°	Grip	Hotspot On	UMTS 1900	1	6	6	6
Hotspot On	64		PCS CDMA	1	5	-	
Hotspot On Hotspot On	Grip Grip	DD Cover 180°	PCS CDMA PCS CDMA	1	5	5	7
Hotspot On	Grip	DD Cover 360°	PCS CDMA	1	5	5	6
Hotspot On	Grip	DD Cover 0°	PCS CDMA	1	5	5	6
Hotspot On	DD Cover 180°		PCS CDMA	1	5	7	
Hotspot On	DD Cover 180°	Grip	PCS CDMA	1	5	7	7
Hotspot On Hotspot On	DD Cover 360° DD Cover 360°	Grip	PCS CDMA PCS CDMA	1	5	6	6
Hotspot On	DD Cover 0°	P	PCS CDMA	1	5	6	<u> </u>
Hotspot On	DD Cover 0°	Grip	PCS CDMA	1	5	6	6
Grip			PCS CDMA	1	8		
Grip	Hotspot On	DD Cover 1909	PCS CDMA	1	8	5	7
Grip Grip	Hotspot On Hotspot On	DD Cover 180° DD Cover 360°	PCS CDMA PCS CDMA	1	8	5	7 6
Grip	Hotspot On	DD Cover 0°	PCS CDMA	1	8	5	6
Grip	DD Cover 180°		PCS CDMA	1	8	7	
Grip	DD Cover 180°	Hotspot On	PCS CDMA	1	8	7	7
Grip	DD Cover 360° DD Cover 360°	Hotenot On	PCS CDMA PCS CDMA	1	8	6	6
Grip Grip	DD Cover 0°	Hotspot On	PCS CDMA PCS CDMA	1	8	6	0
Grip	DD Cover 0°	Hotspot On	PCS CDMA	1	8	6	6
DD Cover 180°			PCS CDMA	1	7		
DD Cover 180°	Hotspot On	6.	PCS CDMA	1	7	7	_
DD Cover 180° DD Cover 180°	Hotspot On Grip	Grip	PCS CDMA PCS CDMA	1	7	7	/
DD Cover 180°	Grip	Hotspot On	PCS CDMA	1	7	7	7
DD Cover 360°		,	PCS CDMA	1	6		
DD Cover 360°	Hotspot On		PCS CDMA	1	6	6	
DD Cover 360°	Hotspot On	Grip	PCS CDMA	1	6	6	6
DD Cover 360°	Grip	Hotenot On	PCS CDMA PCS CDMA	1	6	6	6
DD Cover 360° DD Cover 0°	Grip	Hotspot On	PCS CDMA PCS CDMA	1	6	6	6
DD Cover 0°	Hotspot On		PCS CDMA	1	6	6	
DD Cover 0°	Hotspot On	Grip	PCS CDMA	1	6	6	6
DD Cover 0°	Grip		PCS CDMA	1	6	6	
DD Cover 0°	Grip	Hotspot On	PCS CDMA	1	6	6	6

FCC ID: ZNFG900VM	PCTEST* Proud to be part of @ semment	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/25/20 - 08/05/20	Portable Handset			Page 2 of 4

	Mechanism(s)						
			Mode/Band			l	
1st	2nd	3rd					
Hotspot On Hotspot On	Grip		LTE FDD Band 4 LTE FDD Band 4	1	5 5	5	
Hotspot On Hotspot On	Grip Grip	DD Cover 180° DD Cover 360°	LTE FDD Band 4 LTE FDD Band 4	1	5	5	7 6
Hotspot On Hotspot On	Grip DD Cover 180°	DD Cover 0°	LTE FDD Band 4 LTE FDD Band 4	1	5	5 7	6
Hotspot On Hotspot On	DD Cover 180° DD Cover 360°	Grip	LTE FDD Band 4 LTE FDD Band 4	1	5	7	7
Hotspot On Hotspot On	DD Cover 360°	Grip	LTE FDD Band 4 LTE FDD Band 4	1 1	5	6	6
Hotspot On Grip	DD Cover 0°	Grip	LTE FDD Band 4 LTE FDD Band 4	1 1	5 8	6	6
Grip Grip	Hotspot On Hotspot On	DD Cover 180°	LTE FDD Band 4 LTE FDD Band 4	1 1	8	5	7
Grip Grip	Hotspot On Hotspot On	DD Cover 360°	LTE FDD Band 4 LTE FDD Band 4	1 1	8	5	6
Grip Grip	DD Cover 180° DD Cover 180°	Hotspot On	LTE FDD Band 4 LTE FDD Band 4	1 1	8	7	7
Grip Grip	DD Cover 360° DD Cover 360°	Hotspot On	LTE FDD Band 4 LTE FDD Band 4	1	8	6	6
Grip Grip	DD Cover 0°	Hotspot On	LTE FDD Band 4 LTE FDD Band 4	1	8	6	6
DD Cover 180°			LTE FDD Band 4 LTE FDD Band 4	1	7	-	
DD Cover 180° DD Cover 180°	Hotspot On Hotspot On	Grip	LTE FDD Band 4	1	7	7	7
DD Cover 180° DD Cover 180°	Grip Grip	Hotspot On	LTE FDD Band 4 LTE FDD Band 4	1	7	7	7
DD Cover 360°	Hotspot On		LTE FDD Band 4 LTE FDD Band 4	1	6	6	
DD Cover 360° DD Cover 360°	Hotspot On Grip	Grip	LTE FDD Band 4 LTE FDD Band 4	1	6	6	6
DD Cover 360° DD Cover 0°	Grip	Hotspot On	LTE FDD Band 4 LTE FDD Band 4	1	6	6	6
DD Cover 0°	Hotspot On Hotspot On	Grip	LTE FDD Band 4 LTE FDD Band 4	1	6	6	6
DD Cover 0°	Grip	Hotspot On	LTE FDD Band 4 LTE FDD Band 4	1	6	6	6
DD Cover 0° Hotspot On	Grip	noispôt Un	LTE FDD Band 66	1	5		•
Hotspot On Hotspot On	Grip Grip	DD Cover 180°	LTE FDD Band 66 LTE FDD Band 66	1	5	5	7
Hotspot On Hotspot On	Grip Grip	DD Cover 360° DD Cover 0°	LTE FDD Band 66 LTE FDD Band 66	1	5	5	6
Hotspot On Hotspot On	DD Cover 180° DD Cover 180°	Grip	LTE FDO Band 66 LTE FDO Band 66	1	5	7	7
Hotspot On Hotspot On	DD Cover 360° DD Cover 360°	Grip	LTE FDD Band 66 LTE FDD Band 66	1 1	5	6	6
Hotspot On Hotspot On	DD Cover 0°	Grin	LTE FDD Band 66	1	5	6	6
Grip Grip	Hotspot On	4-14	LTE FDD Band 66 LTE FDD Band 66	1	8	į	
Grip	Hotspot On	DD Cover 180° DD Cover 360°	LTE FDO Band 66 LTE FDO Band 66	1	8	5	7
Grip Grip	Hotspot On Hotspot On	DD Cover 0°	LTE FDD Band 66	1	8	5	6
Grip Grip	DD Cover 180° DD Cover 180°	Hotspot On	LTE FDD Band 66 LTE FDD Band 66	1	8	7	7
Grip Grip	DD Cover 360° DD Cover 360°	Hotspot On	LTE FDD Band 66 LTE FDD Band 66	1	8	6	6
Grip Grip	DD Cover 0°	Hotspot On	LTE FDD Band 66 LTE FDD Band 66	1	8	6	6
DD Cover 180° DD Cover 180°	Hotspot On		LTE FDD Band 66 LTE FDD Band 66	1	7	7	
DD Cover 180° DD Cover 180°	Hotspot On Grip	Grip	LTE FDD Band 66 LTE FDD Band 66	1	7	7	7
DD Cover 180°	Grip	Hotspot On	LTE FDO Band 66 LTE FDO Band 66	1	7	7	7
DD Cover 360° DD Cover 360°	Hotspot On		LTE FDD Band 66	1	6	6	
DD Cover 360° DD Cover 360°	Hotspot On Grip	Grip	LTE FDD Band 66 LTE FDD Band 66	1	6	6	6
DD Cover 0°	Grip	Hotspot On	LTE FDD Band 66 LTE FDD Band 66	1	6	6	6
DD Cover 0°	Hotspot On Hotspot On	Grip	LTE FDD Band 66 LTE FDD Band 66	1	6	6	6
DD Cover 0°	Grip Grip	Hotspot On	LTE FDD Band 66 LTE FDD Band 66	1 1	6	6	6
Hotspot On Hotspot On	Grip		LTE FDD Band 2 LTE FDD Band 2	1	5	5	
Hotspot On	Grip	DD Cover 180°	LTE FDD Band 2	1	5	5	7
Hotspot On Hotspot On	Grip Grip	DD Cover 0°	LTE FDD Band 2 LTE FDD Band 2	1	5	5	6
Hotspot On Hotspot On	DD Cover 180° DD Cover 180°	Grip	LTE FDD Band 2 LTE FDD Band 2	1	5	7	7
Hotspot On Hotspot On	DD Cover 360° DD Cover 360°	Grip	LTE FDD Band 2 LTE FDD Band 2	1	5	6	6
Hotspot On Hotspot On	DD Cover 0°	Grip	LTE FDD Band 2 LTE FDD Band 2	1	5 5	6	6
Grip Grip	Hotspot On		LTE FDD Band 2 LTE FDD Band 2	1	8 8	5	
Grip Grip	Hotspot On Hotspot On	DD Cover 180° DD Cover 360°	LTE FDD Band 2 LTE FDD Band 2	1	8 8	5	7
Grip	Hotspot On	DD Cover 0°	LTE FDD Band 2	1	8	5	6
Grip Grip	DD Cover 180° DD Cover 180°	Hotspot On	LTE FDD Band 2 LTE FDD Band 2	1	8 8	7	7
Grip Grip Grip	DD Cover 360° DD Cover 360°	Hotspot On	LTE FDD Band 2 LTE FDD Band 2 LTE FDD Band 2	1	8 8 8	6	6
Grip	DD Cover 0°	Hotspot On	LTE FDD Band 2	1	8	6	6
DD Cover 180° DD Cover 180°	Hotspot On		LTE FDD Band 2 LTE FDD Band 2	1	7	7	
DD Cover 180° DD Cover 180°	Hotspot On Grip	Grip	LTE FDD Band 2 LTE FDD Band 2	1 1	7	7	7
DD Cover 180° DD Cover 360°	Grip	Hotspot On	LTE FDD Band 2 LTE FDD Band 2	1	7	7	7
DD Cover 360°	Hotspot On Hotspot On	Grin	LTE FDD Band 2 LTE FDD Band 2 LTE FDD Band 2	1	6	6	
DD Cover 360°	Hotspot On Grip	4.1	LTE FDD Band 2	1	6	6	
DD Cover 360°	Grip	Hotspot On	LTE FDD Band 2 LTE FDD Band 2	1	6	6	6
DD Cover 0°	Hotspot On Hotspot On	Grip	LTE FDD Band 2 LTE FDD Band 2	1	6	6	6
DD Cover 0°	Grip Grip	Hotspot On	LTE FDD Band 2 LTE FDD Band 2	1	6	6	6
	:cc					VOI) 4-	

*Note: This device uses different Device State Indices (DSI) to configure different time averaged power levels based on certain exposure scenarios. For this device, DSI = 8 represents the case when the grip sensor is active, and DSI = 5 represents the case when hotspot mode is active. DSI = 1 is configured at max power when the device cannot detect the use condition. DSI = 6 represents the case when the device is using the Dual Display Accessory in Position #1 or Position #3 (0° or 360°). DSI = 7 represents the case when the device is using the Dual Display Accessory in Position #2 (180°).

FCC ID: ZNFG900VM	Proud to be part of @ vienment SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX G:
06/25/20 - 08/05/20	Portable Handset	Page 3 of 4

Table G-2
Distance Measurement Verification for Main Antenna

			Distance Meas	Minimum Diatamas nas	
Mechanism(s)	Test Condition	Band	Moving Toward	Moving Away	Minimum Distance per Manufacturer (mm)
Grip	Phablet - Back Side	Mid	5	7	3
Grip	Phablet - Front Side	Mid	3	4	2
Grip	Phablet - Bottom Edge	Mid	6	7	5

^{*}Note: Mid band refers to: CDMA BC1, UMTS B2, LTE B2/4/66.

FCC ID: ZNFG900VM	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/25/20 - 08/05/20	Portable Handset			Page 4 of 4

11/15/2017

APPENDIX H: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D750V3-1054_Mar20

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

March 11, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). V The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
	ı		
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Claudio Leubler	ent processor and the State Market State and the contract of t	A STATE OF THE STA
Calibrated by.	Ciaddio Fedhiei	Laboratory Technician	1 Ku
			40
Approved by:	Katja Pok o vic	Technical Manager	

Issued: March 19, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054_Mar20

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1054 Mar20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.5 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.63 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.69 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.63 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1054_Mar20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω - 1.9 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω - 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.005 ==
, (=====	1.035 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	J SFLAG

DASY5 Validation Report for Head TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

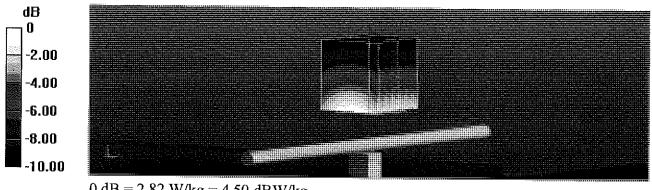
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.98 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.19 W/kg

SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg

Smallest distance from peaks to all points 3 dB below = 17.1 mm


Ratio of SAR at M2 to SAR at M1 = 66.8%

Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27,12,2019

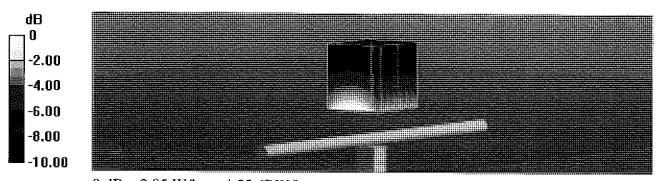
Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

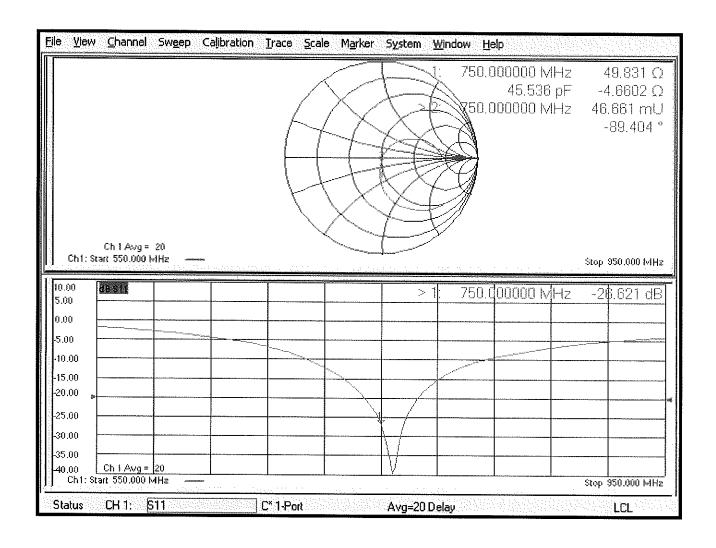
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.15 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.22 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg

Smallest distance from peaks to all points 3 dB below = 16.1 mm


Ratio of SAR at M2 to SAR at M1 = 66.7%

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3D v2 -R/L

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN T
SAR for nominal Head TSL parameters	normalized to 1W	7.66 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
CARC	Soriation	

SAR for nominal Head TSL parameters normalized to 1W 5.14 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth ≅ F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	8.42 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Neck \cong H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	7.89 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear \cong D90)

SAR for nominal Head TSL parameters normalized to 1W 6.82 W/kg ± 17.	5 % (k=2)

SAR for nominal Head TSL parameters normalized to 1W 4.63 W/kg ± 16.9 % (k=2)

Certificate No: D750V3-1054_Mar20

 $^{^{\}mathrm{1}}$ Additional assessments outside the current scope of SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

CALIBRATION CERTIFICATI

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d132_Jan20

D835V2 - SN:4d132
OA CALID vid. College Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

January 13, 2020

131

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Арг-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Арг-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sal Alan
Approved by:	Katja Pokovic	Technical Manager	all the

Issued: January 21, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	- TTTTTTTTT - 1 TIMING MITTERS TOTAL MINISTRA
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.65 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.30 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	PA 20 10 10	

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.96 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.64 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω - 3.1 jΩ
Return Loss	- 30.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.5 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

lanufactured by	SPEAG

Certificate No: D835V2-4d132_Jan20

DASY5 Validation Report for Head TSL

Date: 13.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

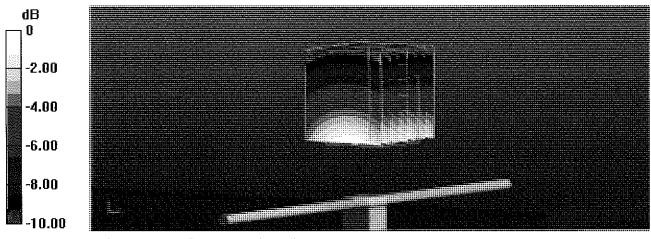
• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

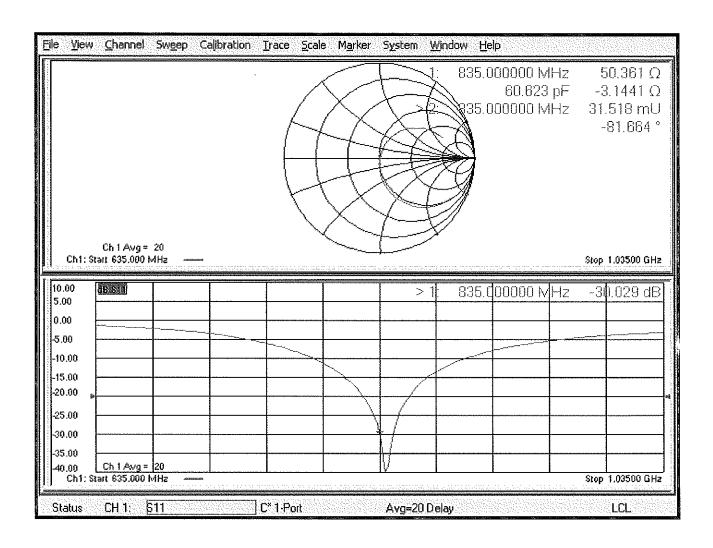
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.94 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.58 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm


Ratio of SAR at M2 to SAR at M1 = 67.1%

Maximum value of SAR (measured) = 3.20 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

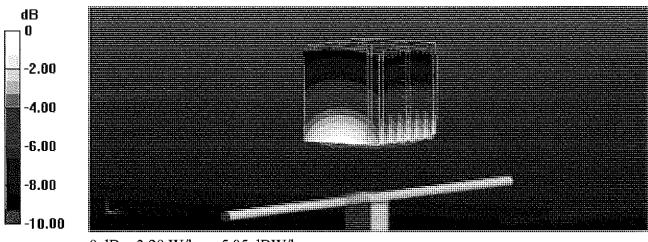
Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

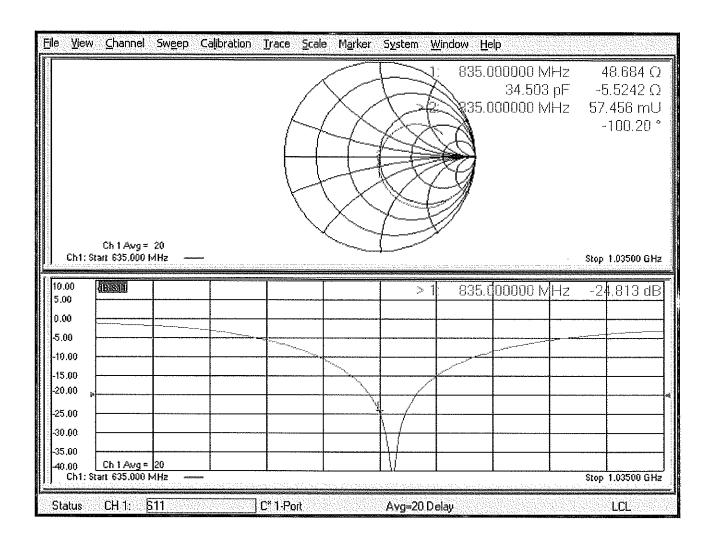
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.64 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.68 W/kg

Smallest distance from peaks to all points 3 dB below = 16.2 mm


Ratio of SAR at M2 to SAR at M1 = 68.2%

Maximum value of SAR (measured) = 3.33 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

Impedance Measurement Plot for Body TSL

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3D V2 -R/L
---------	------------------	--------------------------------------

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.34 W/kg ± 17.5 % (k=2)
SAR averaged ever 10 cm ³ /10 g) of Head TSI	a and thon	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	6.19 W/ka ± 16.9 % (k=2)

SAR result with SAM Head (Mouth ≅ F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.80 W/kg ± 17.5 % (k=2)
	1	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Neck ≅ H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR for nominal Head TSL parameters	normalized to 1W	9.32 W/kg ± 17.5 % (k=2)	
SAR averaged over 10 cm³ (10 g) of Head TSL	condition		

SAR result with SAM Head (Ear ≅ D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	8.01 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	

Certificate No: D835V2-4d132_Jan20

Additional assessments outside the current scope of SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

C Test

Certificate No: D1750V2-1150_Oct18

CALIBRATION	<u> COERTIFICATIE</u>
Object	D1750V2 - SN:1150
Calibration procedure(s)	OA CAL-05 v10 Calibration procedure for dipole validation kits above 700 MHz
Calibration date:	October 22, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dsc-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	in house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MNOSET
Approved by:	Katja Pokovic	Technical Manager	WKC-

issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1150_Oct18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1150_Oct18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ
Return Loss	- 40.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.33 \text{ S/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017

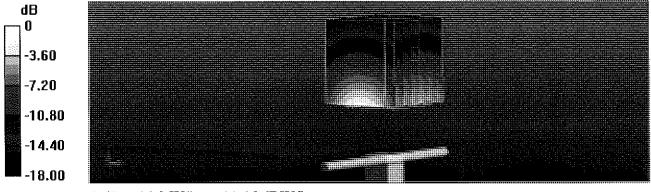
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electromics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

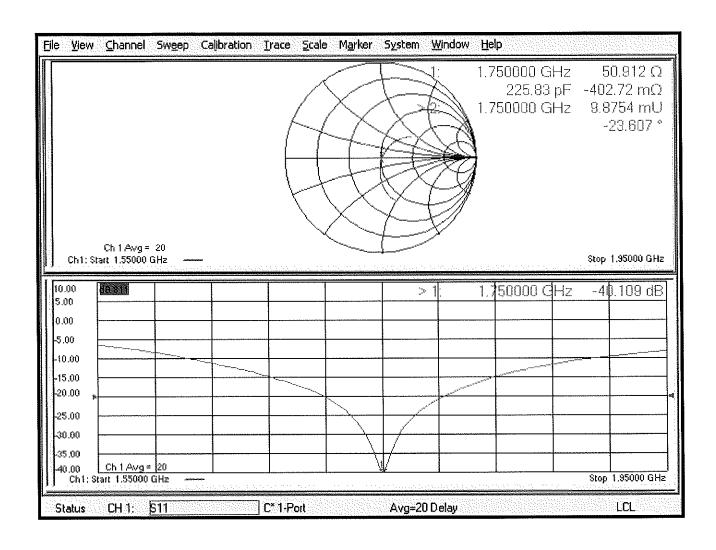
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 16.7 W/kg


SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017

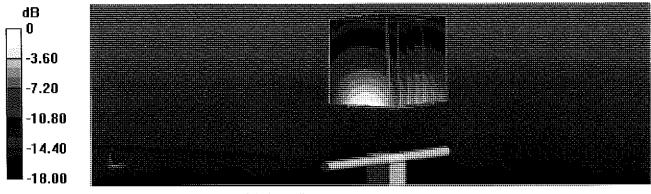
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

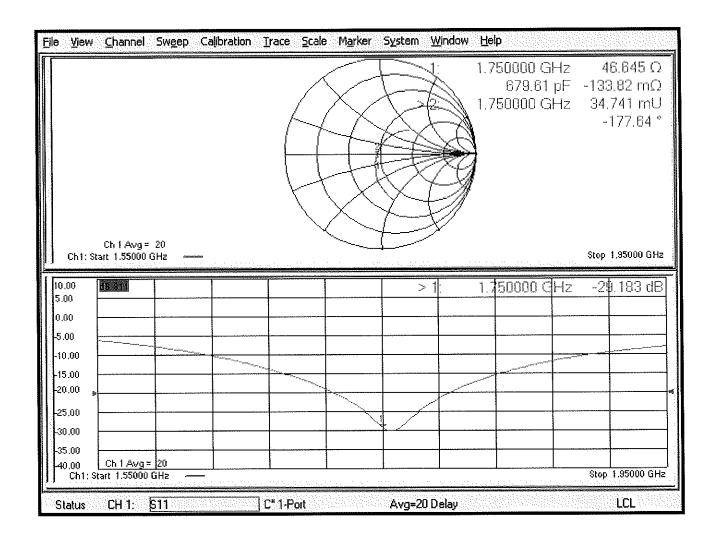
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1750V2 – SN:1150

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	8/16/2019	Annual	8/16/2020	7308
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2019	Annual	8/14/2020	1450

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

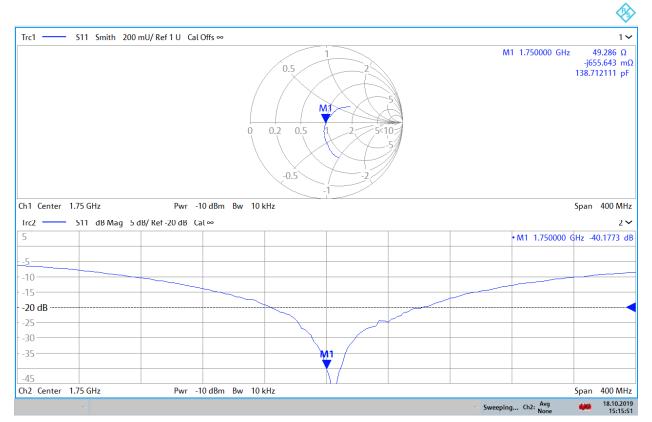
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D1750V2 - SN:1150	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

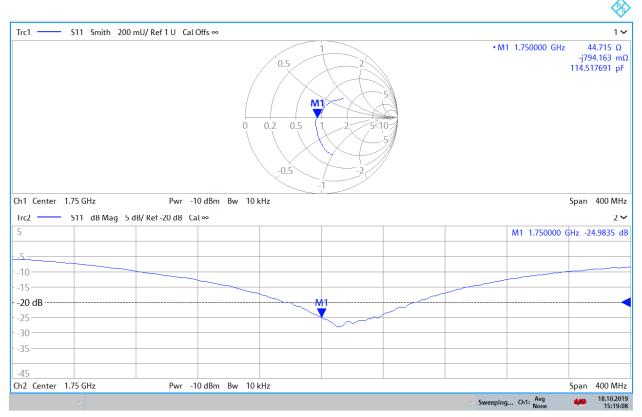
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.65	3.8	4.11%	1.92	2	4.17%	50.9	49.3	1.6	0.4	-0.7	1.1	-40.1	-40.2	-0.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.66	3.82	4.37%	1.94	2.02	4.12%	46.6	44.7	1.9	-0.1	-0.8	0.7	-29.2	-25	14.40%	PASS

Object:	Date Issued:	Page 2 of 4	
D1750V2 - SN:1150	10/18/2019	Fage 2 01 4	


Impedance & Return-Loss Measurement Plot for Head TSL

15:15:52 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1750V2 - SN:1150	10/18/2019	raye 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:19:09 18.10.2019

Object:	Date Issued:	Page 4 of 4
D1750V2 - SN:1150	10/18/2019	Page 4 of 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D1900V2=5d148_Feb19

		.Ce	milicate No: E/1900V/2-50 148 FED 19
CALIBRATION C	ERTIFICATI		
Object	D1900V2 - SN:5	d148	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proc	edure for SAR Validation	Sources between 0.7-3 GHz
Calibration date:	February 21, 20	(9	Physical units of measurements (SI). $0.2-26-2$
This calibration certificate docume The measurements and the uncert	nts the traceability to nat tainties with confidence p	ional standards, which realize the p probability are given on the followin	physical units of measurements (SI). 02-26-2 g pages and are part of the certificate.
All calibrations have been conduct			
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Callbration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/0267	73) Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mlsmatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec	
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct1	· · · · · · · · · · · · · · · · · · ·
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
ower meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-	*·····································
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-	,
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-	,
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-	
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-	·
	Nome	سر	
Colibrated but	Name	Function	Signature
Calibrated by:	Manu Seltz	Laboratory Technici	lan J
Approved by:	Kalja Pokovic	Technical Manager	
 40			Issued: February 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d148_Feb19

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d148_Feb19

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 6.8 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 7.8 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	4 4 = 0
Licetical Delay (one direction)	1.170 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-	

DASY5 Validation Report for Head TSL

Date: 21.02,2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018

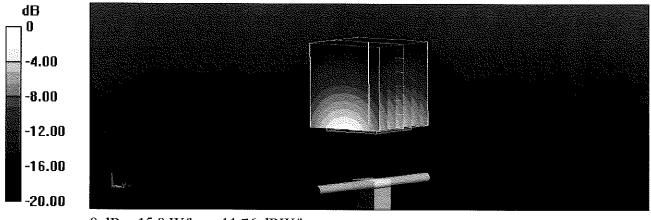
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

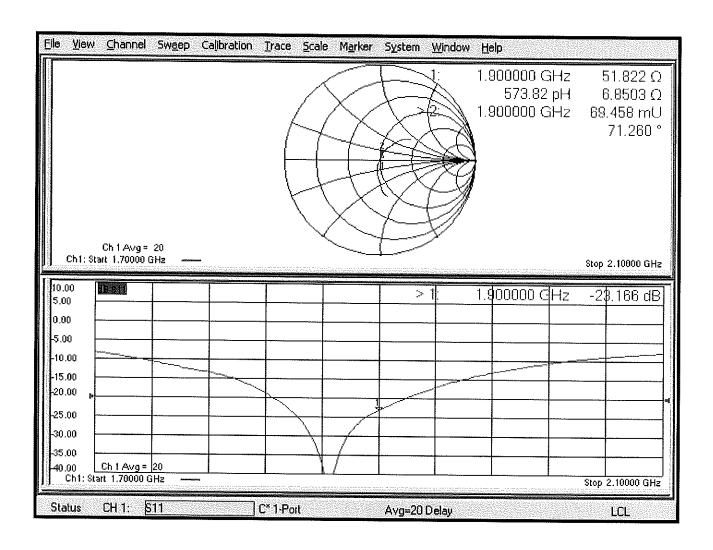
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.4 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.8 W/kg


SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018

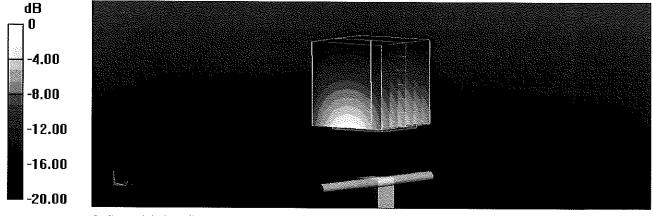
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10,2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

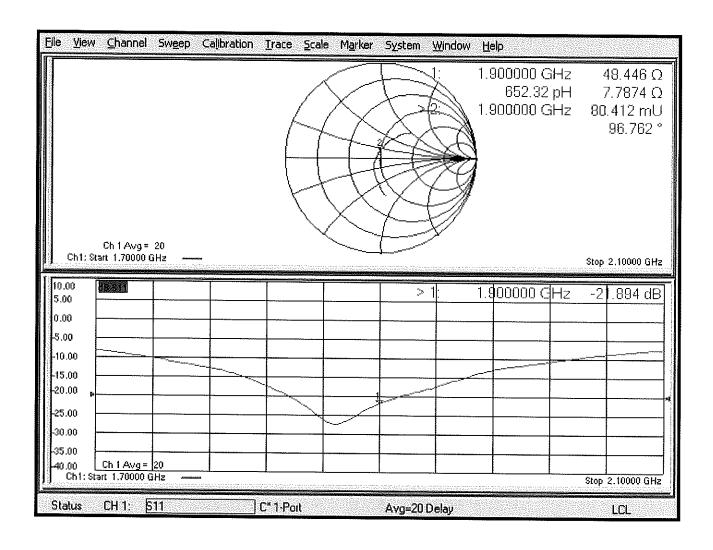
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.7 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1900V2 – SN: 5d148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 2/21/2020

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322

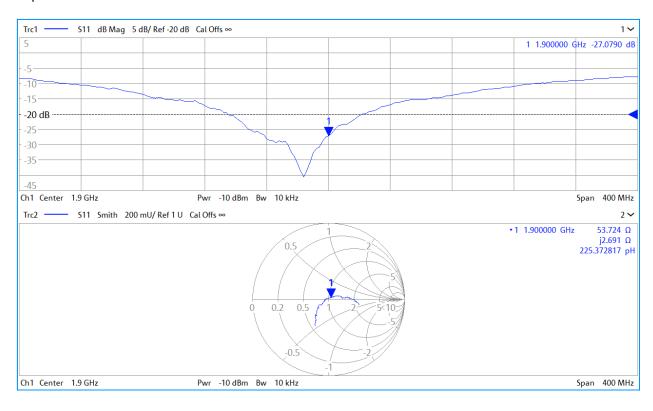
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	306

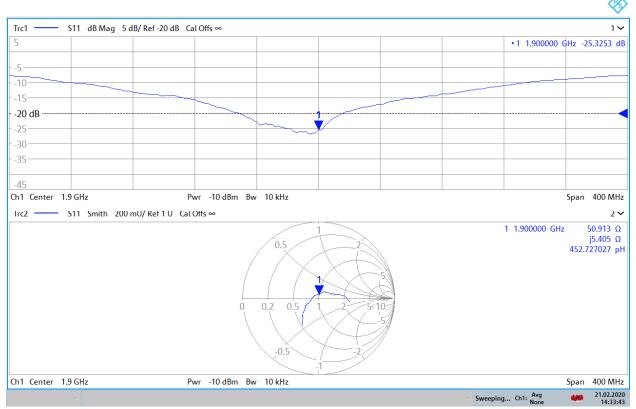
Object:	Date Issued:	Page 1 of 4
D1900V2 - SN: 5d148	02/21/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) M(4 ©	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.15	6.14%	2.04	2.13	4.41%	51.8	53.7	1.9	6.8	2.7	4.1	-23.2	-27.1	-16.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) M(4 @	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.06	3.84%	2.05	2.08	1.46%	48.4	50.9	2.5	7.8	5.4	2.4	-21.9	-25.3	-15.60%	PASS

Object:	Date Issued:	Page 2 of 4	
D1900V2 - SN: 5d148	02/21/2020	Faye 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

14:33:44 21.02.2020

Object:	Date Issued:	Page 4 of 4
D1900V2 - SN: 5d148	02/21/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multifateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D3500V2-1059_Jan18

CALIBRATION C	ERTIFICATE		
Object	D3500V2 - SN:10	059	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	edure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	January 11, 2018	3	BN V
This calibration certificate docum The measurements and the unce	ents the traceability to nat utainties with confidence p	cional standards, which realize the physical un probability are given on the following pages ar	
		bry facility: environment temperature (22 \pm 3)°	ilts of measurements (SI), and are part of the certificate. C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&	1		0/112/3
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration Util
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Atlenuator	SN: 5058 (20K)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4 DAE4	SN: 3503 SN: 601	30-Dec-17 (No. EX9-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Dec-18 Oct-18
	•	20 000 17 (1,00 27)27 001 200(17)	06(-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MULL
	¥	•	אשווין (אינוין
A			

issued: January 16, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D3500V2-1059_Jan18

Approved by:

Page 1 of 8

Technical Manager

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1059_Jan18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	2.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	64.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	51.3	3.31 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.0 ± 6 %	3.32 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	65.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω - 7.1 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.4 Ω - 4.5 jΩ
Return Loss	- 25.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.136 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 20, 2017

DASY5 Validation Report for Head TSL

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz; $\sigma = 2.91 \text{ S/m}$; $\varepsilon_r = 38.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.8, 7.8, 7.8); Calibrated: 30.12.2017;

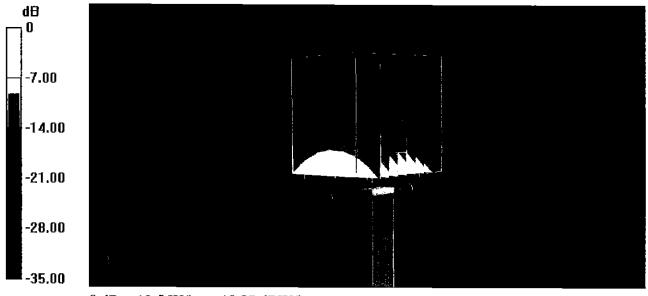
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10,2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

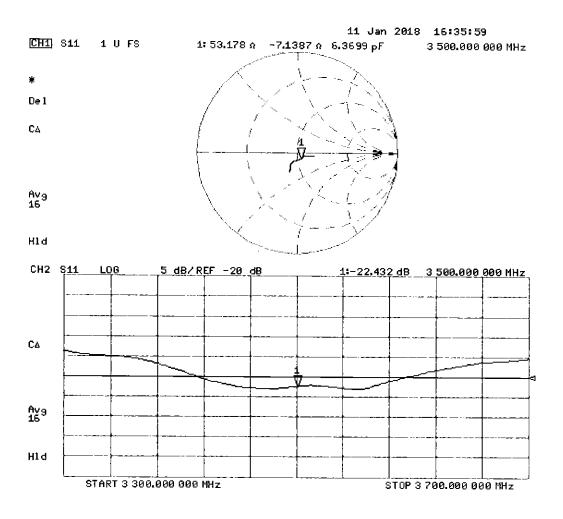
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.59 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.6 W/kg


SAR(1 g) = 6.44 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz; $\sigma = 3.32 \text{ S/m}$; $\varepsilon_r = 50$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.43, 7.43, 7.43); Calibrated: 30.12.2017;

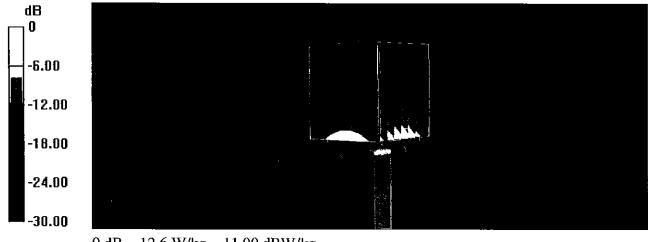
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10,2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

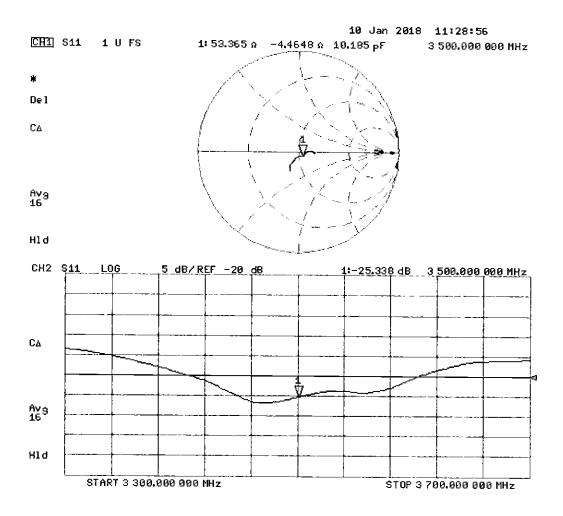
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm


(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.18 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 17.9 W/kg


SAR(1 g) = 6.55 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D3500V2 – SN: 1059

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/11/2019

Description: SAR Validation Dipole at 3500 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	2/14/2018	Annual	2/14/2019	3914
SPEAG	EX3DV4	SAR Probe	8/24/2018	Annual	8/24/2019	3949

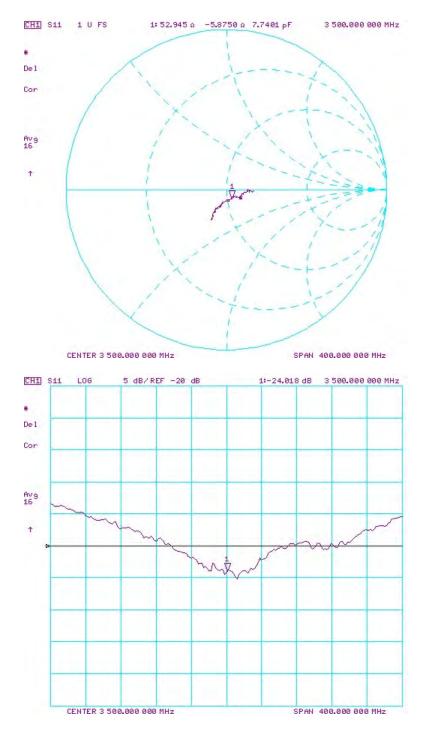
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 5
D3500V2 – SN: 1059	01/11/2019	rage 1015

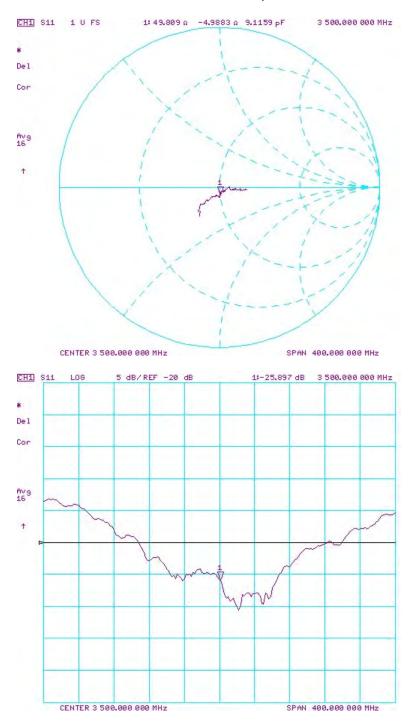
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/16/2019	1.136	6.46	6.23	-3.56%	2.44	2.34	-4.10%	53.2	52.9	0.3	-7.1	-5.9	1.2	-22.4	-24	-7.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/16/2019	1.136	6.51	6	-7.83%	2.42	2.26	-6.61%	53.4	49.8	3.6	-4.5	-5	0.5	-25.3	-25.9	-2.40%	PASS


Object:	Date Issued:	Page 2 of 5
D3500V2 - SN: 1059	01/11/2019	rage 2 or 5

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 5
D3500V2 – SN: 1059	01/11/2019	rage 3 01 3

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 5
D3500V2 - SN: 1059	01/11/2019	Page 4 of 5

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D3500V2 – SN: 1059

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/11/2020

Description: SAR Validation Dipole at 3500 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

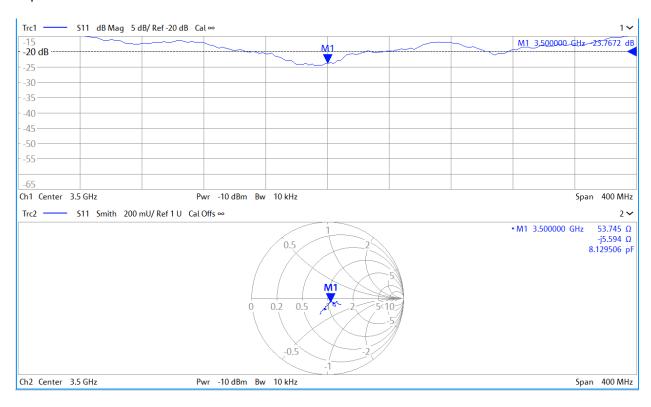
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

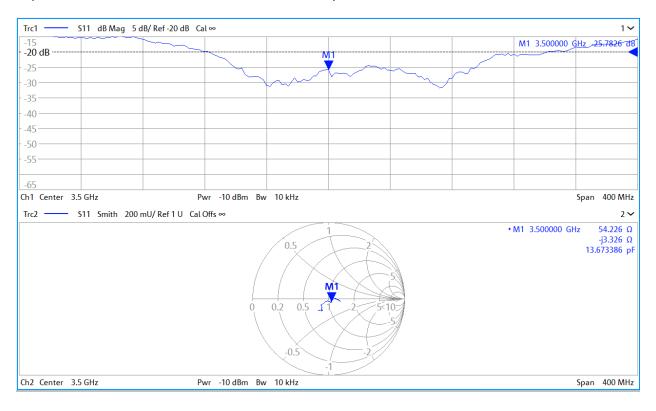
Object:	Date Issued:	Page 1 of 4
D3500V2 – SN: 1059	01/11/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.136	6.46	6.73	4.18%	2.44	2.56	4.92%	53.2	53.7	0.5	-7.1	-5.6	1.5	-22.4	-23.8	-6.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.136	6.51	6.53	0.31%	2.42	2.4	-0.83%	53.4	54.2	0.8	-4.5	-3.3	1.2	-25.3	-25.8	-1.90%	PASS

Object:	Date Issued:	Page 2 of 4
D3500V2 - SN: 1059	01/11/2020	raye 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D750V3-1003_Mar20

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1003

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

March 16, 2020

BNV 130 12020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
	•		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
			1/4_
	pilotejitettiliki listituasen jittaatasen ja vest		V
Approved by:	Katja Pokovic	Technical Manager	ALC
for the state of t			

Issued: March 16, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1003_Mar20

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1003_Mar20 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.5 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.78 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.77 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54. 7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	naw.	No ale sas Ma

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.67 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1003_Mar20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω - 0.1 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.8 Ω - 2.4 jΩ
Return Loss	- 30.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 16.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.88 \text{ S/m}$; $\varepsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

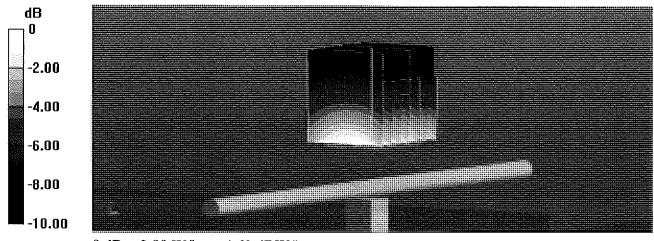
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

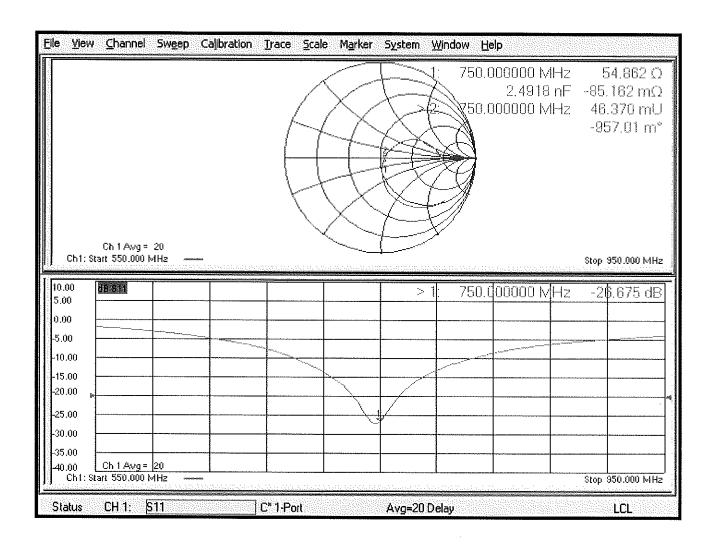
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.72 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 3.27 W/kg

SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.43 W/kg

Smallest distance from peaks to all points 3 dB below = 16.5 mm


Ratio of SAR at M2 to SAR at M1 = 66.2%

Maximum value of SAR (measured) = 2.90 W/kg

0 dB = 2.90 W/kg = 4.62 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

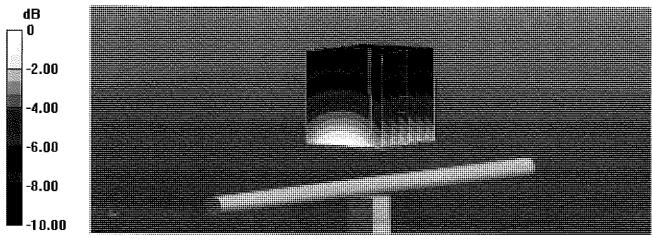
Probe: EX3DV4 - SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

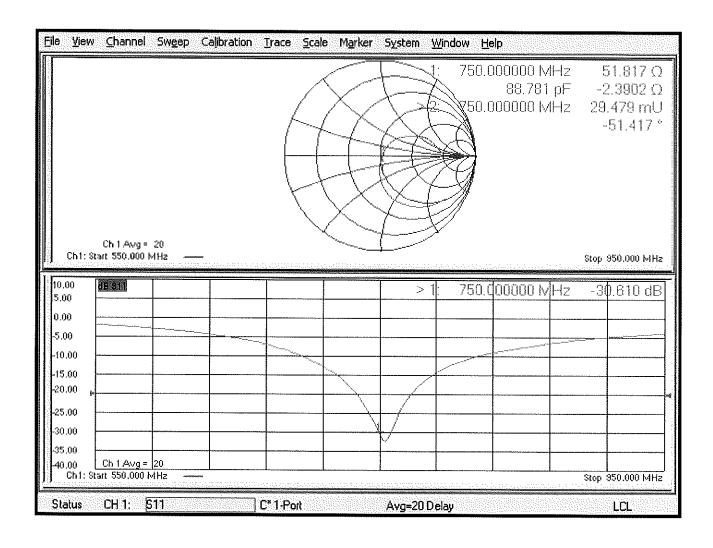
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.60 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.23 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg

Smallest distance from peaks to all points 3 dB below = 21.2 mm


Ratio of SAR at M2 to SAR at M1 = 66.6%

Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d047 Mar19

CALIBRATION CERTIFICATE Object Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) 1D# Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Арг-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7349 31-Dec-18 (No. EX3-7349_Dec18) Dec-19 DAE4 SN: 601 04-Oct-18 (No. DAE4-601_Oct18) Oct-19 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 07-Oct-15 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) in house check: Oct-20 SN: US41080477 Network Analyzer Agilent E8358A 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Name Function Signature Calibrated by: Manu Seitz Laboratory Technician Approved by: Katia Pokovic Technical Manager Issued: March 13, 2019

Certificate No: D835V2-4d047_Mar19

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d047_Mar19 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d047_Mar19 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 2.6 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.1 jΩ
Return Loss	- 22.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D835V2-4d047_Mar19 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018

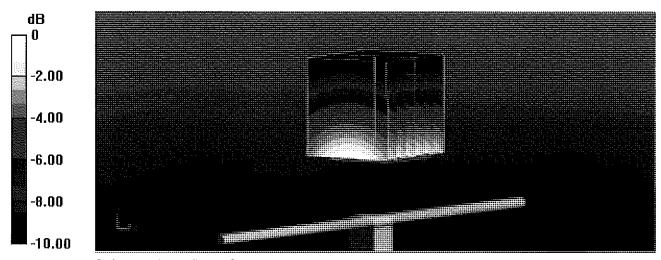
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.48 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg