GCE Group **Zen-O with Clarity** SAR Evaluation Report # GCEG0001.1 Rev. 1 Evaluated to the following SAR specification: FCC 2.1093:2018 NVLAP Lab Code: 200630-0 # **CERTIFICATE OF TEST** Last Date of Test: 2018/02/21 GCE Group Model: Zen-O with Clarity **Applicable Standard** | , pp. out of the state of | | | | | | | | |---------------------------|-----------------|--|-----------|--|--|--|--| | Test Description | Specification | Test Method | Pass/Fail | | | | | | SAR Evaluation | FCC 2.1093:2018 | IEEE Std 1528:2013, FCC KDB 447498 D01 v06 FCC KDB 941225 D01 v03r01 FCC KDB 941225 D05 v02r05 FCC KDB 616217 D04 v01r02 FCC KDB 865664 D01 v01r04 FCC KDB 865664 D02 v01r02 | Pass | | | | | **Highest SAR Values:** | Frequency Bands
(GHz) | Body
(W/kg)
1g | Limit
(W/kg)
1g | Exposure Environment | |--------------------------|----------------------|-----------------------|----------------------| | GSM | 1.50 | 1.6 | Concret Benulation | | PCS | 1.41 | 1.6 | General Population | # **Deviations From Test Standards** None **Approved By:** Don Facteau, Systems Architect # **REVISION HISTORY** | Revision
Number | Description | Date | Page Number | |--------------------|--|------------|-----------------------------| | 01 | Removed FCC 15.247:2018 from report and updated methods | 2018/05/16 | 1, 2, 14-17, 19, 29, 30, 34 | | 01 | Deleted scaling factor formula from page | 2018/05/16 | 8 | | 01 | More information provided about modification. | 2018/05/16 | 10 | | 01 | Updated header value from mW/g to W/kg | 2018/05/16 | 31, 35 | | 01 | Updated date format to ISO international date format of yyyy-mm-dd | 2018/05/16 | Various | # ACCREDITATIONS AND AUTHORIZATIONS ## **United States** FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC. **A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications. NVLAP - Each laboratory is accredited by NVLAP to ISO 17025 #### Canada **ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED. ## **European Union** European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives. #### Australia/New Zealand ACMA - Recognized by ACMA as a CAB for the acceptance of test data. #### Korea MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data. #### Japan VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered. #### **Taiwan** **BSMI** – Recognized by BSMI as a CAB for the acceptance of test data. NCC - Recognized by NCC as a CAB for the acceptance of test data. ## **Singapore** **IDA** – Recognized by IDA as a CAB for the acceptance of test data. #### Israel **MOC** – Recognized by MOC as a CAB for the acceptance of test data. ## **Hong Kong** **OFCA** – Recognized by OFCA as a CAB for the acceptance of test data. ## **Vietnam** **MIC** – Recognized by MIC as a CAB for the acceptance of test data. # **SCOPE** For details on the Scopes of our Accreditations, please visit: http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html # **FACILITIES** | California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918 | Minnesota
Labs MN01-10
9349 W Broadway Ave.
Brooklyn Park, MN 55445
(612)-638-5136 | New York
Labs NY01-04
4939 Jordan Rd.
Elbridge, NY 13060
(315) 554-8214 | Oregon
Labs EV01-12
6775 NE Evergreen Pkwy #400
Hillsboro, OR 97124
(503) 844-4066 | Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255 | Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600 | | | | | | | |---|--|---|--|--|---|--|--|--|--|--|--| | | NVLAP | | | | | | | | | | | | NVLAP Lab Code: 200676-0 | NVLAP Lab Code: 200881-0 | NVLAP Lab Code: 200761-0 | NVLAP Lab Code: 200630-0 | NVLAP Lab Code:201049-0 | NVLAP Lab Code: 200629-0 | | | | | | | | | Innovation, Science and Economic Development Canada | | | | | | | | | | | | 2834B-1, 2834B-3 | 2834E-1, 2834E-3 | N/A | 2834D-1, 2834D-2 | 2834G-1 | 2834F-1 | | | | | | | | | | BS | МІ | | | | | | | | | | SL2-IN-E-1154R | SL2-IN-E-1152R | N/A | SL2-IN-E-1017 | SL2-IN-E-1158R | SL2-IN-E-1153R | | | | | | | | | VCCI | | | | | | | | | | | | A-0029 | A-0109 | N/A | A-0108 | A-0201 | A-0110 | | | | | | | | | Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA | | | | | | | | | | | | US0158 | US0175 | N/A | US0017 | US0191 | US0157 | | | | | | | # PRODUCT DESCRIPTION ## Client and Equipment Under Test (EUT) Information | Company Name: | GCE Group | |-----------------------------|-----------------------------| | Address: | 100 Empress Park Penny Lane | | City, State, Zip: | Haydock, WA11 9DB | | Test Requested By: | Will Turner | | Model: | Zen-O with Clarity | | First Date of Test: | 2018/02/07 | | Last Date of Test: | 2018/02/21 | | Receipt Date of Samples: | 2018/01/26 | | Equipment Design Stage: | Production | | Equipment Condition: | No Damage | | Purchase Authorization: | Verified | ## Information Provided by the Party Requesting the Test #### **Functional Description of the EUT:** Zen-O with Clarity portable oxygen concentrator is designed to enable patients with respiratory disorders such as chronic obstructive pulmonary disease (COPD), to better manage their oxygen therapy within and outside their homes. The device is wearable, powered by the onboard Lithium Ion battery packs or via the mains / DC incoming power using the supplied PSU converter 'brick'. The additional Clarity functionality adds to the existing Zeno product with remote asset tracking via cloud access and Bluetooth accessory connectivity, using GSM & PCS cellular radio, WiFi (802.11bg), GPS and Bluetooth Low Energy radio modules. Zen-O™ weighs just 4.66 kg and can deliver up to 2 liters per minute of oxygen in either pulse or continuous flow. Zen-O is supplied with variety of accessories, including a carry bag and a pull cart for increased mobility. The carrying case and cart were not used during testing, due to it increasing the distance from the device to the end user. Frequency ranges of each radio in the device: a. Cell: 824 – 849 MHzb. PCS: 1850 – 1910 MHz # PRODUCT DESCRIPTION ## Location of transmit antenna(s): ## **Testing Locations** Top, back and left of device were tested as the EUTs antennas are located on the left side near the top. An optional backpack is available for sale with the EUT. Since the backpack does not have any metal, testing was done with a 0 cm spacing to the phantom to show a worst case scenario. The EUT is meant to only be used against the body and no provisions to be used against the head. EUT was tested in its only operating configuration. #### **Simultaneous Transmission** The EUT does not have simultaneous transmission capability. # PRODUCT DESCRIPTION ## **Testing Objective:** To demonstrate compliance of only the Cellular radio with the SAR requirements of FCC 2.1093:2018 ## Scaling: Per FCC KDB 447498, the measured SAR values were scaled to the maximum tune-up tolerance limit. The results are referred to as the "Reported SAR" values. The following formula was used to calculate the linear SAR scaling factor: SAR scaling factor = $$10^{((Maximum Rated Power (dBm) - Measured Power (dBm)) / 10)}$$ Cell GHz SAR scaling factor = $(29.5 - 29.5) / 10 = 1$ PCS SAR scaling factor = $(27.5 - 27.5) / 10 = 1$ ## **Duty Cycle** The EUT was transmitting at nearly 100% duty cycle. # **CONFIGURATIONS** # **Configuration GCEG0001-1** | EUT | | | | |------------------------------|-----------------------|-------------------|---------------| | Description | Manufacturer | Model/Part Number | Serial Number | | Portable Oxygen Concentrator | Gas Control Equipment | RS-00500C | ZE100961 | # **Configuration GCEG0001-2** | EUT | | | | |------------------------------|-----------------------|-------------------|---------------| | Description | Manufacturer | Model/Part Number | Serial Number | | Portable Oxygen Concentrator | Gas Control Equipment | RS-00500C | ZE100966 | # **MODIFICATIONS** # **Equipment Modifications** | Item | Date | Test | Modification | Note | Disposition of EUT | |------|------------|-------------------|---|---|---| | 1 | 2018/02/07 | Output
Power | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. | | 2 | 2018/02/15 | SAR
Evaluation | Modified
from
delivered
configuration. | Cel power was reduced by
4dB and PCS power was
reduced by 2dB to meet the
limits. The EUT was above
the limits at the original
power
setting, Modifications
approved by Will Turner | EUT remained at
Element following the
test. | | 3 | 2018/02/21 | SAR
Evaluation | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed. | # TISSUE – EQUIVALENT LIQUID DESCRIPTION ## Characterization of tissue-equivalent liquid dielectric properties Per IEEE 1528: 2013, Section 5.3.2, the permittivity and conductivity of the tissue material should be measured at least within 24 hours of any full-compliance test. The measured values must be within +/- 5% of the target values. The temperature variation in the liquid during SAR measurements must be within +/- 2 degrees C of that recorded when the dielectric properties were measured. The dielectric parameters of the tissue-equivalent liquids were measured within 24 hours of the start of testing using the SPEAG DAKS:200 dielectric assessment kit. The dielectric measurements were made across the frequency range of the liquid. The attached data sheets show that the dielectric parameters of the liquid were within the required 5% tolerances. ## Target values of dielectric parameters Per KDB 865664 D01 v01r04, Appendix A: "The head tissue dielectric parameters recommended by IEEE Std 1528-2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE Std 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in IEEE Std 1528." | Target Frequency | Не | ead | Во | ody | |------------------|------|---------|------|---------| | (MHz) | εr | σ (S/m) | ٤r | σ (S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800 – 2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | (ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³) # TISSUE – EQUIVALENT LIQUID DESCRIPTION ## **Composition of Ingredients for Liquid Tissue Phantoms** Element uses tissue-equivalent liquids prepared by SPEAG and confirmed by them to be within +/- 5% from the target values. Their recipes are based upon the following formulations as found in IEEE 1528:2013 Annex C (head) and IEC 62209-2:2010 Annex E (body): The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation: ## **HEAD** Table C.1—Suggested recipes for achieving target dielectric parameters: 300 MHz to 900 MHz | Frequency
(MHz)
Reference | 300
[B118] | 450
[B118] | 450
[B172] | 450
[B74] | 835
[B118] | 835
[B74] | 900
[B118] | 900
[B196] | 900
[B172] | 900
[B74] | |---------------------------------|---------------|---------------|---------------|--------------|---------------|--------------|---------------|---------------|---------------|--------------| | Ingredients (% | by weigh | t) | | | | | | | | | | 1,2-
Propanediol | _ | _ | _ | _ | _ | _ | _ | 64.81 | _ | _ | | Bactericide | 0.19 | 0.19 | 0.50 | _ | 0.10 | _ | 0.10 | _ | 0.50 | _ | | Diacetin | _ | _ | 48.90 | _ | _ | _ | _ | _ | 49.20 | _ | | DGBE | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | HEC | 0.98 | 0.98 | _ | _ | 1.00 | _ | 1.00 | _ | _ | _ | | NaCl | 5.95 | 3.95 | 1.70 | 1.96 | 1.45 | 1.25 | 1.48 | 0.79 | 1.10 | 1.35 | | Sucrose | 55.32 | 56.32 | _ | _ | 57.00 | _ | 56.50 | _ | _ | _ | | Triton X-100 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Tween 20 | _ | _ | _ | 49.51 | _ | 48.39 | _ | _ | _ | 48.34 | | Water | 37.56 | 38.56 | 48.90 | 48.53 | 40.45 | 50.36 | 40.92 | 34.40 | 49.20 | 50.31 | Table C.2—Suggested recipes for achieving target dielectric parameters: 1450 MHz to 2000 MHz | Frequency
(MHz) | 1450 | 1800 | 1800 | 1800 | 1800 | 1800 | 1900 | 1900 | 1950 | 2000 | | |---------------------|---------------------------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--| | Reference | [B118] | [B118] | [B196] | [B196] | [B172] | [B74] | [B118] | [B196] | [B74] | [B118] | | | Ingredients (% | Ingredients (% by weight) | | | | | | | | | | | | 1,2-
Propanediol | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | | Bactericide | _ | _ | _ | _ | 0.50 | _ | _ | _ | _ | _ | | | Diacetin | _ | _ | _ | _ | 49.43 | _ | _ | _ | _ | _ | | | DGBE | 45.51 | 47.00 | 13.84 | 44.92 | | _ | 44.92 | 13.84 | 45.00 | 50.00 | | | HEC | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | NaCl | 0.67 | 0.36 | 0.35 | 0.18 | 0.64 | 0.50 | 0.18 | 0.35 | _ | _ | | | Sucrose | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Triton X-100 | _ | _ | 30.45 | _ | _ | _ | _ | 30.45 | _ | _ | | | Tween 20 | _ | _ | _ | _ | _ | 45.27 | _ | _ | _ | | | | Water | 53.82 | 52.64 | 55.36 | 54.90 | 49.43 | 54.23 | 54.90 | 55.36 | 55.00 | 50.00 | | # TISSUE – EQUIVALENT LIQUID DESCRIPTION Table C.3—Suggested recipes for achieving target dielectric parameters: 2100 MHz to 5800 MHz | Frequency (MHz) | 2100 | 2100 | 2450 | 2450 | 3000 | 5200 | 5800 | | | | |---------------------------|--------|--------|--------|--------|--------|-------|-------|--|--|--| | Reference | [B118] | [B196] | [B196] | [B172] | [B196] | | | | | | | Ingredients (% by weight) | | | | | | | | | | | | 1,2-Propanediol | _ | _ | _ | | _ | _ | _ | | | | | Bactericide | | | _ | 0.50 | | _ | _ | | | | | Diacetin | | _ | | 49.75 | _ | | | | | | | DGBE | 50.00 | 7.99 | 7.99 | | 7.99 | _ | _ | | | | | HEC | _ | | | | | _ | _ | | | | | NaCl | | 0.16 | 0.16 | | 0.16 | _ | _ | | | | | Sucrose | _ | | | | | _ | _ | | | | | Triton X-100 | | 19.97 | 19.97 | _ | 19.97 | 17.24 | 17.24 | | | | | Diethylenglycol | | | | | | 17.24 | 17.24 | | | | | monohexylether | | | | | | 17.24 | 17.24 | | | | | Water | 50.00 | 71.88 | 71.88 | 49.75 | 71.88 | 65.52 | 65.52 | | | | ## **BODY** | Frequency (MHz) | 30 | 5 | 0 | 1 | 44 | 4 | 150 | 835 | 90 | 0 | |-----------------------------------|-------|-------|-------|-------|-------|-------|-----|-------|-------|----| | Recipe source number | 3 | 3 | 2 | 2 | 3 | 2 | 4 | 2 | 2 | 4 | | Ingredients (% by weight) | | | • | • | | • | | | | • | | Deionised water | 48,30 | 48,30 | 53,53 | 55,12 | 48,30 | 48,53 | 56 | 50,36 | 50,31 | 56 | | Tween | | | 44,70 | 43,31 | | 49,51 | | 48,39 | 48,34 | | | Oxidised mineral oil | | | | | | | 44 | | | 44 | | Diethylenglycol
monohexylether | | | | | | | | | | | | Triton X-100 | | | | | | | | | | | | Diacetin | 50,00 | 50,00 | | | 50,00 | | | | | | | DGBE | | | | | | | | | | | | NaCl | 1,60 | 1,60 | 1,77 | 1,57 | 1,60 | 1,96 | | 1,25 | 1,35 | | | Additives and salt | 0,10 | 0,10 | | | 0,10 | | | | | | | Frequency (MHz) | 1 8 | 00 | 2 450 | 4 000 | 5 000 | 5 200 | 5 800 | 6 000 | |-----------------------------------|----------|----|-------|-------|-------|-------|-------|-------| | Recipe source number | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 4 | | Ingredients (% by weight) | <u> </u> | | ' | | • | 1 | | | | Deionised water | 54,23 | 56 | 56 | 56 | 56 | 65,53 | 65,53 | 56 | | Tween | 45,27 | | | | | | | | | Oxidised mineral oil | | 44 | 44 | 44 | 44 | | | 44 | | Diethylenglycol
monohexylether | | | | | | 17,24 | 17,24 | | | Triton X-100 | | | | | | 17,24 | 17,24 | | | Diacetin | | | | | | | | | | DGBE | | | | | | | | | | NaCl | 0,50 | | | | | | | | | Additives and salt | | | | | | | | | | Date: | 2018/02/16 | Temperature: | 21.3°C | |------------|------------------------|---------------------|---------| | Tissue: | Body, MSL1900, 1900MHz | Liquid Temperature: | 21.6°C | | Tested By: | Travis Pow | Relative Humidity: | 33.6% | | Job Site: | EV08 | Bar. Pressure: | 1030 mb | ## **TEST SPECIFICATIONS** | Specification: | Method: | |-----------------|---------------------------| | | IEEE Std 1528:2013, | | FCC 2.1093:2018 | FCC KDB 865664 D01 v01r04 | | | FCC KDB 865664 D02 v01r02 | | | Actual | Values | Target | Values | Deviat | ion (%) | |--------------------|--------------------------|--------------|--------------------------|--------------|--------------------------|--------------| | Frequency
(MHz) | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | | 1900 | 55.08 | 1.538 | 53.3 | 1.52 | -3.34 | -1.18 | | Frequency
(MHz) | Relative
Permittivity | Conductivity | |--------------------|--------------------------|--------------| | 800 | 58.77 | 0.483 | | 840 | 58.72 | 0.506 | | 880 | 58.6 | 0.538 | | 930 | 58.41 | 0.575 | | 970 | 58.26 | 0.605 | | 1020 | 58.15 | 0.645 | | 1060 | 58.02 | 0.679 | | 1110 | 57.82 | 0.72 | | 1150 | 57.65 | 0.75 | | 1190 | 57.56 | 0.786 | | 1240 | 57.39 | 0.834 | | 1280 | 57.23 | 0.866 | | 1330 | 57.01 | 0.916 | | 1370 | 56.9 | 0.951 | | 1420 | 56.82 | 0.999 | | 1460 | 56.71 | 1.045 | | 1510 | 56.5 | 1.095 | | 1550 | 56.33 | 1.137 | | 1590 | 56.2 | 1.181 | | 1640 | 56.05 | 1.239 | | 1680 | 55.86 | 1.28 | | 1730 | 55.65 | 1.337 | | 1770 | 55.55 | 1.378 | | 1820 | 55.44 | 1.44 | | 1860 | 55.23 | 1.492 | | 1900 | 55.08 | 1.538 | | 1910 | 55.06 | 1.548 | | 1950 | 54.9 | 1.592 | | 1990 | 54.75 | 1.643 | | Date: | 2018/02/16 | Temperature: | 21.3°C | |------------|----------------------|---------------------|---------| | Tissue: | Body, MSL900, 900MHz | Liquid Temperature: | 22°C | | Tested By: | Travis Pow | Relative Humidity: | 33.6% | | Job Site: | EV08 | Bar. Pressure: | 1030 mb | ##
TEST SPECIFICATIONS | IEEE Std 1528:2013,
FCC 2.1093:2018 FCC KDB 865664 D01 v01r04 | Specification: | Method: | |--|-----------------|---------| | | FCC 2.1093:2018 | , | | | Actual | Values | Target | Values | Deviat | ion (%) | |--------------------|--------------------------|--------------|--------------------------|--------------|--------------------------|--------------| | Frequency
(MHz) | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | | 900 | 57.06 | 1.03 | 55.0 | 1.05 | -3.75 | 1.9 | | Frequency
(MHz) | Relative
Permittivity | Conductivity | |--------------------|--------------------------|--------------| | 800 | 57.79 | 0.924 | | 840 | 57.62 | 0.961 | | 880 | 57.27 | 1.008 | | 900 | 57.06 | 1.03 | | 930 | 56.79 | 1.061 | | 970 | 56.45 | 1.104 | | 1020 | 56.07 | 1.161 | | 1060 | 55.73 | 1.207 | | 1110 | 55.28 | 1.264 | | 1150 | 54.96 | 1.304 | | 1190 | 54.68 | 1.352 | | 1240 | 54.28 | 1.414 | | 1280 | 53.96 | 1.465 | | 1330 | 53.5 | 1.523 | | 1370 | 53.14 | 1.565 | | 1420 | 52.85 | 1.627 | | 1460 | 52.59 | 1.684 | | 1510 | 52.2 | 1.746 | | 1550 | 51.89 | 1.796 | | 1590 | 51.62 | 1.848 | | 1640 | 51.27 | 1.916 | | 1680 | 50.96 | 1.962 | | 1730 | 50.54 | 2.026 | | 1770 | 50.31 | 2.073 | | 1820 | 50.02 | 2.144 | | 1860 | 49.7 | 2.202 | | 1910 | 49.42 | 2.269 | | 1950 | 49.19 | 2.318 | | 1990 | 48.94 | 2.375 | | Date: | 2018/02/21 | Temperature: | 22.1°C | |------------|----------------------|---------------------|---------| | Tissue: | Body, MSL900, 900MHz | Liquid Temperature: | 21.6°C | | Tested By: | Travis Pow | Relative Humidity: | 27.5% | | Job Site: | EV08 | Bar. Pressure: | 1030 mb | ## **TEST SPECIFICATIONS** | IEEE Std 1528:2013,
FCC 2.1093:2018 FCC KDB 865664 D01 v01r04 | Specification: | Method: | |--|-----------------|---------| | | FCC 2.1093:2018 | , | | | Actual | Actual Values Target Values | | Values | Deviat | ion (%) | |--------------------|--------------------------|-----------------------------|--------------------------|--------------|--------------------------|--------------| | Frequency
(MHz) | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | | 900 | 56.76 | 1.037 | 55.0 | 1.05 | -3.2 | 1.24 | | Frequency
(MHz) | Relative
Permittivity | Conductivity | |--------------------|--------------------------|--------------| | 800 | 57.76 | 0.927 | | 840 | 57.31 | 0.969 | | 880 | 56.98 | 1.015 | | 900 | 56.76 | 1.037 | | 930 | 56.46 | 1.068 | | 970 | 56.11 | 1.109 | | 1020 | 55.74 | 1.164 | | 1060 | 55.39 | 1.211 | | 1110 | 54.91 | 1.268 | | 1150 | 54.54 | 1.307 | | 1190 | 54.29 | 1.349 | | 1240 | 53.93 | 1.416 | | 1280 | 53.55 | 1.466 | | 1330 | 53.11 | 1.526 | | 1370 | 52.79 | 1.57 | | 1420 | 52.43 | 1.629 | | 1460 | 52.15 | 1.681 | | 1510 | 51.74 | 1.738 | | 1550 | 51.45 | 1.78 | | 1590 | 51.2 | 1.83 | | 1640 | 50.91 | 1.898 | | 1680 | 50.55 | 1.948 | | 1730 | 50.21 | 2.011 | | 1770 | 49.98 | 2.056 | | 1820 | 49.71 | 2.126 | | 1860 | 49.36 | 2.182 | | 1910 | 49.01 | 2.248 | | 1950 | 48.74 | 2.292 | | 1990 | 48.46 | 2.344 | | Date: | 2018/02/21 | Temperature: | 22.1°C | |------------|------------------------|---------------------|---------| | Tissue: | Body, MSL1900, 1900MHz | Liquid Temperature: | 21.6°C | | Tested By: | Travis Pow | Relative Humidity: | 27.5% | | Job Site: | EV08 | Bar. Pressure: | 1030 mb | ## **TEST SPECIFICATIONS** | Specification: | Method: | |-----------------|---------------------------| | | IEEE Std 1528:2013, | | FCC 2.1093:2018 | FCC KDB 865664 D01 v01r04 | | | FCC KDB 865664 D02 v01r02 | | | Actual Values Target Values | | Deviat | ion (%) | | | |-----------------|-----------------------------|--------------|--------------------------|--------------|--------------------------|--------------| | Frequency (MHz) | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | Relative
Permittivity | Conductivity | | 1900 | 51.91 | 1.51 | 53.3 | 1.52 | 2.61 | 0.66 | | Frequency
(MHz) | Relative
Permittivity | Conductivity | |--------------------|--------------------------|--------------| | 800 | 55.9 | 0.478 | | 840 | 55.76 | 0.506 | | 880 | 55.67 | 0.538 | | 930 | 55.42 | 0.575 | | 970 | 55.25 | 0.604 | | 1020 | 55.16 | 0.642 | | 1060 | 55.01 | 0.676 | | 1110 | 54.79 | 0.717 | | 1150 | 54.61 | 0.745 | | 1190 | 54.53 | 0.775 | | 1240 | 54.42 | 0.827 | | 1280 | 54.24 | 0.868 | | 1330 | 53.96 | 0.912 | | 1370 | 53.78 | 0.947 | | 1420 | 53.61 | 0.994 | | 1460 | 53.49 | 1.037 | | 1510 | 53.26 | 1.083 | | 1550 | 53.09 | 1.119 | | 1590 | 52.99 | 1.16 | | 1640 | 52.85 | 1.216 | | 1680 | 52.64 | 1.256 | | 1730 | 52.44 | 1.309 | | 1770 | 52.33 | 1.346 | | 1820 | 52.23 | 1.408 | | 1860 | 52.05 | 1.462 | | 1900 | 51.91 | 1.51 | | 1910 | 51.88 | 1.521 | | 1950 | 51.71 | 1.561 | | 1990 | 51.54 | 1.607 | # SAR SYSTEM VERIFICATION DESCRIPTION #### REQUIREMENT Per IEEE 1528, Section 8.2.1, "System checks are performed prior to compliance tests and the results must always be within ± 10% of the target value corresponding to the test frequency, liquid, and the source used. The target values are 1 g or 10 g averaged SAR values measured on systems having current system validation and calibration status, and using the system check setup as shown in Figure 14. These target values should be determined using a standard source." #### **TEST DESCRIPTION** Within 24 hours of a measurement, then every 72 hours thereafter, Element used the system validation kit (calibrated reference dipole) to test whether the system was operating within its specifications. The validation was performed in the indicated bands by making SAR measurements of the reference dipole with the phantom filled with the tissue-equivalent liquid. First, a signal generator and power amplifier were used to produce a 100mW level as measured with a power meter at the antenna terminals of the dipole (X). Then, the reference dipole was positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. A low loss and low relative permittivity spacer was used to establish the correct distance between the center axis of the reference dipole and the liquid. For the reference dipoles, the spacing distance s is given by: - s = 15mm, +/- 0.2mm for 300MHz ≤ $f \ge 1000$ MHz: s = 10mm, +/- 0.2mm for 1000MHz ≤ $f \ge 6000$ MHz - The measured 1 g and 10 g spatial average SAR values were normalized to a 1W dipole input power for comparison to the calibration data. The results are summarized in the attached table. The deviation is less than 10% in all cases, indicating that the system performance check was within tolerance. ## **TEST SPECIFICATIONS** | Specification: | Method: | |-----------------|---------------------------| | | IEEE Std 1528:2013, | | FCC 2.1093:2018 | FCC KDB 865664 D01 v01r04 | | | FCC KDB 865664 D02 v01r02 | | | 1120210 | | | | | | | | | | | |------------|---------------------------|---------------------------------------|----------------------|------|-------|-------|---------------|-----------------------|--|---------|--------| | Date | Liquid part
number and | Conducted
Power into
the Dipole | Correction
Factor | Meas | sured | | lized to
W | (Normaliz
Get fror | rget
ed to 1W)
n Dipole
Certificate | % Diffe | erence | | | frequency | (dBm) | 1 40101 | 1g | 10g | 1g | 10g | 1g | 10g | 1g | 10g | | 2018/02/09 | MSL 1900 (1900
MHz) | 20.00 | 10.00 | 4.07 | 2.15 | 40.70 | 21.50 | 40.60 | 21.40 | 0.25 | 0.47 | | 2018/02/16 | MSL 1900 (1900
MHz) | 20.00 | 10.00 | 4.08 | 2.18 | 40.80 | 21.80 | 40.60 | 21.40 | 0.49 | 1.87 | | 2018/02/21 | MSL 900 (835
MHz) | 20.00 | 10.00 | 0.98 | 0.65 | 9.80 | 6.53 | 9.54 | 6.23 | 2.73 | 4.82 | | 2018/02/21 | MSL 1900 (1900
MHz) | 20.00 | 10.00 | 4.14 | 2.21 | 41.40 | 22.10 | 40.60 | 21.40 | 1.97 | 3.27 | | Tested By: | Ethan Schoonover | Room Temperature (°C): | 21.6°C | |----------------|------------------|--------------------------|---------| | Date: | 2018/02/16 | Liquid Temperature (°C): | 21.6°C | | Configuration: | None | Humidity (%RH): | 34.5% | | | | Bar. Pressure (mb): | 1030 mb | #### MSL1900 System Check PCS1900 2-16-2018 DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 Communication System: UID 0, CW (0); Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz;Communication System PAR: 0 dB; PMF: 1 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³, Medium parameters used: f = 1900 MHz; σ = 1.538 S/m; $\varepsilon_r = 55.077$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY Configuration:** - Probe: ES3DV3 SN3246; ConvF(4.88, 4.88, 4.88); Calibrated: 2017/11/13; - Modulation Compensation: - Sensor-Surface: 0mm (Fix Surface), Sensor-Surface: 5mm (Mechanical Surface Detection), z = 102.0, 32.0 - Electronics: DAE4 Sn1237; Calibrated: 2017/11/07 - Phantom: ELI v5.0; Type: QDOVA002AA; - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373) **System Check/System Check/Z Scan (1x1x21):** Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 53.99 V/m System Check/System Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.64 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 7.24 W/kg SAR(1 g) = 4.08 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 4.13 W/kg System Check/System Check/Area Scan (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.19 W/kg Maximum value of SAR (measured) = 4.48 W/kg Approved By # MSL1900 System Check PCS1900 2-16-2018 | Tested By: |
Ethan Schoonover | Room Temperature (°C): | 21.6°C | |----------------|------------------|--------------------------|---------| | Date: | 2018/02/16 | Liquid Temperature (°C): | 21.6°C | | Configuration: | None | Humidity (%RH): | 34.5% | | | | Bar. Pressure (mb): | 1030 mb | MSL900 System Check_835MHz GSM850 2018-02-16 DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 Communication System: UID 10000, CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³, Medium parameters used (interpolated): f = 835 MHz; σ = 0.955 S/m; ϵ_r = 57.654; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY Configuration:** • Probe: ES3DV3 - SN3246; ConvF(6.31, 6.31, 6.31); Calibrated: 2017/11/13; Modulation Compensation: • Sensor-Surface: 0mm (Fix Surface), Sensor-Surface: 5mm (Mechanical Surface Detection), z = 102.0, 32.0 Electronics: DAE4 Sn1237; Calibrated: 2017/11/07 Phantom: ELI v5.0; Type: QDOVA002AA; • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373) System Check/System Check/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of Total (measured) = 32.30 V/m System Check/System Check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.16 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.44 W/kg SAR(1 g) = 0.989 W/kg; SAR(10 g) = 0.658 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.992 W/kg System Check/System Check/Area Scan (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.989 W/kg Maximum value of SAR (measured) = 0.997 W/kg Approved By # MSL900 System Check_835MHz GSM850 2-16-2018 | Tested By: | Ethan Schoonover | Room Temperature (°C): | 22.1°C | |----------------|------------------|--------------------------|---------| | Date: | 2018/02/21 | Liquid Temperature (°C): | 21.6°C | | Configuration: | None | Humidity (%RH): | 27.4% | | | | Bar. Pressure (mb): | 1029 mb | MSL900 System Check 835MHz GSM850 2018-02-21 DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4D108 Communication System: UID 10000, CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_f = 1$; $\rho = 1000$ kg/m³, Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.963$ S/m; $\varepsilon_r = 57.349$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY Configuration:** Probe: ES3DV3 - SN3246; ConvF(6.31, 6.31, 6.31); Calibrated: 2017/11/13; Modulation Compensation: Sensor-Surface: 0mm (Fix Surface), Sensor-Surface: 5mm (Mechanical Surface Detection), z = 102.0, Electronics: DAE4 Sn1237; Calibrated: 2017/11/07 Phantom: ELI v5.0; Type: QDOVA002AA; DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373) System Check/System Check/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of Total (measured) = 33.65 V/m System Check/System Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.12 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.980 W/kg; SAR(10 g) = 0.653 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.984 W/kg System Check/System Check/Area Scan (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.979 W/kg Maximum value of SAR (measured) = 1.09 W/kg Approved By # MSL900 System Check_835MHz GSM850 2-21-2018 | Tested By: | Ethan Schoonover | Room Temperature (°C): | 22.1°C | |----------------|------------------|--------------------------|---------| | Date: | 2018/02/21 | Liquid Temperature (°C): | 21.6°C | | Configuration: | None | Humidity (%RH): | 27.4% | | | | Bar. Pressure (mb): | 1029 mb | #### MSL1900 System Check PCS1900 2018-02-21 DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:xxx Communication System: UID 10000, CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ S/m}$; $\varepsilon_r = 51.05$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY Configuration:** • Probe: ES3DV3 - SN3246; ConvF(4.88, 4.88, 4.88); Calibrated: 2017/11/13; Modulation Compensation: Sensor-Surface: 5mm (Mechanical Surface Detection), Sensor-Surface: 0mm (Fix Surface), z = 2.0, 32.0, 102.0 Electronics: DAE4 Sn1237; Calibrated: 2017/11/07 Phantom: ELI v5.0; Type: QDOVA002AA; DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373) System Check/System Check/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.26 W/kg System Check/System Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.05 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 7.38 W/kg **SAR(1 g) = 4.14 W/kg; SAR(10 g) = 2.21 W/kg** Maximum value of SAR (measured) = 4.18 W/kg System Check/System Check/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 56.05 V/m Maximum value of SAR (measured) = 4.93 W/kg Approved By ## MSL1900 System Check PCS1900 2-21-2018 # **OUTPUT POWER DESCRIPTION** ## 835 MHz and 1900 MHz Bands Only the channels and modulation for each band that produced the highest report SAR in the original cellular filings were tested for this configuration. Output power measurements are on the following pages. # **SAR OUTPUT POWER - GSM/PCS** | GPRS/ 1 slot / GMSK (CS-4) | | | | | | | | | | | |---|-----|--------|------|------|--|--|--|--|--|--| | Band Channel Frequency Power RMS Duty Cycle | | | | | | | | | | | | | 128 | 824 | 29.5 | 11.1 | | | | | | | | GSM-850 | 190 | 836.7 | 29.2 | 11.1 | | | | | | | | | 251 | 849 | 29.1 | 11.1 | | | | | | | | | 512 | 1850.2 | 27.0 | 12.0 | | | | | | | | PCS-1900 | 661 | 1880 | 27.3 | 12.0 | | | | | | | | | 810 | 1910 | 27.5 | 12.0 | | | | | | | | GPRS/ 4 slot / GMSK (CS-4) | | | | | | | | | | | | |----------------------------|---|--------|------|------|--|--|--|--|--|--|--| | Band | Band Channel Frequency Power RMS Duty Cycle | | | | | | | | | | | | | 128 | 824 | 29.4 | 44.5 | | | | | | | | | GSM-850 | 190 | 836.7 | 29.1 | 44.5 | | | | | | | | | | 251 | 849 | 29.0 | 44.5 | | | | | | | | | | 512 | 1850.2 | 26.8 | 44.5 | | | | | | | | | PCS-1900 | 661 | 1880 | 27.2 | 44.5 | | | | | | | | | | 810 | 1910 | 27.4 | 44.5 | | | | | | | | # **TEST RESULTS** #### **Test Configurations** #### **Test Locations** Top, back and left of device were tested as the EUTs antennas are located on the left side near the top. An optional backpack is available for sale with the EUT. Since the backpack does not have any metal, testing was done with a 0 cm spacing to the phantom to show a worst case scenario. The EUT is meant to only be used against the body and no provisions to be used against the head. EUT was tested in its only operating configuration. #### Summary Per FCC KDB 447498, the measured SAR values were scaled to the maximum tune-up tolerance limit. The results are referred to as the "Reported SAR" values. The formula that was used to calculate the linear SAR scaling factor is located on page 8. #### **Duty Cycle** The EUT was transmitting at nearly 100% duty cycle. | EUT: | Zen-O with Clarity | Work Order: | GCEG0001 | |------------|--------------------|-------------------|----------| | Customer: | GCE Group | Job Site: | EV08 | | Attendees: | None | Customer Project: | None | ## **TEST SPECIFICATIONS** | Specification: | Method: | |-----------------|---------------------------| | | IEEE Std 1528:2013, | | | FCC KDB 447498 D01 v06 | | | FCC KDB 941225 D01 v03r01 | | FCC 2.1093:2018 | FCC KDB 941225 D05 v02r05 | | | FCC KDB 616217 D04 v01r02 | | | FCC KDB 865664 D01 v01r04 | | | FCC KDB 865664 D02 v01r02 | ## **COMMENTS** None ## **DEVIATIONS FROM TEST STANDARD** None # **RESULTS** | Test
Configuration | Frequency
Band | Transmit
Frequency
(MHz) | Transmit
Channel | Modulation
Scheme | Slot# | EUT
Position | Dritt | 1a SAR | Measured
10g SAR
Level
(W/kg) | SAR
Scaling
Factor | | Scaled 10g
SAR Level
(W/kg) | Test# | |-----------------------|-------------------|--------------------------------|---------------------|----------------------|-------|-----------------|-------|--------|--|--------------------------|-------------------|-----------------------------------|-------| | Body | 850 MHz | 824 | 128 | CS-4 | 1 | Top | -0.02 | 0.012 | 0.008 | 1 | 0.012 | 0.008 | 10 | | Body | 850 MHz | 824 | 128 | CS-4 | 1 | Back | -0.12 | 0.017 | 0.012 | 1 | 0.017 | 0.012 | 11 | | Body | 850 MHz | 824 | 128 | CS-4 | 1 | Left | -0.04 | 1.44 | 0.917 | 1 | 1.44 | 0.917 | 12 | | Body | 850 MHz | 849 | 251 | CS-4 | 1 | Left | 0.04 | 1.5 | 0.948 | 1 | <mark>1.50</mark> | 0.948 | 15 | | Body | 850 MHz | 836.7 | 190 | CS-4 | 1 | Left | -0.05 | 0.02 | 1.51 | 1 | 0.02 | 1.51 | 16 | ## **REPEATABILITY** | Test
Configuration | Frequency
Band | Transmit
Frequency
(MHz) | Transmit
Channel | Modulation
Scheme | Slot# | EUT
Position | SAR Drift
During
Test (dB) | Measured
1g SAR
Level
(W/kg) |
Measured
10g SAR
Level
(W/kg) | Repeat# | |-----------------------|-------------------|--------------------------------|---------------------|----------------------|-------|-----------------|----------------------------------|---------------------------------------|--|---------| | Body | 850 MHz | 836.7 | 190 | CS-4 | 1 | Left | 0.02 | 1.51 | 0.963 | 1 | | Body | 850 MHz | 836.7 | 190 | CS-4 | 1 | Left | -1.77 | 1.51 | 0.971 | 2 | | Body | 850 MHz | 836.7 | 190 | CS-4 | 1 | Left | 0.02 | 1.51 | 0.973 | 3 | | Tested By: | Travis Pow | Room Temperature (°C): | 22.3°C | |----------------|------------------------|--------------------------|---------| | Date: | 2018/02/21 11:43:02 AM | Liquid Temperature (°C): | 21.6°C | | Serial Number: | ZE100966 | Humidity (%RH): | 27.5% | | Configuration: | GCEG0001-1 | Bar. Pressure (mb): | 1030 mb | | Comments: | None | | | Test16 - Repeat 3 DUT: GCEG0001; Type: D2450V2; Serial: D2450V2 Communication System: UID 0, CW (0); Communication System Band: D835 (835.0 MHz); Frequency: 836.7 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used (interpolated): f = 836.7 MHz; σ = 0.965 S/m; ϵ_r = 57.336; ρ = 1000 kg/m³, Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY Configuration:** • Probe: ES3DV3 - SN3246; ConvF(6.31, 6.31, 6.31); Calibrated: 2017/11/13; Modulation Compensation: Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 0mm (Fix Surface), z = 2.0, 32.0, 107.0 Electronics: DAE4 Sn1237; Calibrated: 2017/11/07 Phantom: ELI v5.0; Type: QDOVA002AA; DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373) Body/Body/Reference scan (71x111x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 2.11 W/kg Body/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 43.74 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.32 W/kg SAR(1 g) = 1.51 W/kg; SAR(10 g) = 0.973 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.73 W/kg Body/Body/Area scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.84 W/kg Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of Total (measured) = 35.19 V/m Maximum value of SAR (measured) = 1.19 W/kg Approved By Test16 - Repeat 3 # **SAR TEST DATA - PCS1900** | EUT: | Zen-O with Clarity | Work Order: | GCEG0001 | |------------|--------------------|-------------------|----------| | Customer: | GCE Group | Job Site: | EV08 | | Attendees: | None | Customer Project: | None | ## **TEST SPECIFICATIONS** | Specification: | Method: | |-----------------|---------------------------| | | IEEE Std 1528:2013, | | | FCC KDB 447498 D01 v06 | | | FCC KDB 941225 D01 v03r01 | | FCC 2.1093:2018 | FCC KDB 941225 D05 v02r05 | | | FCC KDB 616217 D04 v01r02 | | | FCC KDB 865664 D01 v01r04 | | | FCC KDB 865664 D02 v01r02 | ## **COMMENTS** None ## **DEVIATIONS FROM TEST STANDARD** None # **RESULTS** | Test
Configuration | Frequency
Band | Transmit
Frequency
(MHz) | Transmit
Channel | Modulation
Scheme | Slot# | EUT
Position | SAR Drift
During Test
(dB) | Measured 1g
SAR Level
(W/kg) | Measured
10g SAR
Level (W/kg) | SAR
Scaling
Factor | Scaled
1g SAR
Level
(W/kg) | Scaled
10g SAR
Level
(W/kg) | Test# | |-----------------------|-------------------|--------------------------------|---------------------|----------------------|-------|-----------------|----------------------------------|------------------------------------|-------------------------------------|--------------------------|-------------------------------------|--------------------------------------|-------| | Body | 1.9 GHz | 1850 | 512 | CS-4 | 1 | Top | 0.09 | 0.004 | 0.003 | 1 | 0.004 | 0.003 | 7 | | Body | 1.9 GHz | 1850 | 512 | CS-4 | 1 | Back | -8.94 | 0.005 | 0.003 | 1 | 0.005 | 0.003 | 8 | | Body | 1.9 GHz | 1850 | 512 | CS-4 | 1 | Left | -0.06 | 1.35 | 0.650 | 1 | 1.35 | 0.650 | 9 | | Body | 1.9 GHz | 1910 | 810 | CS-4 | 1 | Left | -0.07 | 1.41 | 0.665 | 1 | 1.41 | 0.665 | 13 | | Body | 1.9 GHz | 1880 | 661 | CS-4 | 1 | Left | -0.09 | 1.30 | 0.619 | 1 | 1.30 | 0.619 | 14 | ## **REPEATABILITY** | Test
Configuration | Frequency
Band | Transmit
Frequency
(MHz) | Transmit
Channel | Modulation
Scheme | Slot# | EUT
Position | SAR Drift During
Test (dB) | Measured 1g SAR
Level (W/kg) | Measured 10g
SAR Level
(W/kg) | Repeat# | |-----------------------|-------------------|--------------------------------|---------------------|----------------------|-------|-----------------|-------------------------------|---------------------------------|-------------------------------------|---------| | Body | 1.9 GHz | 1910 | 810 | CS-4 | 1 | Left | -0.13 | 1.41 | 0.658 | 1 | | Body | 1.9 GHz | 1910 | 810 | CS-4 | 1 | Left | -0.10 | 1.41 | 0.658 | 2 | | Body | 1.9 GHz | 1910 | 810 | CS-4 | 1 | Left | -0.15 | 1.41 | 0.658 | 3 | # SAR TEST DATA - PCS1900 | Tested By: | Travis Pow and Ethan Schoonover | Room Temperature (°C): | 22.3°C | |----------------|---------------------------------|--------------------------|---------| | Date: | 2018/02/15 2:59:24 PM | Liquid Temperature (°C): | 22°C | | Serial Number: | ZE100961 | Humidity (%RH): | 33% | | Configuration: | GCEG0001-1 | Bar. Pressure (mb): | 1035 mb | | Comments: | None | | | #### Test13 DUT: GCEG0001; Type: D2450V2; Serial: D2450V2 - Communication System: UID 0, CW (0); Communication System Band: D1900 (1900.0 MHz); Frequency: 1910 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 1910 MHz; σ = 1.548 S/m; ϵ_r = 55.058; ρ = 1000 kg/m³, Medium parameters used: $\sigma = 0 \text{ S/m}$, $\epsilon_r = 1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: - Probe: ES3DV3 SN3246; ConvF(4.88, 4.88, 4.88); Calibrated: 2017/11/13; - Modulation Compensation: - Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 0mm (Fix Surface), z = 2.0, 32.0, 107.0 - Electronics: DAE4 Sn1237; Calibrated: 2017/11/07 - Phantom: ELI v5.0; Type: QDOVA002AA; - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373) **Body/Body/Reference scan (71x111x1):** Interpolated grid: dx=3.000 mm, dy=3.000 mm Maximum value of SAR (interpolated) = 1.44 W/kg Body/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.78 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 2.60 W/kg SAR(1 g) = 1.41 W/kg; SAR(10 g) = 0.665 W/kg Maximum value of SAR (measured) = 1.83 W/kg Body/Body/Area scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.78 W/kg Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 26.36 V/m Maximum value of SAR (measured) = 1.08 W/kg Approved By ## **SAR TEST DATA - PCS1900** #### Test13 ## **SAR TEST DATA - PCS1900** ### SYSTEM AND TEST SITE DESCRIPTION #### SAR MEASUREMENT SYSTEM #### Schmid & Partner Engineering AG, DASY52 Element selected the leader in SAR evaluation systems to provide the measurement tools for this evaluation. SPEAG's DASY52 is the fastest and most accurate scanner on the market. It is fully compatible with all world-wide standards for transmitters operating at the ear or within 20cm of the body. It provides full compatibility with IEC 62209-1, IEC 62209-2, IEEE 1528 as well as national adaptations such as FCC OET-65c and Korean Std. MIC #2000-93 The DASY52 system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY5 software. - · Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The SAM twin phantom, oval flat phantom, device holder, tissue simulating liquids, and validation dipole kits. ## SYSTEM AND TEST SITE DESCRIPTION #### **TEST SITE** #### **Element, Lab EV08** The SAR measurement system is located in a semi-anechoic chamber. This provides an ambient free environment that also eliminates reflections. The chamber is 12 ft wide by 16 ft long x 8 ft high. A dedicated HVAC unit provides \pm 1 degree C temperature control. ## **TEST EQUIPMENT** #### **TEST EQUIPMENT** | Description | Manufacturer | Model | ID | Last Cal. | Interval | |--------------------------------------|-------------------|---------------|------
------------------|----------| | Amplifier | Mini Circuits | ZHL-5W-2G-S+ | TRZ | NCR ¹ | 0 mo | | Antenna - Dipole | SPEAG | D835V2 | ADK | 2017/11/09 | 12 mo | | Antenna - Dipole | SPEAG | D900V2 | ADP | 2017/11/09 | 12 mo | | Antenna - Dipole | SPEAG | D1900v2 | ADO | 2017/11/07 | 12 mo | | DAE | SPEAG | SD 000 D04 EJ | SAH | 2017/11/07 | 12 mo | | Device Holder | SPEAG | N/A | SAW | NCR | 0 mo | | Dielectric Assessment Kit | SPEAG | DAKS:200 | IPR | 2016/03/17 | 36 mo | | Generator - Signal | Agilent | V2920A | TIH | NCR | 0 mo | | Meter - Power | Agilent | N1913A | SQR | 2017/10/12 | 12 mo | | Power Sensor | Agilent | E9300H | SQO | 2017/10/12 | 12 mo | | Probe - Dielectric | SPEAG | DAKS-3.5 | IPRA | 2016/11/01 | 36 mo | | Probe - SAR | SPEAG | ES3DV3 | SAF | 2017/11/13 | 12 mo | | SAR - Tissue Test Solution | SPEAG | MSL 900 | SAT | At start of | testing | | SAR - Tissue Test Solution | SPEAG | MSL 1900 | SAO | At start of | testing | | SAR Test System | Staeubli | DAYS5 | SAK | 2016/11/01 | 36 mo | | SAR Test System | SPEAG | QD OVA 001 BB | SAC | NCR | 0 mo | | | Omega | | | | | | Thermometer | Engineering, Inc. | HH311 | DUI | 2018/02/15 | 36 mo | | Thermometer | Omegaette | HH311 | DTY | 2018/01/05 | 36 mo | | Universal Radio Communication Tester | Agilent | E5515C | BSV | NCR | 0 mo | Note 1: The output of the signal generator / amplifier is verified with the calibrated power meter listed above. ## **MEASUREMENT UNCERTAINTY** #### **MEASUREMENT UNCERTAINTY BUDGETS PER IEEE 1528:2013** #### 300-3000 MHz Range | Uncertainty Component | Tolerance
(+/- %) | Probability
Distribution | Divisor | c _i (1g) | c _i (10g) | u _i (1g)
(+/-%) | u _i (10g)
(+/-%) | v i | |--|----------------------|-----------------------------|----------|---------------------|----------------------|-------------------------------|--------------------------------|------------| | Measurement System | | | | | | | | | | Probe calibration (k=1) | 5.5 | normal | 1 | 1 | 1 | 5.5 | 5.5 | 8 | | Axial isotropy | 4.7 | rectangular | 1.732 | 0.707 | 0.707 | 1.9 | 1.9 | 8 | | Hemispherical isotropy | 9.6 | rectangular | 1.732 | 0.707 | 0.707 | 3.9 | 3.9 | 8 | | Boundary effect | 1.0 | rectangular | 1.732 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | 4.7 | rectangular | 1.732 | 1 | 1 | 2.7 | 2.7 | 8 | | System detection limits | 1.0 | rectangular | 1.732 | 1 | 1 | 0.6 | 0.6 | - 80 | | Readout electronics | 0.3 | normal | 1 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response time | 0.8 | rectangular | 1.732 | 1 | 1 | 0.5 | 0.5 | 8 | | Integration time | 2.6 | rectangular | 1.732 | 1 | 1 | 1.5 | 1.5 | ∞ | | RF ambient conditions - noise | 1.7 | rectangular | 1.732 | 1 | 1 | 1.0 | 1.0 | - 80 | | RF Ambient Reflections | 0.0 | rectangular | 1.732 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe positioner mechanical tolerance | 0.4 | rectangular | 1.732 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe positioner with respect to phantom shell | 2.9 | rectangular | 1.732 | 1 | 1 | 1.7 | 1.7 | ∞ | | Extrapolation, interpolation, and integration algorithms for max. SAR evaluation | 1.0 | rectangular | 1.732 | 1 | 1 | 0.6 | 0.6 | ∞ | | Test Sample Related | | | | | | | | | | Device Positioning | 2.9 | normal | 1 | 1 | 1 | 2.9 | 2.9 | 145 | | Device Holder | 3.6 | normal | 1 | 1 | 1 | 3.6 | 3.6 | 5 | | Power Drift | 5.0 | rectangular | 1.732 | 1 | 1 | 2.9 | 2.9 | 8 | | Phantom and tissue parameters | | | | | | | | | | Phantom Uncertainty - shell thickness tolerances | 4.0 | rectangular | 1.732 | 1 | 1 | 2.3 | 2.3 | 8 | | Liquid conductivity - deviation from target values | 5.0 | rectangular | 1.732 | 0.64 | 0.43 | 1.8 | 1.2 | 8 | | Liquid conductivity - measurement uncertainty | 6.5 | normal | 1 | 0.64 | 0.43 | 4.2 | 2.8 | ∞ | | Liquid permittivity - deviation from target values | 5.0 | rectangular | 1.732 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid permittivity - measurement uncertainty | 3.2 | normal | 1 | 0.6 | 0.49 | 1.9 | 1.6 | 8 | | Combined Standard Uncertainty | | | RSS | | | 11.2 | 10.6 | 387 | | Expanded Measurement Uncertainty (95% Co | nfidence/ | | normal (| k=2) | | 22.5 | 21.2 | | Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Element Certificate No: D835V2-4d108_Nov17 | | ERTIFICATE | | | |--|--|--|---| | Object | D835V2SN:4d | 108 | | | Calibration procedure(s) | QA CAL-05 v9 | edure for dipole validation kits abo | | | | | conc. of upole validation has abo | ove ruo ivinz | | Calibration date: | November 09, 20 |)17 | | | | | cional standards, which realize the physical un
probability are given on the following pages ar | | | All calibrations have been conduc | cted in the closed laborato | ory facility: environment temperature (22 ± 3)°0 | C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | | | | Power sensor NRP-Z91 | SIN. 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | | SN: 5058 (20k) | 04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528) | Apr-18
Apr-18 | | Reference 20 dB Attenuator | | | • | | Reference 20 dB Attenuator Type-N mismatch combination | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: 5058 (20k)
SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529) | Apr-18
Apr-18 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-May-17 (No. EX3-7349_May17) | Apr-18
Apr-18
May-18 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-May-17 (No. EX3-7349_May17)
26-Oct-17 (No. DAE4-601_Oct17) | Apr-18
Apr-18
May-18
Oct-18 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-May-17 (No. EX3-7349_May17)
26-Oct-17 (No. DAE4-601_Oct17)
Check Date (in house) | Apr-18 Apr-18 May-18 Oct-18 Scheduled Check | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704 | 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 May-18 Oct-18 Scheduled Check In house check: Oct-18 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 May-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID# SN: GB37480704 SN: US37292783 SN: MY41092317 | 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 May-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)
07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Apr-18 Apr-18 May-18 Oct-18 Scheduled Check In house check: Oct-18 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Apr-18 Apr-18 May-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | Certificate No: D835V2-4d108_Nov17 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: November 9, 2017 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d108_Nov17 Page 2 of 8 Report No. GCEG0001.1 Rev. 1 **EAR-Controlled Data** #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.49 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.55 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.12 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.1 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.54 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.60 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.23 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d108_Nov17 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.4 Ω - 3.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.8 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.3 Ω - 5.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.2 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.393 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 26, 2010 | Certificate No: D835V2-4d108_Nov17 #### **DASY5 Validation Report for Head TSL** Date: 09.11.2017 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d108 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 31.05.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.21 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.79 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.30 W/kg 0 dB = 3.30 W/kg = 5.19 dBW/kg ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 09.11.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d108 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.2, 10.2, 10.2); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) #### Dipole Calibration for Body Tissue/Pin=250 mW,
d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.00 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.76 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.29 W/kg 0 dB = 3.29 W/kg = 5.17 dBW/kg ## Impedance Measurement Plot for Body TSL **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Element Client Certificate No: D1900V2-5d131_Nov17 | Object | D1900V2 - SN:5 | d131 | | |---|------------------------------|--|--| | Calibration procedure(s) | QA CAL-05.v9 | edure for dipole validation kits abo | we 700 MHz | | | | due of apor valuation kits abo | WE 7 OU WILL | | Calibration date: | November 07, 20 |)17 | | | | • | ional standards, which realize the physical un | • • | | The measurements and the unce | rtainties with confidence p | probability are given on the following pages ar | nd are part of the certificate. | | All calibrations have been conduc | cted in the closed laborato | ry facility: environment temperature (22 \pm 3) $^{\circ}$ | C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 7349 | 31-May-17 (No. EX3-7349_May17) | May-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | | | | 1.1 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A
Power sensor HP 8481A | SN: MY41092317
SN: 100972 | 07-Oct-15 (in house check Oct-16)
15-Jun-15 (in house check Oct-16) | In house check: Oct-18 In house check: Oct-18 | | Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | | · | | | Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | SN: 100972
SN: US37390585 | 15-Jun-15 (in house check Oct-16)
18-Oct-01 (in house check Oct-17) | In house check: Oct-18
In house check: Oct-18 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d131_Nov17 Issued: November 8, 2017 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d131_Nov17 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and edicates in the appropriate to the second s | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.2
W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.1 ± 6 % | 1.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.88 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.4 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d131_Nov17 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.2 Ω + 5.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.2 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.5 Ω + 5.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.6 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.205 ns | |----------------------------------|----------| | 2.001.001.0010) (01.0001011) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 14, 2010 | Certificate No: D1900V2-5d131_Nov17 #### **DASY5 Validation Report for Head TSL** Date: 07.11.2017 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d131 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 39.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 07.11.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d131 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.1 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 14.8 W/kg 0 dB = 14.8 W/kg = 11.70 dBW/kg #### Impedance Measurement Plot for Body TSL #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Element Certificate No: ES3-3246 Nov17 ## CALIBRATION GERTIFICATE Object ES3DV3 - SN:3246 Calibration procedure(s) QA.GAL-01:v9; QA.CAL-12:v9; QA.GAL-23:v5; QA.CAL-25:v6 Calibration procedure for dosimetric E-field probes Calibration date: November 13, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Data (O. 175 | | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | Cal Date (Certificate No.) | Scheduled Calibration | | Power sensor NRP-Z91 | | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Reference 20 dB Attenuator | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-16 (No. ES3-3013_Dec16) | Dec-17 | | DAE4 | SN: 660 | 7-Dec-16 (No. DAE4-660_Dec16) | Dec-17 | | | | | Dec-17 | | Secondary Standards | ID | Check Date (in house) | | | Power meter E4419B | SN: GB41293874 | | Scheduled Check | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | Calibrated by: Name **Function** Claudio Leubler Laboratory Fechnician Approved by: Katja Pokovic Technical Manager Issued: November 15, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ES3-3246_Nov17 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP CF diode compression point A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization & 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## **Methods Applied and Interpretation of Parameters:** NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of
ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3246_Nov17 Page 2 of 11 # Probe ES3DV3 SN:3246 Manufactured: May 5, 2009 Calibrated: November 13, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) **Basic Calibration Parameters** | | Sensor X | | | | |--|-------------|----------|-------------|--------------| | Norma () (() () 2) A | | Sensor Y | Sensor Z | Unc (k=2) | | Norm (μV/(V/m) ²) ^A | 1.37 | 1.02 | 1.20 | ± 10.1 % | | DCP (mV) ^B | 100.0 | 99.9 | | _ ± 10.1 % | | | | | 100.2 | [[| **Modulation Calibration Parameters** | UID Communication System Name | | | | | | | | | |-------------------------------|----|-----|-----|------------|-----|---------|----------|---------------------------| | | | | dB | B
dB√μV | С | D
dB | VR
mV | Unc [≒]
(k=2) | | | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 191.6 | ±3.5 % | | | | Y . | 0.0 | 0.0 | 1.0 | | 176.8 | | | L | | Z | 0.0 | 0.0 | 1.0 | | 198.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G | Unc | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|--------------------|-------------------| | 750 | 41.9 | 0.89 | 6.48 | 6.48 | 6.48 | 0.71 | (mm)
1.30 | (k=2)
± 12.0 % | | 835 | 41.5 | 0.90 | 6.33 | 6.33 | 6.33 | 0.80 | 1.15 | ± 12.0 % | | 900_ | 41.5 | 0.97 | 6.17 | 6.17 | 6.17 | 0.38 | 1.66 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.44 | 5.44 | 5.44 | 0.46 | 1.50 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.23 | 5.23 | 5.23 | 0.80 | 1.20 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450_ | 56.7 | 0.94 | 7.44 | 7.44 | 7.44 | 0.13 | 1.90 | ± 13.3 % | | 750 | 55.5 | 0.96 | 6.54 | 6.54 | 6.54 | 0.54 | 1.41 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.31 | 6.31 | 6.31 | 0.79 | 1.19 | ± 12.0 % | | 900 | <u>55.0</u> | 1.05 | 6.27 | 6.27 | 6.27 | 0.80 | 1.11 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 5.12 | 5.12 | 5.12 | 0.67 | 1.32 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.88 | 4.88 | 4.88 | 0.40 | 1.78 | ± 12.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ES3-3246_Nov17 ### **Other Probe Parameters** | Sensor Arrangement | Trionmula | |---|------------| | Connector Angle (°) | Triangular | | Mechanical Surface Detection Mode | 67.9 | | Optical Surface Detection Mode | enabled | | | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | | | Tip Diameter | 10 mm | | Probe Tip to Sensor X Calibration Point | 4 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm |