

Test Report No.: NK-16-E-0290

FCC Certification

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF TEL : + 82 31 330 1700 FAX : + 82 31 322 2332

FCC PART 18 Class II Permissive Change

Applicant :

Dongbu Daewoo Electronics Corporation (Cheongcheon-dong), 12, Bupyeongbuk-ro 236 beon-gil, Bupyeong-gu, Incheon, Korea, Republic of Attn : Mr. Byung-Seok, Kim Dates of Issue : April 08, 2016 Test Report No. : NK-16-E-0290 Test Site : Nemko Korea Co., Ltd. EMC site, Korea

FCC ID

Trade Mark

Contact Person

C5F7NF22MO110N

DAEWOO, GE

Dongbu Daewoo Electronics Corporation (Cheongcheon-dong), 12, Bupyeongbuk-ro 236 beon-gil, Bupyeong-gu, Incheon, Korea, Republic of Mr. Byung-Seok, Kim Telephone No. : + 82 32 510 7919

Applied Standard : Classification : EUT Type :

FCC Part 18 & Part 2 Consumer ISM equipment Microwave Oven

Remark : This Class II Permissive change test report was based on test report no. NK-12-E-928 which was issued on April 05, 2016.

The device bearing the Trade Mark and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in MP-5:1986.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

08 2016

Tested By : Doseung Shin Engineer

08, 2016

Reviewed By : Changsoo Choi Technical Manager

Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

Page 1 of 74

TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (Site Description)	4
EUT INFORMATION	5
DESCRIPTION OF TESTS (Radiation Hazard)	6
DESCRIPTION OF TESTS (Input Power Measurement)	6
DESCRIPTION OF TESTS (Output Power Measurement)	6
DESCRIPTION OF TESTS (Frequency Measurements)	6
DESCRIPTION OF TESTS (Conducted Emissions)	7
DESCRIPTION OF TESTS (Radiated Emissions)	8
TEST DATA (Radiation Hazard)	9
TEST DATA (Input Power Measurement)	9
TEST DATA (RF Output Power Measurement)	9
TEST DATA (Operating Frequency Measurements)	10
TEST DATA (Conducted Emissions)	12
TEST DATA (Radiated Emissions)	15
PLOT OF EMISSIONS (Operating Frequency Measurements)	22
ACCURACY OF MEASUREMENT	42
LIST OF TEST EQUIPMENT	45
APPENDIX A - SAMPLE LABEL	46
APPENDIX B - PHOTOGRAPHS OF TEST SET-UP	47
APPENDIX C - EUT PHOTOGRAPHS	52
APPENDIX D - SCHEMATIC DIAGRAM	72
APPENDIX E - USER'S MANUAL	73
APPENDIX F - BLOCK DIAGRAM	74

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 18.

Responsible Party : Contact Person :	Dongbu Daewoo Electronics Corporation Mr. Byung-Seok, Kim Tel No.: + 82 32 510 7919
Manufacturer :	Dongbu Daewoo Electronics Corporation (Cheongcheon-dong), 12, Bupyeongbuk-ro 236 beon-gil, Bupyeong-gu, Incheon, Korea, Republic of
Factory :	Dongbu Daewoo Microwave Ovens (Tianjin) Co., Ltd. NO. 34, CHANGHWA STREET, DAGANG DEVELOPMENT AREA, BINHAI NEW DISTRICT, TIANJIN, 300270 CHINA

- FCC ID: C5F7NF22MO110N
- Model: KOR-226S
- Variant Model: KOR-223S, PEB7226DF*WW, PEB7226DF*BB, PEB7226SF*SS
 KOR-228S, PEB7226EH*ES, ZEB1226SH*SS, KOR-223L,
 KOR-226L, KOR-228L
 Note) "*" May or may not include number from 0 to 9
- Trade Mark: DAEWOO, GE
- EUT Type: Microwave Oven
- Applied Standard: FCC Part 18 & Part 2
- Test Procedure(s): MP-5:1986
- Dates of Test: March 24, 2016 to April 01, 2016
- Place of Tests: Nemko Korea Co., Ltd. EMC Site
- Test Report No.: NK-16-E-0290

INTRODUCTION

The measurement procedure described in MP5:1986 for Methods of Measurement of radiated, powerline conducted radio noise, frequency and power output was used in determining emissions emanating from **Dongbu Daewoo Electronics Corporation**. FCC ID : **C5F7NF22MO110N**, **Microwave Oven**.

These measurement tests were conducted at *Nemko Korea Co., Ltd. EMC Laboratory*. The site address is 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18 miles) south-southeast from central Seoul.

The Nemko Korea Co., Ltd. has been accredited as a Conformity Assessment Body (CAB).

Nemko Korea Co., Ltd. 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF Tel) + 82 31 330 1700 Fax) + 82 31 322 2332

Fig. 1. The map above shows the Seoul in Korea vicinity area. The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

EUT INFORMATION

EUT Information

Intended use	Household
Type of appliance	Counter-top Type
Rated voltage & frequency	a.c. 120 V, 60 Hz Single Phase
Rated power output	1 100 W
Rated power consumption	1 600 W
Magnetron	RM269 (Dongbu Daewoo)

Component List

Item	Model Manufacturer		Serial Number
Diode H.V.	CL01-12	GAOXING	N/A
Fan Motor	OEM-15DWX1-C07	OH SUNG	N/A
H.V. CAPACITOR	CH85-21105	BiCai	N/A
Noise Filter	DWLF-M33 N/A		N/A
Magnetron	RM269	DAEWOO	151106CD JF
Board	M365	DAEWOO	40303- 0086600
SYNCHRONOUS MOTOR	49TYD-16A1 YUYAO JING CHENG HIGH & NEW TECHNOLOGY CO.,LTD		N/A
Trans H.V.	DYAS12A0-22A S2	DIGITAL POWER COMMUNICATIONS CO.,LTD.	N/A

Description of the Changes according to FCC part 2.1043

Basic model	Adding model	Difference
KOR-226S	KOR-223L KOR-226L KOR-228L	The adding models are identical with the Basic model except for model name, SMPS PCB assembly and front design.

Item	Before	After
PCB Assembly	LVT Typp	SMPS type

Radiation Hazard

A 700 ml water load was placed in the center of the oven. The power setting was set to maximum power. While the oven was operating, the Microwave Survey Meter probe was moved slowly around the door seams to check for leakage.

Input Power Measurement

A 700 mℓ water load was placed in the center of the oven and the oven set to maximum power. A 700 mℓ water load was chosen for its compatibility. Input power and current were measured using a Power Analyzer. Manufacturers to determine their input ratings commonly use this procedure.

Output Power Measurement

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000 $m\ell$ water load was measured. The water load was placed in the center of the oven. The oven was operated at maximum output power for 47 seconds. Then the temperature of the water re-measured.

Frequency Measurements

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 percent to 125 percent of the nominal rating. And the load quantity was reduced by evaporation to approximately 20 % of the original quantity with nominal rating.

Conducted Emissions

The Line conducted emission test facility is located inside a $4 \times 7 \times 2.5$ m shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 0.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH2-Z5) of the 50 ohm / 50 uH Line Impedance Stabilization Network(LISN) is bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz (ESH2-Z5) LISN.

Power to the LISN s are filtered by high-current high insertion loss power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ".

If d.c. power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 m were shortened by non-inductive bundling (serpentine fashion) to a 1 m length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 klz to 30 Mlz with 20 ms sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCI).

The detector functions were set to quasi-peak mode & average mode.

The bandwidth of receiver was set to 9 kt. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

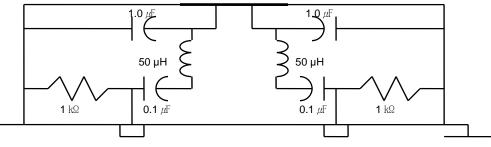


Fig. 2. LISN Schematic Diagram

Radiated Emissions

Measurement were made indoors at 10 m & 3 m using antenna, signal conditioning unit and EMI test receiver to determine the frequency producing the maximum EME.

Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found.

The spectrum was scanned from 0.15 Mb to 30 Mb using Loop Antenna (R&S/HFH2-Z2) and from 30 Mb to 1000 Mb using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163).

Above 1 GHz, Double Ridged Broadband Horn antenna (Schwarzbeck, BBHA 9120 D) was used.

Final Measurements were made indoors at 3 m using Loop Antenna (R&S/HFH2-Z2) for measurement from 0.15 to 30 Mb with RBW 9 kb & VBW 9 kb and made indoor at 10 m using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163) for measurement from 30 Mb to 1000 Mb with RBW 100 kb & VBW 100 kb and made indoors at 3 m using Double Ridged Broadband Horn antenna (Schwarzbeck, BBHA 9120 D) for measurement from 1 Gb to 18 Gb with RBW 1 Mb & VBW 10 Hz.

The detector function were set to quasi peak mode and the bandwidth of the receiver were set to 9 kHz, 100 kHz and peak mode 1 MHz depending on the frequency or type of signal.

The Double Ridged Broadband Horn antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The EUT is rotated about its vertical axis on the turntable, and the polarization and height of the receiving antenna are varied to obtain the highest field strength on the particular frequency under observation.

Each EME reported was calibrated using the R/S signal generator.

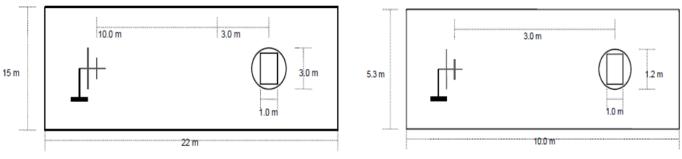


Fig. 3. Dimensions of 10 semi anechoic chamber

Fig. 4. Dimensions of 3 m full anechoic chamber

Radiation Hazard

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]
Α	0.03	1.00
В	0.03	1.00
All others	0.01	1.00

Input Power Measurement

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)
Power Input	1 600	1 618	1.1	+ 15 %

Output Power Measurement

Quantity of Water [ml]	Starting Temperature [Centigrade]	Final Temperature [Centigrade]	Temp. Rise	Elapsed Time [seconds]	RF Power [watts]
1 000	10	20	10	38	1 102

RF Power = (4.187 Joules/Cal) x (Volume in ml) x (Temp. Rise) Time in seconds

Tested by : Doseung Shin

Frequency measurements

Frequency vs Line Voltage Variation Test

		[R	oom Temperature : 19.8 °C
Line Voltage	*)Pole	Frequency	Allowed Tolerance for
Variation (a.c. V)	ation (a.c. V)		the ISM Band
	Н	Lower : 2 445.2	
00	Н	Upper : 2 474.6	
96	V	Lower : 2 423.0	
	V	Upper : 2 472.2	
	н	Lower : 2 447.0	
400	н	Upper : 2 470.4	
108	V	Lower : 2 425.4	
	V	Upper : 2 466.2	
	н	Lower : 2 432.6	
400	Н	Upper : 2 466.2	Lower : 2 400 Mb
120	V	Lower : 2 423.6	Upper : 2 500 Mb
	V	Upper : 2 473.4	
	Н	Lower : 2 441.0	
100	Н	Upper : 2 468.0	
132	V	Lower : 2 429.6	
	V	Upper : 2 471.0	
	Н	Lower : 2 435.6	
450	Н	Upper : 2 463.8	
150	V	Lower : 2 433.8	
	V	Upper : 2 465.0	

NOTE :

- 1. *Pol. H = Horizontal V = Vertical
- 2. Initial load : 1 000 ml of water in the beaker.
- 3. Line voltage varied from a.c. 96 V to a.c. 150 V.
- 4. ISM Frequency : 2 450 Mz, Tolerance : ± 50 Mz

RESULT : Pass

Tested by : Doseung Shin

Frequency vs Load Variation Test

		ןאט	om Temperature : 20.6 C]
Volume of water	*)Pole	Frequency	Allowed Tolerance for
(ml)		[MHz]	the ISM Band
	Н	Lower : 2 448.2	
200	Н	Upper : 2 461.4	
200	V	Lower : 2 445.2	
	V	Upper : 2 461.4	
	Н	Lower : 2 448.2	
400	Н	Upper : 2 465.0	
400	V	Lower : 2 448.2	
	V	Upper : 2 465.0	
	н	Lower : 2 451.2	
<u></u>	н	Upper : 2 474.6	Lower : 2 400 Mb
600	V	Lower : 2 451.8	Upper : 2 500 Mb
	V	Upper : 2 475.2	
	н	Lower : 2 448.2	
000	н	Upper : 2 471.6	
800	V	Lower : 2 422.4	
	V	Upper : 2 471.0	
	Н	Lower : 2 447.0	
4000	Н	Upper : 2 469.8	
1000	V	Lower : 2 434.4	
	V	Upper : 2 468.0	

[Room Temperature : 20.6 °C]

NOTE :

1. *Pol. H = Horizontal, V = Vertical

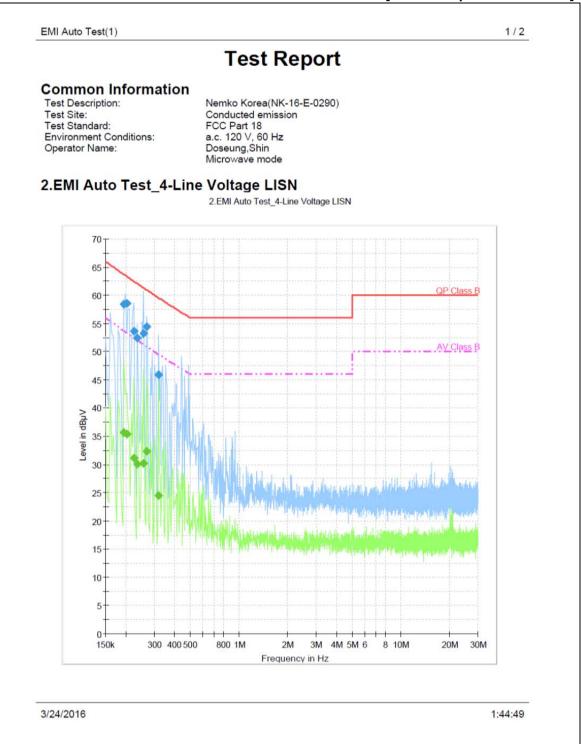
2. The water load was varied between 200 $\,{\rm m}\ell\,$ to 1 000 $\,{\rm m}\ell.$

3. Frequency was measured by using nominal voltage (a.c. 120 V).

4. ISM Frequency : 2 450 Mz, Tolerance : ± 50 Mz

RESULT : Pass

Tested by : Doseung Shin


Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

Conducted Emissions

FCC ID : C5F7NF22MO110N

[Room Temperature : 18.3 °C]

2/2

EMI Auto Test(1)

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.194775	58.4	15000.0	9.000	GND	L1	10.4	5.3	63.7	
0.202238	58.5	15000.0	9.000	GND	L1	10.4	4.9	63.4	
0.224625	53.6	15000.0	9.000	GND	N	10.4	8.8	62.5	
0.235819	52.4	15000.0	9.000	GND	L1	10.4	9.6	62.0	
0.258206	53.3	15000.0	9.000	GND	L1	10.4	8.0	61.3	
0.269400	54.4	15000.0	9.000	GND	L1	10.4	6.5	60.9	
0.317906	45.9	15000.0	9.000	GND	L1	10.4	13.6	59,6	

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.194775	35.7	15000.0	9.000	GND	N	10.4	17.9	53.7	
0.202238	35.5	15000.0	9.000	GND	N	10.4	17.9	53.3	1
0.224625	31.2	15000.0	9.000	GND	N	10.4	21.2	52.4	
0.235819	30.0	15000.0	9.000	GND	L1	10.4	22.0	52.0	
0.258206	30.2	15000.0	9.000	GND	L1	10.4	21.1	51.2	
0.269400	32.3	15000.0	9.000	GND	L1	10.4	18.6	50.9	
0.317906	24.5	15000.0	9.000	GND	N	10.4	25.0	49.5	

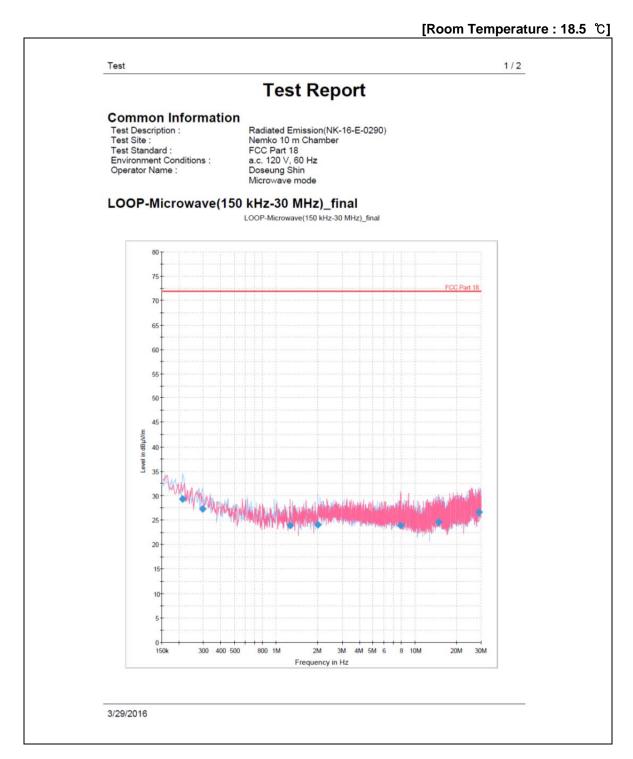
3/24/2016

1:44:49

NOTES:

- 1. Measurements using quasi-peak mode & average mode.
- 2. If no frequencies are specified in the tables, no measurement for quasi-peak or average was necessary.
- 3. Line : L = Line , N = Neutral
- 4. The limit for consumer device is on the FCC Part section 18.307(b).

441


Tested by : Doseung Shin

Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N Page 14 of 74

Radiated Emissions (150 kt to 30 Mz)

FCC ID : C5F7NF22MO110N

Test

2/2

Final	Result 1
-------	----------

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
0.212685	29.3	15000.0	9.000	Н	122.0	-24.0	42.6	71.9
0.296265	27.3	15000.0	9.000	н	270.0	-24.2	44.6	71.9
1.260420	23.9	15000.0	9.000	V	0.0	-24.1	48.0	71.9
2.003685	24.0	15000.0	9.000	н	0.0	-24.0	47.9	71.9
7.928910	24.0	15000.0	9.000	V	107.0	-24.1	47.9	71.9
14.913810	24.7	15000.0	9.000	V	0.0	-22.4	47.2	71.9
29.146290	26.6	15000.0	9.000	н	341.0	-13.9	45.3	71.9

(continuation of the "Final Result 1" table from column 9 ...)

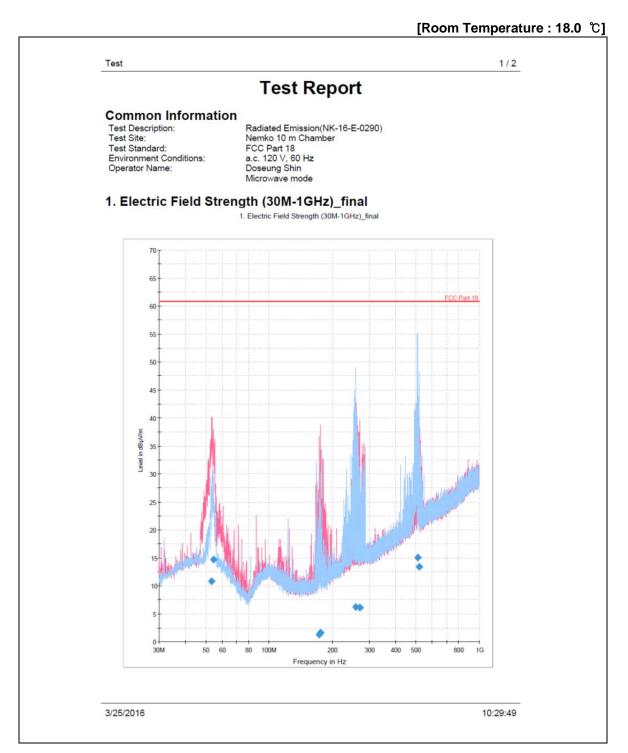
Frequency (MHz)	Comment
0.212685	
0.296265	
1.260420	
2.003685	
7.928910	
14.913810	
29.146290	

3/29/2016

<Radiated Measurements at 3 meters>

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300 / 3) = 40 dBuV/m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power / 500))
- 5. All other emissions were measured while a 700 $m\ell$ load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.


Tested by : Doseung Shin

Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

Radiated Emissions (30 Mt to 1 Gtz)

FCC ID : C5F7NF22MO110N

Final Result 1 1										2/2
Frequency (MHz) Average (dBµV/m) Meas. Time (ms) Bandwidth (kHz) Height (cm) Polarization (cm) Azimuth (deg) Corr. (dB) Margin (dB) Limit (dB) 53.474000 10.9 15000.0 120.000 370.0 V 2289.0 -22.6 49.9 60.8 54.298500 14.7 15000.0 120.000 370.0 V 2289.0 -22.6 49.9 60.8 173.172000 1.3 15000.0 120.000 370.0 V 228.0 -25.7 59.5 60.8 258.871500 6.2 15000.0 120.000 370.0 V 238.0 -26.6 59.2 60.8 270.851000 6.1 15000.0 120.000 170.0 H 84.0 -20.8 54.6 60.8 508.501000 13.4 15000.0 120.000 170.0 H 127.0 -13.0 45.8 60.8 517.328000 13.4 15000.0 120.000 170.0 H 34.0 -12.8 47	Final Re	esult 1								
53.474000 10.9 15000.0 120.000 370.0 V 2289.0 -22.6 49.9 60.8 54.298500 14.7 15000.0 120.000 330.0 V -30.0 -22.7 46.1 60.8 173.172000 1.3 15000.0 120.000 370.0 V 228.0 -25.7 59.5 60.8 175.936500 1.6 15000.0 120.000 370.0 V 228.0 -25.7 59.5 60.8 258.871500 6.2 15000.0 120.000 370.0 V 238.0 -25.6 59.2 60.8 270.851000 6.1 15000.0 120.000 100.0 V 73.0 -20.4 54.6 60.8 508.501000 15.0 15000.0 120.000 170.0 H 127.0 -13.0 45.8 60.8 517.328000 13.4 15000.0 120.000 170.0 H 34.0 -12.8 47.4 60.8 (continuation of the "Final Result 1" table from column 10)))	Frequency	Average	Time			Polarization				
64.298500 14.7 15000.0 120.000 330.0 V -30.0 -22.7 46.1 60.8 173.172000 1.3 15000.0 120.000 370.0 V 228.0 -25.7 59.5 60.8 175.936500 1.6 15000.0 120.000 309.0 V 317.0 -26.6 59.2 60.8 258.871500 6.2 15000.0 120.000 297.0 H 84.0 -20.8 54.6 60.8 270.851000 6.1 15000.0 120.000 100.0 V 73.0 -22.4 54.7 60.8 508.501000 15.0 1500.0.0 120.000 170.0 H 127.0 -13.0 45.8 60.8 617.328000 13.4 15000.0 120.000 170.0 H 34.0 -12.8 47.4 60.8 (continuation of the "Final Result 1" table from column 10) 34.0 -12.8 47.4 60.8 258.871500 258.871600 270.851000	53,474000	10.9		120,000	370.0	V	289.0	-22.6	49.9	60.8
173.172000 1.3 15000.0 120.000 370.0 V 228.0 -25.7 59.5 60.8 175.936500 1.6 15000.0 120.000 309.0 V 317.0 -25.6 59.2 60.8 258.871500 6.2 15000.0 120.000 297.0 H 84.0 -20.8 54.6 60.8 270.851000 6.1 15000.0 120.000 100.0 V 73.0 -20.4 54.7 60.8 508.501000 15.0 15000.0 120.000 170.0 H 127.0 -13.0 45.8 60.8 517.328000 13.4 15000.0 120.000 170.0 H 34.0 -12.8 47.4 60.8 (continuation of the "Final Result 1" table from column 10) 34.0 -12.8 47.4 60.8 53.474000 53.474000 53.474000 53.474000 53.474000 53.474000 53.474000 53.6800 258.871500 508.501000 508.501000 508.501000 508.50100 508.501000 508.50100 508.50100 508.501000 508.501000 50										
175.936500 1.6 15000.0 120.000 309.0 V 317.0 -25.6 59.2 60.8 258.871500 6.2 15000.0 120.000 297.0 H 84.0 -20.8 54.6 60.8 270.851000 6.1 15000.0 120.000 100.0 V 73.0 -20.4 64.7 60.8 508.501000 15.0 15000.0 120.000 170.0 H 127.0 -13.0 45.8 60.8 517.328000 13.4 15000.0 120.000 170.0 H 34.0 -12.8 47.4 60.8 (continuation of the "Final Result 1" table from column 10) 34.0 -12.8 47.4 60.8 53.474000 53.474000 53.474000 53.474000 53.474000 53.474000 53.474000 53.6800 258.871500 226.871500 270.851000 258.871500 53.6700 500.000 508.501000 508.501000 508.501000 508.501000 508.501000 508.501000 508.501000 508.501000 508.501000 508.501000 508.501000 508.501000					370.0	V				
258.871500 6.2 15000.0 120.000 297.0 H 84.0 -20.8 54.6 60.8 270.851000 6.1 15000.0 120.000 100.0 V 73.0 -20.4 54.7 60.8 508.501000 15.0 15000.0 120.000 170.0 H 127.0 -13.0 -45.8 60.8 517.328000 13.4 15000.0 120.000 170.0 H 127.0 -13.0 45.8 60.8 (continuation of the "Final Result 1" table from column 10) Frequency Comment (MHz) -12.8 47.4 60.8 54.298500 175.936500 258.871500 226.871500 258.871500 258.871500 258.871500 270.851000 508.501000 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 508.50100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
270.851000 6.1 15000.0 120.000 100.0 V 73.0 -20.4 54.7 60.8 508.501000 15.0 15000.0 120.000 170.0 H 127.0 -13.0 45.8 60.8 517.328000 13.4 15000.0 120.000 170.0 H 34.0 -12.8 47.4 60.8 (continuation of the "Final Result 1" table from column 10) Trequency Comment 53.474000 54.298500 173.172000 175.936500 270.851000 508.5010000 508.5010000 508										
517.328000 13.4 15000.0 120.000 170.0 H 34.0 -12.8 47.4 60.8 (continuation of the "Final Result 1" table from column 10) Frequency Comment (MHz) 53.474000 53.474000 53.474000 173.936500 173.936500 175.936500 258.871500 250.851000 508.6010000 508.601000 508.601000 508.601000 508.601000 508.601000 508.601000 508.6010000 508.6010000 508.6010000 <t< td=""><td></td><td></td><td>15000.0</td><td>120.000</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			15000.0	120.000						
(continuation of the "Final Result 1" table from column 10) Frequency Comment (MHz) 53.474000 53.474000 173.172000 175.936500 258.871500 270.851000 508.501000										
Frequency (MHz) Comment 53.474000 53.474000 54.298500 173.172000 173.172000 175.936500 288.871500 258.871500 270.851000 508.501000 508.501000	517.328000	13.4	15000.0	120.000	170.0	Н	34.0	-12.8	47.4	60.8
(MHz) (MHz) 53.474000 53.474000 54.298500 173.172000 175.936500 258.871500 258.871500 508.501000	(continuation of the "Final Result 1" table from column 10)									
53.474000 54.298500 173.172000 175.936500 288.871500 270.851000 508.501000		Comment								
54.298500 173.172000 175.936500 258.871500 270.851000 508.561000	53.474000									
175.936500 268.871500 270.851000 508.501000	54.298500		1							
268.871500 270.851000 508.501000			-							
270.851000 508.501000			+							
508.501000			-							
			+							
			1							

<Radiated Measurements at 10 meters>

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300/10) \doteqdot 29.5 dB μ /m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power/500))
- 5. All other emissions were measured while a 700 ml load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

Tested by : Doseung Shin

Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

Radiated Emissions (Above 1 Ghz)

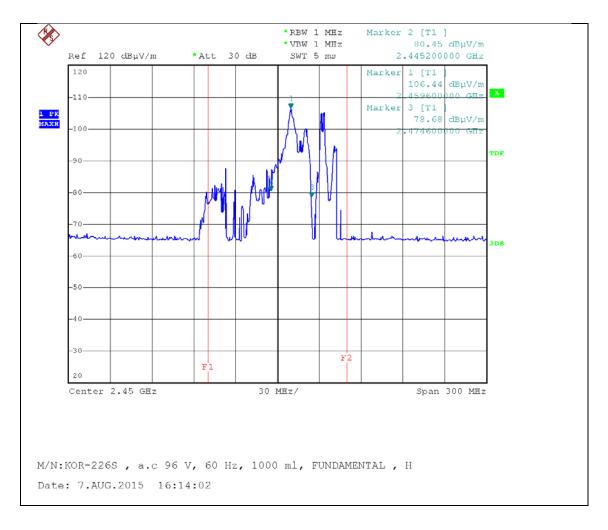
FCC ID : C5F7NF22MO110N

Frequency	Pol*	Antenna Heights	Turntable Angles	Reading Level	Total Loss**	Result at 3 m		к	Results at 300 m	Limits at 300 m
(MHz)	(H/V)	(cm)	ീ	(dBµV)	(dB)	(dBµV/m)	(<i>µ</i> \/m)		(<i>µ</i> V/m)	(<i>µ</i> V /m)
2200.42	V	130	135	13.7	31.5	45.2	182.0	0.005	0.9	37.1
2285.82	Н	160	45	14.3	31.8	46.1	201.8	0.005	1.0	37.1
2736.77	V	190	0	14.5	33.2	47.7	242.7	0.006	1.5	37.1
4209.08	Н	160	315	38.2	5.0	43.2	144.5	0.009	1.3	37.1
4926.70	V	160	0	47.1	7.5	54.6	537.0	0.01	5.4	37.1
6838.12	V	190	0	36.0	12.3	48.3	260.0	0.01	2.6	37.1
8282.96	Н	160	45	37.9	15.1	53.0	446.7	0.01	4.5	37.1
8483.29	V	190	45	33.4	15.3	48.7	272.3	0.01	2.7	37.1
9839.98	V	160	180	41.2	16.8	58.0	794.3	0.01	7.9	37.1
14786.93	Н	160	45	39.5	23.9	63.4	1479.1	0.01	14.8	37.1

[Room Temperature : (17.4) °C]

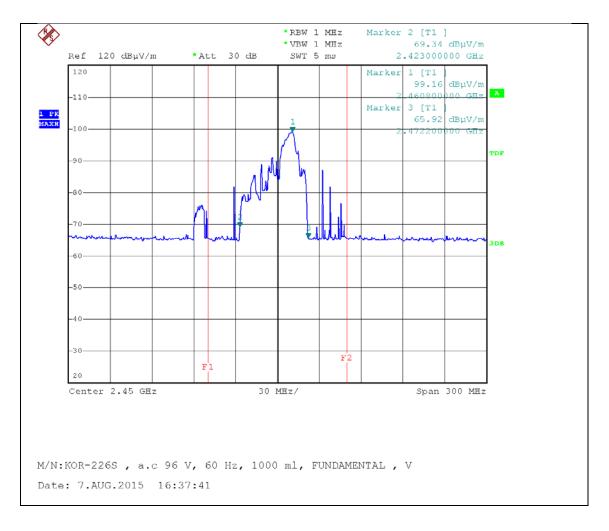
<Radiated Measurements at 3 meters>

NOTES:

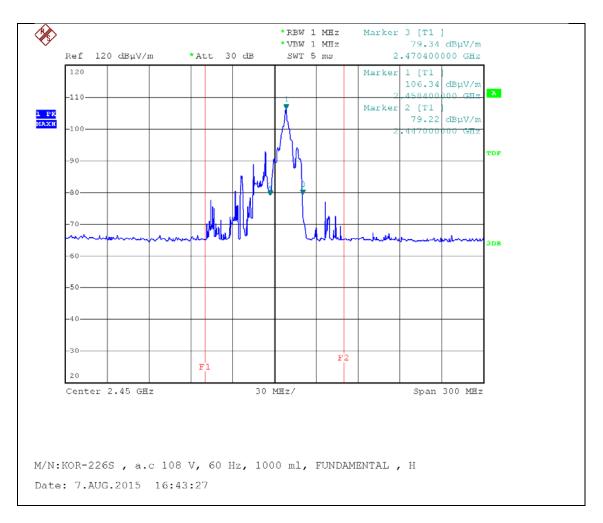

- 1. * Pol. H =Horizontal V=Vertical
- 2. ** Total Loss = Antenna Factor + Cables Loss + Amplifier + HPF (High Pass Filter)
- 3. Field Strength (at 300 m) $(uV/m) = K * 10^{[Fieldstrength at 3 m (dBuV/m)/20]}$
- 4. The limit at 300 meters is 25 * SQRT (RF Power/500)
- 5. Load for measurement of radiation on second and third harmonic : Two loads, one of 700 *ml* and the other of 300 *ml*, of water were used. Each load was tested both with the beaker located in the center of the oven and with it in the corner.
- 6. The test was performed at peak detector mode with average.
- 7. The limit for consumer device is on the FCC Part section 18.305.

Tested by : Doseung Shin

Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

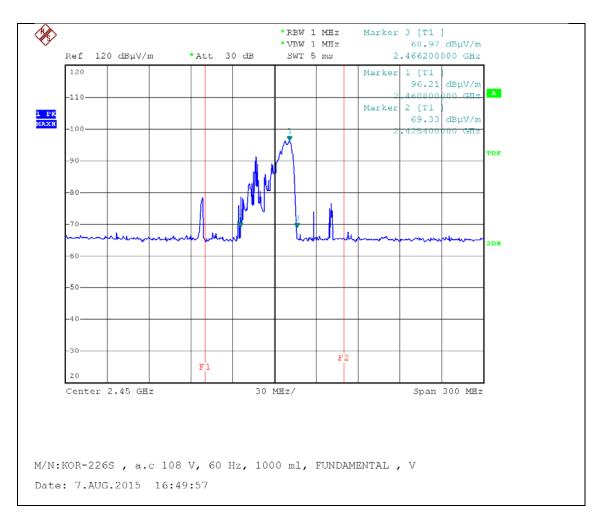

• Frequency vs Line Voltage Variation Test

Horizontal (96 V, 1000 ml)



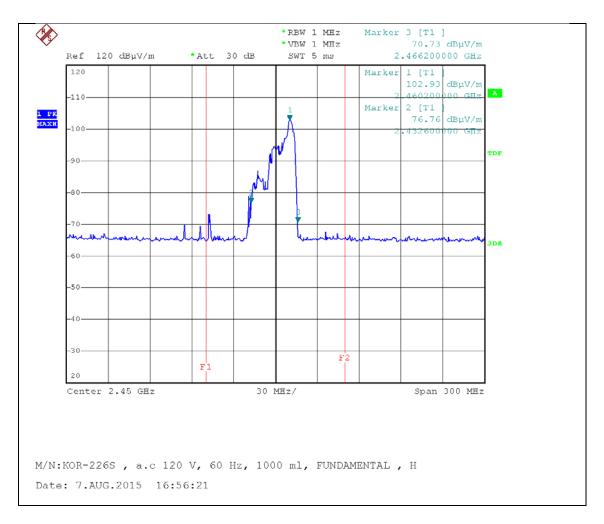
• Frequency vs Line Voltage Variation Test

Vertical (96 V, 1000 ml)



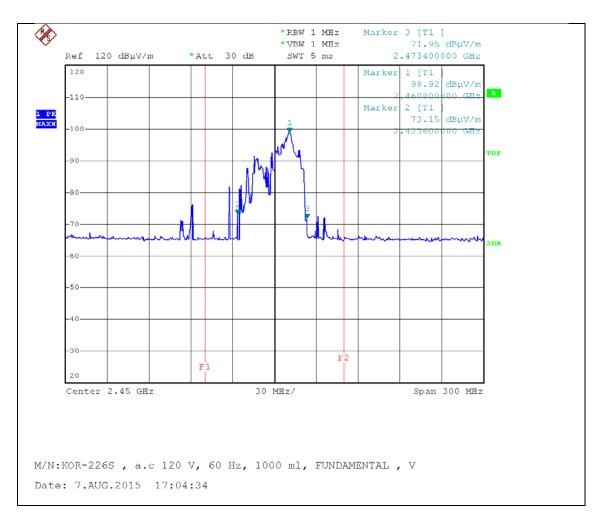
Frequency vs Line Voltage Variation Test

Horizontal (108 V, 1000 ml)



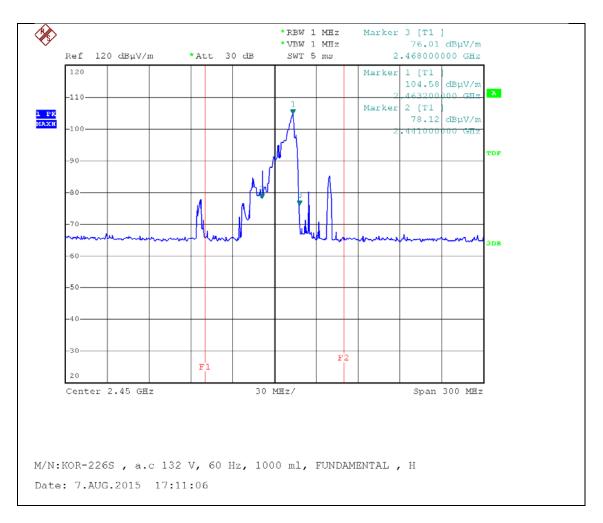
Frequency vs Line Voltage Variation Test

Vertical (108 V, 1000 ml)



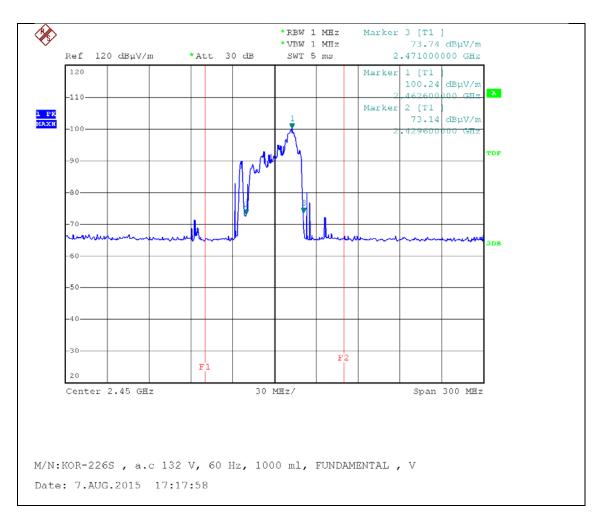
Frequency vs Line Voltage Variation Test

Horizontal (120 V, 1000 ml)



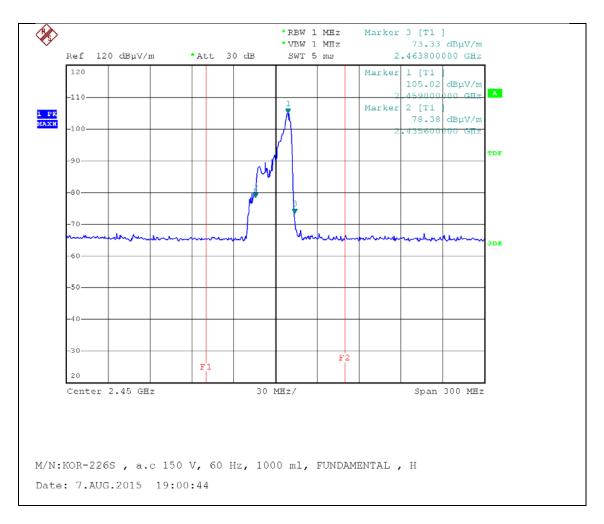
Frequency vs Line Voltage Variation Test

Vertical (120 V, 1000 ml)



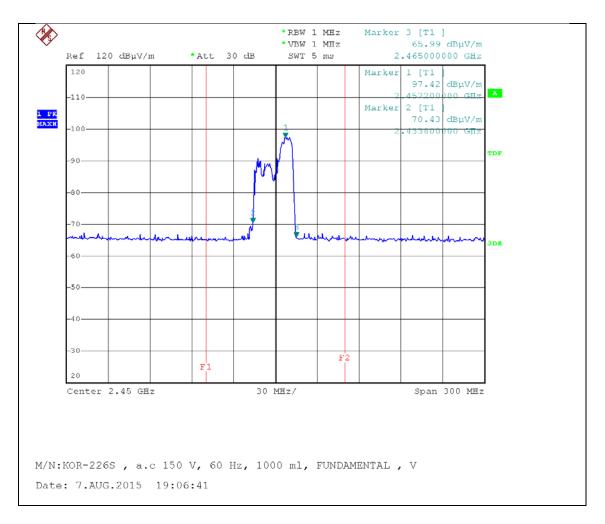
Frequency vs Line Voltage Variation Test

Horizontal (132 V, 1000 ml)



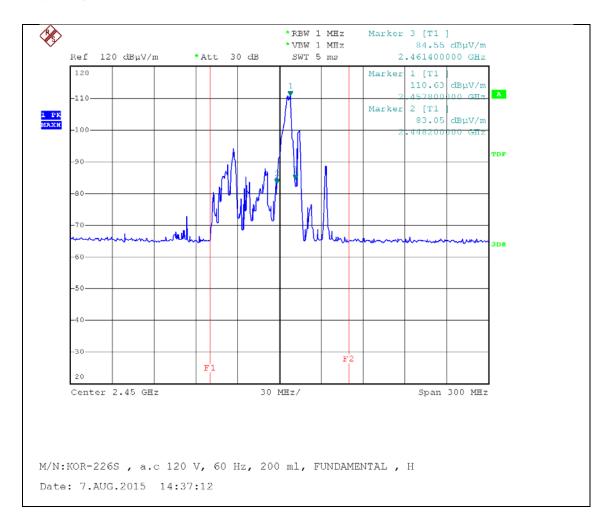
Frequency vs Line Voltage Variation Test

Vertical (132 V, 1000 ml)



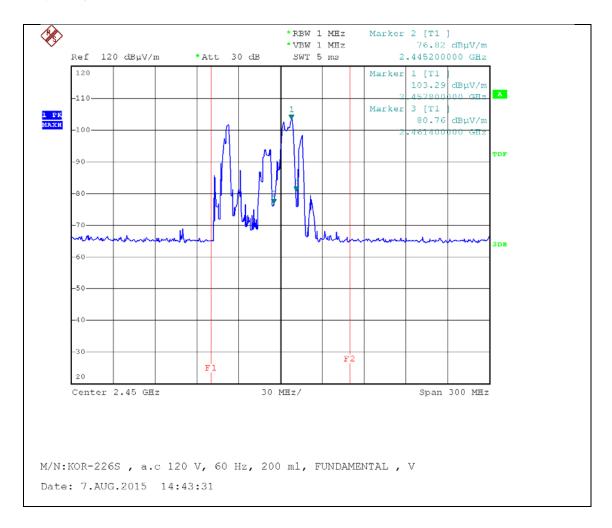
Frequency vs Line Voltage Variation Test

Horizontal (150 V, 1000 ml)



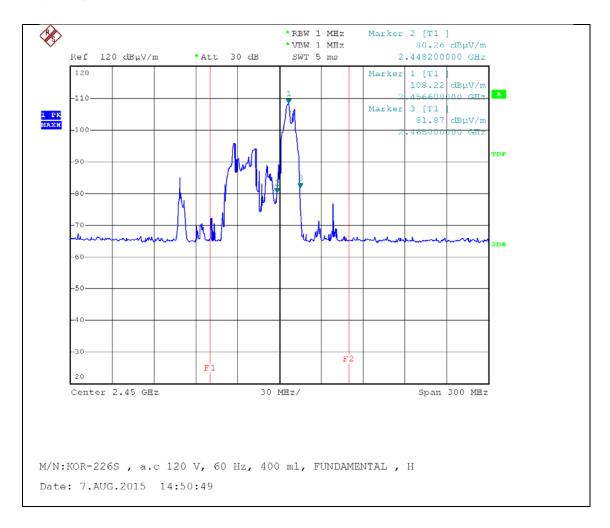
Frequency vs Line Voltage Variation Test

Vertical (150 V, 1000 ml)



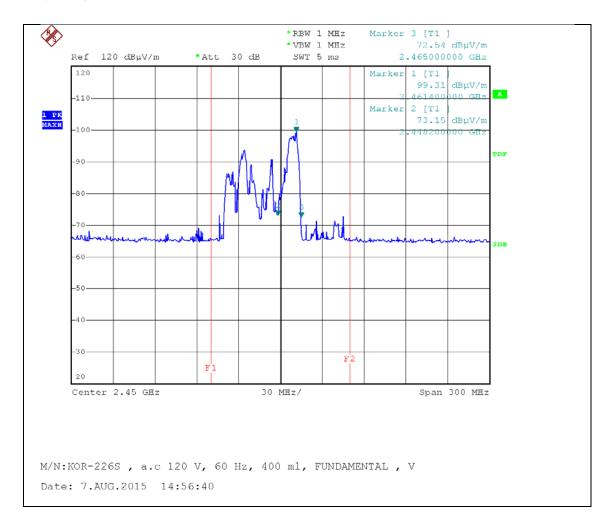
• Frequency vs Load Variation Test

Horizontal (120 V, 200 ml)



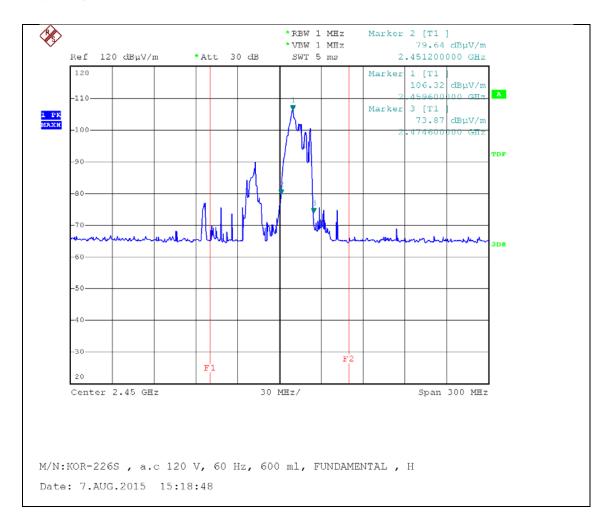
• Frequency vs Load Variation Test

Vertical (120 V, 200 ml)



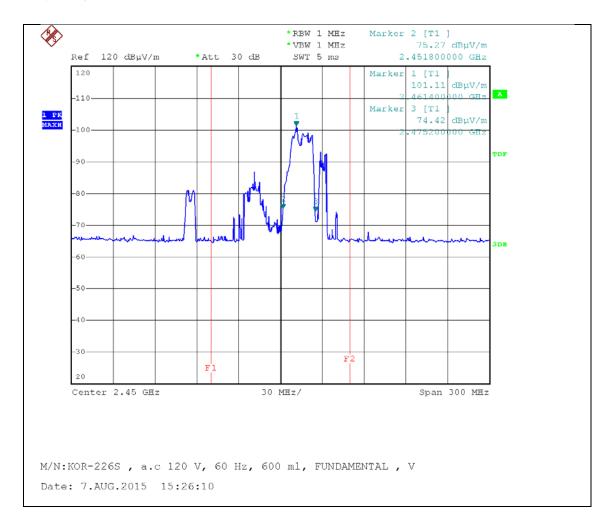
• Frequency vs Load Variation Test

Horizontal (120 V, 400 ml)



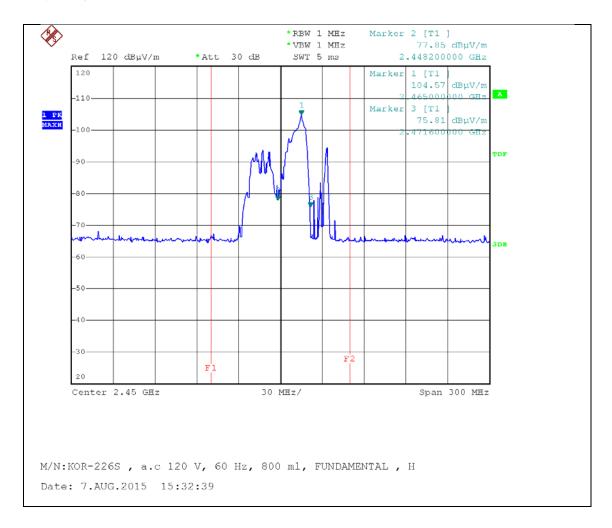
• Frequency vs Load Variation Test

Vertical (120 V, 400 ml)



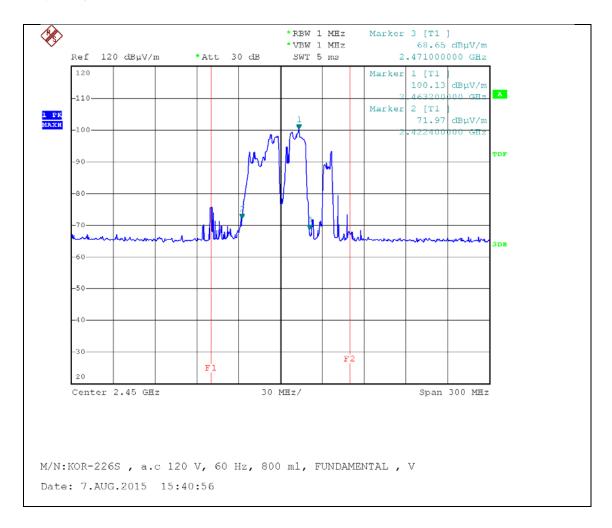
• Frequency vs Load Variation Test

Horizontal (120 V, 600 ml)



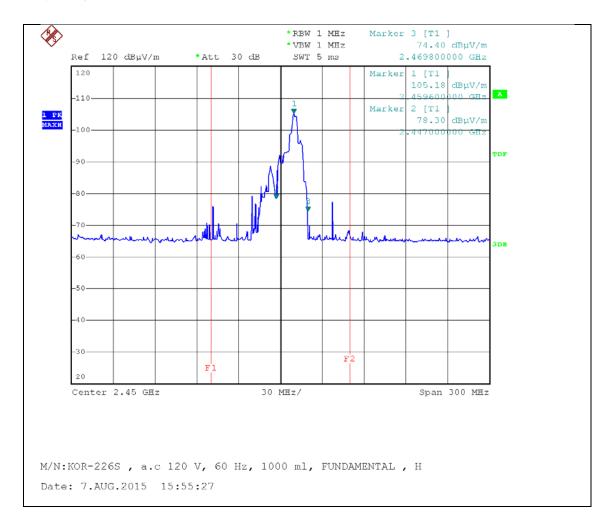
• Frequency vs Load Variation Test

Vertical (120 V, 600 ml)



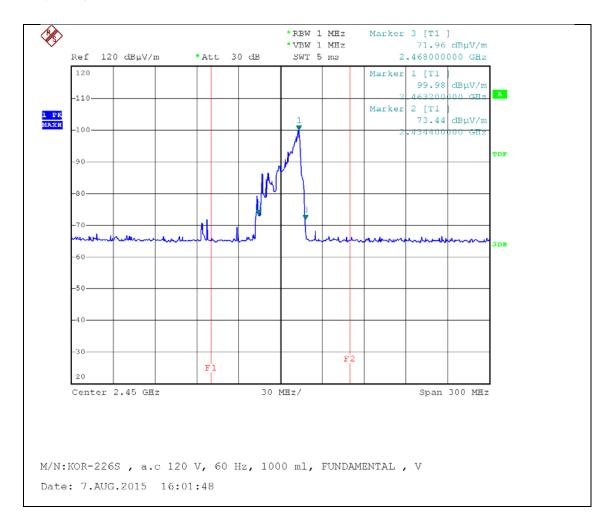
• Frequency vs Load Variation Test

Horizontal (120 V, 800 ml)



• Frequency vs Load Variation Test

Vertical (120 V, 800 ml)



• Frequency vs Load Variation Test

Horizontal (120 V, 1000 ml)

• Frequency vs Load Variation Test

Vertical (120 V, 1000 ml)

ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95 %

1. Conducted Uncertainty Calculation

		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor <i>k</i>	<i>u(Xi)</i> (dB)	Ci	<i>Ci u(Xi)</i> (dB)
Measurement System Repeatability	Rs	0.10	normal 1	1.00	0.10	1	0.10
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Attenuation AMN- Receiver	Lc	± 0.10	rectangular	√3	0.06	1	0.06
AMN Voltage division factor	Lamn	± 0.09	normal 2	2.00	0.05	1	0.05
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVға	± 0.92	normal 2	2.00	0.50	1	0.50
Pulse repetition rate response	dVen	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVNF	± 0.00	rectangular	√ 3	0.00	1	0.00
AMN Impedance	dZ	± 2.00	normal 2	2.00	1.00	1	1.00
Mismatch	М	+ 0.81 - 0.89	U-Shaped	√3	0.60	1	0.60
Remark	Using 50 Ω / 50 uH AMN						
Combined Standard Uncertainty	Normal			<i>uc</i> = 1.29 dB			
Expended Uncertainty U	Normal (<i>k</i> = 2)			U = 2.6 dB (CL is 95 %)			

FCC Certification

2. Radiation Uncertainty Calculation (Below 1 @)

		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor	<i>u(Xi)</i> (dB)	Ci	<i>Ci u(Xi)</i> (dB)
Measurement System Repeatability	RS	0.67	normal 1	1.00	0.67	1	0.67
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration	A _F	± 2.00	rectangular	√3	1.15	1	1.15
Cable Loss	CL	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity	AD	± 0.00	rectangular	$\sqrt{3}$	0.00	1	0.00
Antenna Factor Height Dependence	А _Н	± 2.00	rectangular	√3	1.15	1	1.15
Antenna Phase Centre Variation	A _P	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections	Si	± 4.00	triangular	$\sqrt{6}$	1.63	1	1.63
Measurement Distance Variation	Dv	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	D _{bal}	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Cross Polarization	D _{Cross}	± 0.00	rectangular	√3	0.00	1	0.00
Mismatch	М	+ 0.98 - 1.11	U-Shaped	$\sqrt{2}$	0.74	1	0.74
EUT Volume Diameter	Vđ	0.33	normal 1	1.00	0.33	1	0.11
Combined Standard Uncertainty	Normal			<i>uc</i> = 2.72 dB			
Expended Uncertainty U	Normal (<i>k</i> = 2)			5.4 dB (CL is 95 %)			

Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

Page 43 of 74

3. Radiation Uncertainty Calculation (Above 1 @)

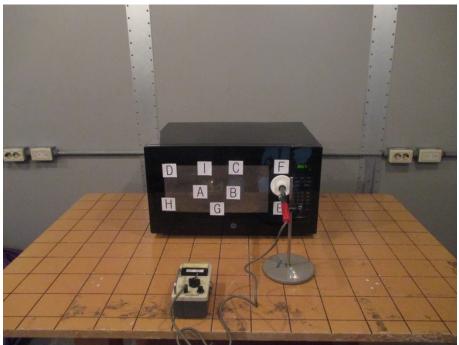
		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor <i>k</i>	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	RS	0.21	normal 1	1.00	0.21	1	0.21
Receiver Reading	Ri	± 0.02	normal 2	2	0.01	1	0.01
Attenuation (antenna-receiver)	a _C	± 0.30	normal 2	2	0.15	1	0.15
Preamplifier gain	Gp	± 0.21	normal 2	2	0.11	1	0.11
Receiver Sine Wave	dVsw	± 0.17	normal 2	2	0.09	1	0.09
Instability of preamp gain	dGp	± 1.2	rectangular	√3	0.70	1	0.70
Noise Floor Proximity	dVnf	± 0.70	rectangular	$\sqrt{3}$	0.40	1	0.40
Antenna Factor Calibration	AF	± 1.00	normal 2	2	0.50	1	0.50
Directivity difference	DFadir	± 1.00	rectangular	$\sqrt{3}$	0.58	1	0.58
Phase Centre location	AP	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Antenna Factor Frequency Interpolation	Ai	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Site Imperfections	Si	± 6.00	triangular	$\sqrt{6}$	2.45	1	2.45
Effect of setup table material	dANT	± 1.21	rectangular	$\sqrt{3}$	0.70	1	0.70
Separation distance	dD	± 0.50	rectangular	$\sqrt{3}$	0.29	1	0.29
Cross Polarization	DCross	± 0.00	rectangular	$\sqrt{3}$	0.00	1	0.00
Table height	dh	± 0.00	normal 2	2	0.00	1	0.00
Mismatch (antenna-Preamplifier)	М	+ 1.30 - 1.50	U-Shaped	$\sqrt{2}$	1.00	1	1.00
Mismatch (preamplifier-antenna)	М	+ 1.20 - 1.40	U-Shaped	$\sqrt{2}$	0.92	1	0.92
Combined Standard Uncertainty	Normal			<i>uc</i> = 6.26 dB			
Expended Uncertainty U	Normal $(k = 2)$			<i>U</i> = ± 6.3 dB (CL is 95 %)			

LIST OF TEST EQUIPMENT

No.	Instrument	ument Manufacturer		Serial No.	Due to Calibration	Calibration Interval
1	Microwave survey meter	ETS Lindgren	1501	00033549	Feb.15 2017	2 year
2	LOOP ANTENNA	R&S	HFH2-Z2	N/A	Feb. 13 2016	2 years
3	EMI Test Receiver	R&S	ESCI	101041	Apr. 04 2017	1 year
4	Software	R&S	EMC32	Version 8.53.0	-	-
5	Artificial Mains Network	R&S	ESH2-Z5	100273	Apr. 04 2017	1 year
6	ATTENUATOR	FAIRVIEW	SA3N5W-10	N/A	Apr. 04 2017	1 year
7	EMI Test Receiver	R&S	ESU 40	100202	Apr. 04 2017	1 year
8	Software	R&S	EMC32	Version 8.53.0	-	-
9	TRILOG Broadband Test Antenna	SCHWARZBECK	VULB 9163	9163-454	Nov. 11 2016	2 year
10	ATTENUATOR	FAIRVIEW	SA3N5W-06	N/A	Apr. 04 2017	1 year
11	Controller	innco systems GmbH	CO2000-G	CO2000/562/ 23890210/L	N/A	N/A
12	Open Switch and Control Unit	R&S	OSP-120	100015	N/A	N/A
13	Antenna Mast (Left)	innco systems GmbH	MA4000-EP	N/A	N/A	N/A
14	Turn Table	innco systems GmbH	DT3000-3T	N/A	N/A	N/A
15	Signal Conditioning Unit	R&S	SCU 01	10030	Apr. 04 2017	1 year
16	SPECTRUM ANALYZER	Rohde & Schwarz	FSP40	100361	Jul. 16 2016	1 year
17	Signal Conditioning Unit	Rohde & Schwarz	SCU 18	10065	Apr. 04 2017	1 year
18	Double Ridged Broadband Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-474	Sep. 01 2016	2 year
19	Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A
20	Turn Table	innco systems GmbH	DS 1200 S	N/A	N/A	N/A
21	Antenna Mast	R&S	MA 4000	N/A	N/A	N/A
22	DOUBLE RIDGED HORN ANTENNA	SCHWARZBECK	HF907	100197	Jun. 11 2017	2 year

APPENDIX A – SAMPLE LABEL

Labeling Requirements


The sample label shown shall be *permanently affixed* at a conspicuous location on the device and be readily visible to the user at the time of purchase.

APPENDIX B – PHOTOGRAPHS OF TEST SET-UP

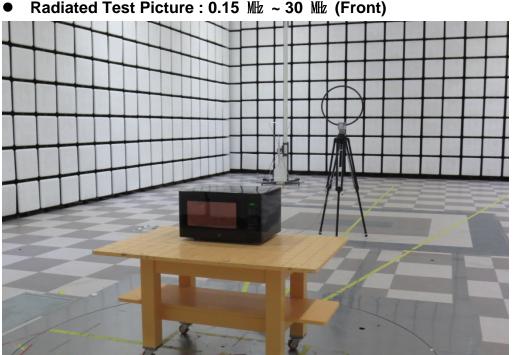
The **Conducted Test Picture** and **Radiated Test Picture** and show the worst-case configuration and cable placement.

Radiation hazard Test Picture

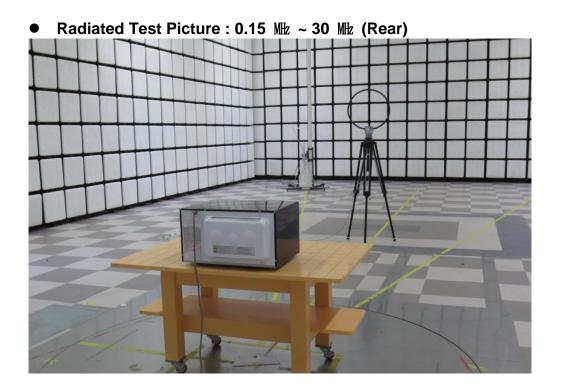
• Frequency measurement Test Picture

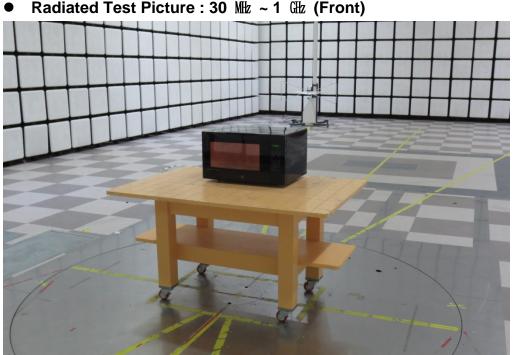
Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

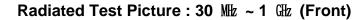

Page 47 of 74

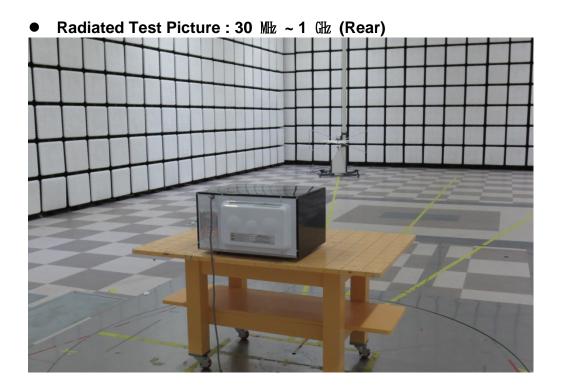


• Conducted Test Picture (Front)

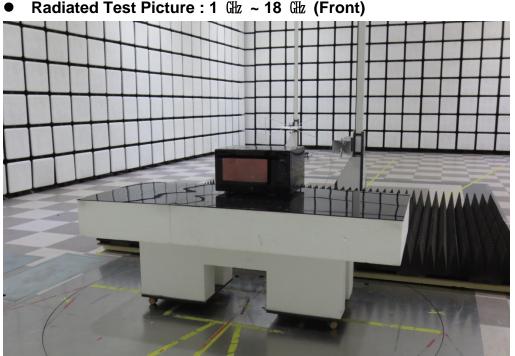

• Conducted Test Picture (Side)


Radiated Test Picture : 0.15 Mz ~ 30 Mz (Front)




Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

Page 49 of 74



Radiated Test Picture : 1 GHz ~ 18 GHz (Front)

► Front View of EUT

Dongbu Daewoo Electronics Corporation FCC ID: C5F7NF22MO110N

Page 52 of 74

Test Report No.: NK-16-E-0290

FCC Certification

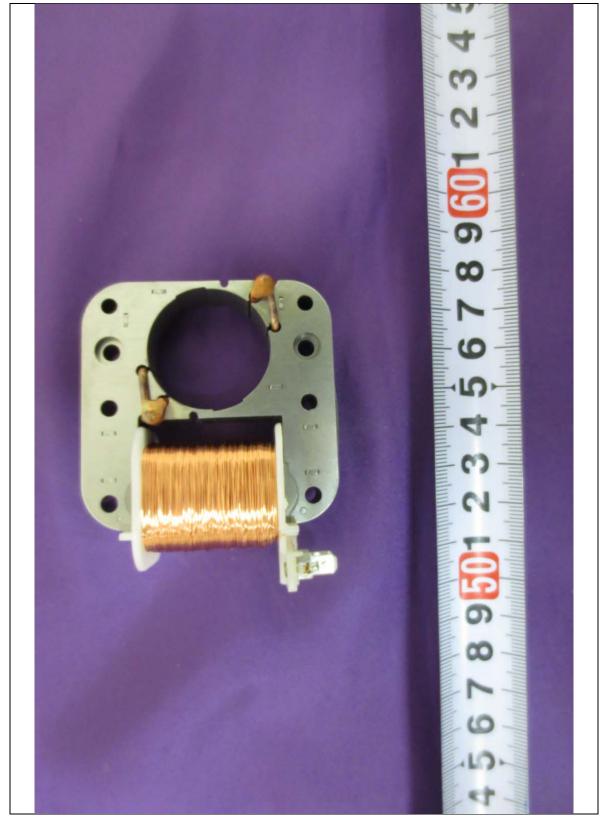
▶ Rear View of EUT

► Door open View of EUT

► Inside View of EUT

Front View of Diode H.V.

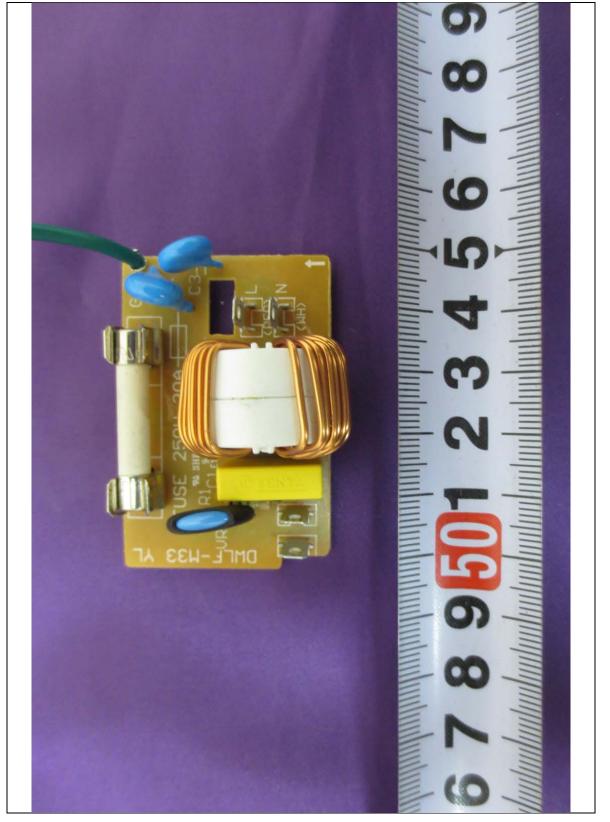
► Rear View of Diode H.V.



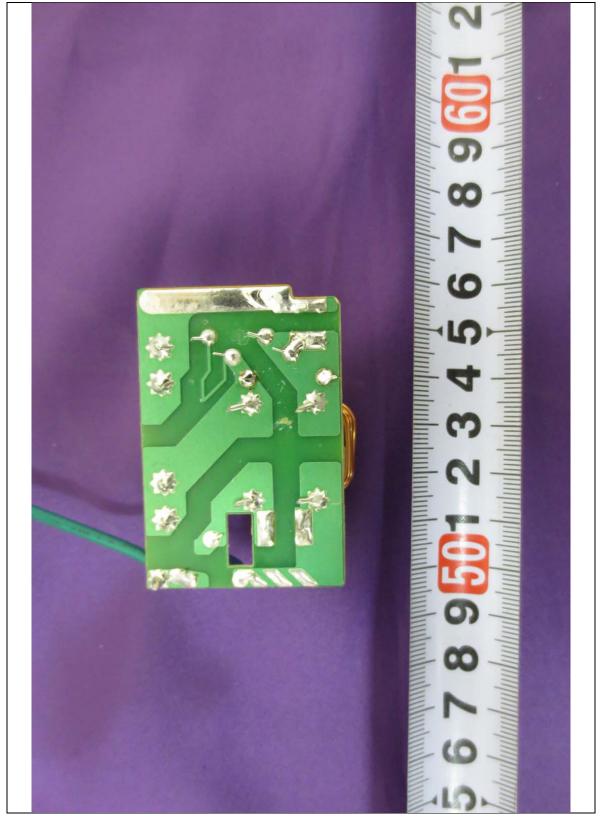
Front View of Fan Motor

► Rear View of Fan Motor

► Front View of H.V. CAPACITOR

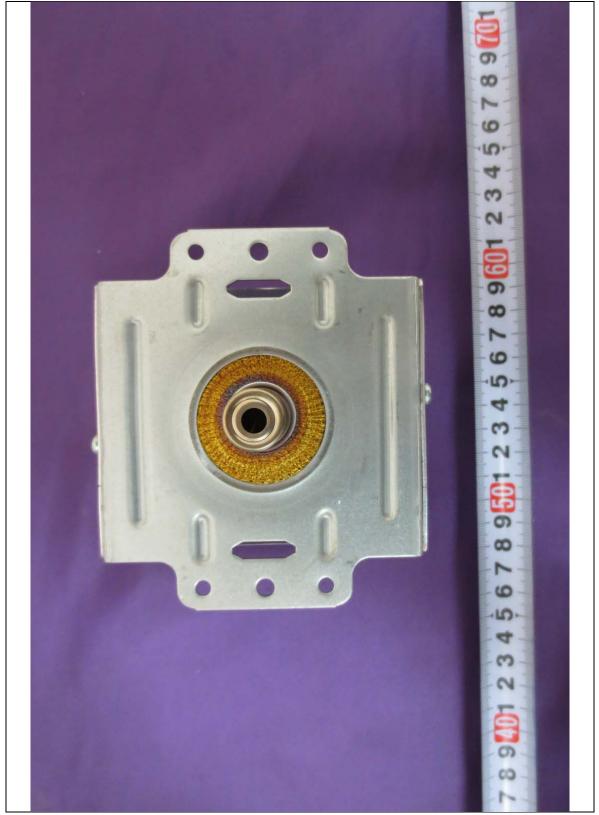


► Rear View of H.V. CAPACITOR



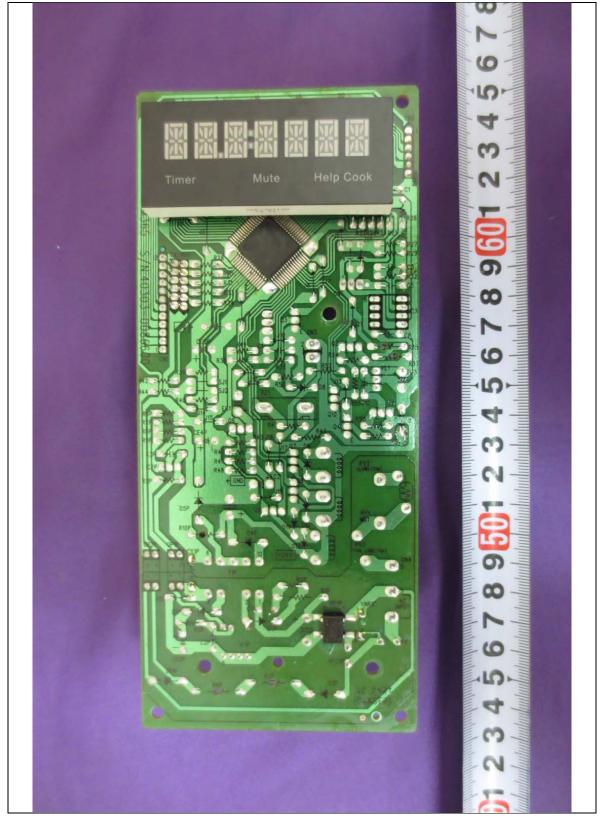
► Front View of Noise Filter

► Rear View of Noise Filter



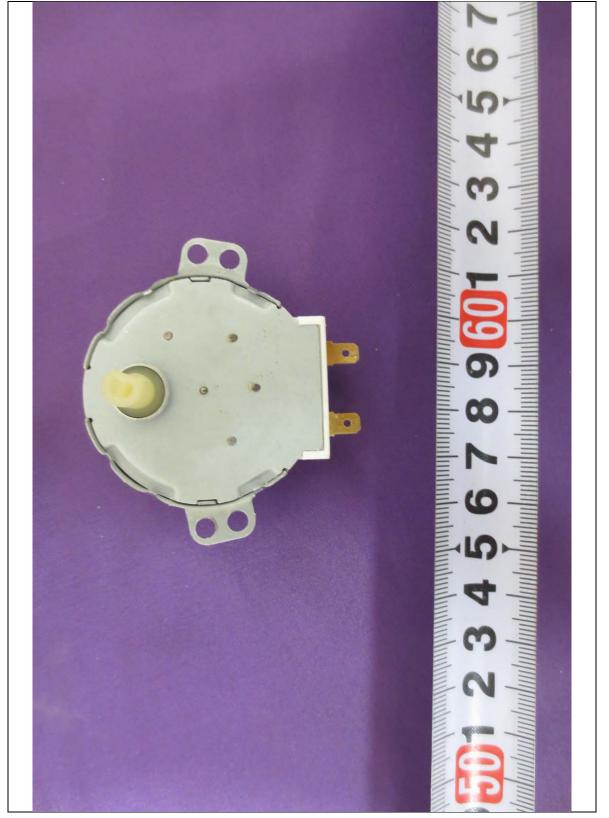
Front View of Magnetron

► Rear View of Magnetron



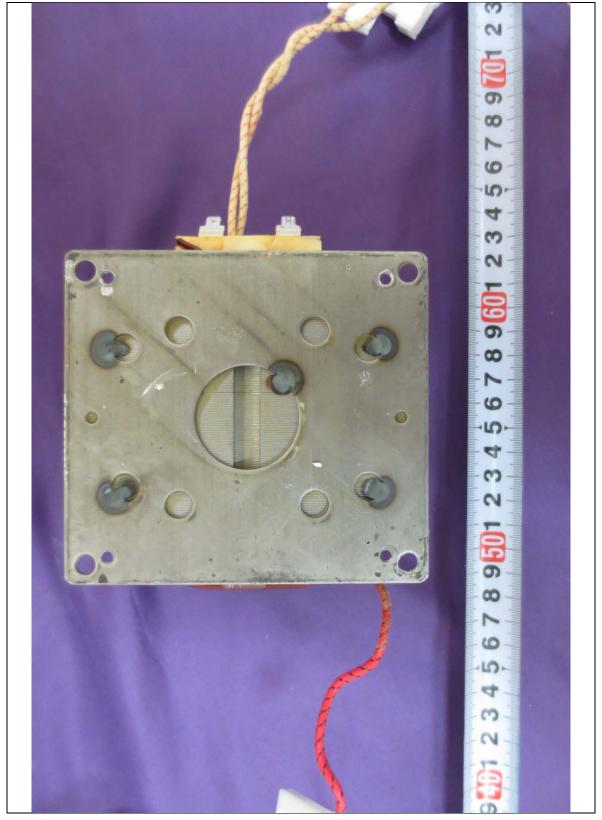
Front View of Board

► Rear View of Board



► Front View of SYNCHRONOUS MOTOR

► Rear View of SYNCHRONOUS MOTOR



► Front View of Trans H.V.

Front View of Trans H.V.

APPENDIX D – SCHEMATIC DIAGRAM

APPENDIX E – USER'S MANUAL

APPENDIX F – BLOCK DIAGRAM