

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Table of Contents

Page

1. VERSION	. 5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	.7
2.2 MEASUREMENT UNCERTAINTY	.7
3. GENERAL INFORMATION	.8
3.1 GENERAL DESCRIPTION OF EUT	. 8
3.2 DESCRIPTION OF TEST MODES	.9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	. 9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	.9
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	
	-
4.1.5 EUT OPERATING CONDITIONS	-
4.2 RADIATED EMISSION MEASUREMENT	
	-
4.2.4 EUT OPERATING CONDITIONS	17
4.2.5 TEST RESULTS	
5.3 DEVIATION FROM STANDARD	-
5.4 TEST SETUP	
8. ANTENNA REQUIREMENT	27
	2. SUMMARY OF TEST RESULTS 2.1 TEST FACILITY 2.2 MEASUREMENT UNCERTAINTY 3. GENERAL INFORMATION 3.1 GENERAL DESCRIPTION OF EUT 3.2 DESCRIPTION OF TEST MODES 3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 4. EMC EMISSION TEST 4.1 CONDUCTED EMISSION MEASUREMENT 4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP 4.1.5 EUT OPERATING CONDITIONS 4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION MEASUREMENT 4.2.2 TEST PROCEDURE 4.2.3 TEST SETUP 4.2.4 EUT OPERATING CONDITIONS 4.2.5 TEST RESULTS 5.1 APPLIED PROCEDURE 4.2.5 TEST RESULTS 5.1 APPLIED PROCEDURE 5.3 DEVIATION FROM STANDARD 5.4 TEST SETUP 5.5 EUT OPERATION CONDITIONS 5.6 TEST RESULTS 5.6 TEST RESULTS

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Table of Contents

9. TEST SETUP PHOTO	
10. EUT CONSTRUCTIONAL DETAILS.	

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

1. VERSION

Report	No.	Version	Description	Approved
ZKT-24102	2413854E	Rev.01	Initial issue of report	Dec. 16, 2024

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.231) , Subpart C									
Standard Section	Judgment	Remark							
15.207	AC Power Line Conducted Emission	N/A							
15.209,15.231e	Fundamental &Radiated Spurious Emission Measurement	PASS							
15.231c	Occupy Bandwidth	PASS							
15.231e	Dwell time	PASS							
15.203	Antenna Requirement	PASS	212						

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033 CAB identifier: CN0110

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty	
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB	P
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB	9
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB	
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB	
5	Conducted disturbance	U=3.2dB	
6	RF Band Edge	U=1.68dB	
7	RF power conducted	U=1.86dB	
8	RF conducted Spurious Emission	U=2.2dB	
9	RF Occupied Bandwidth	U=1.8dB	
10	RF Power Spectral Density	U=1.75dB	
11	humidity uncertainty	U=5.3%	
12	Temperature uncertainty	U=0.59°C	

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Dog Training Collar
Trade Name	N/A
Model Name	S7
Serial Model	N/A
Model Difference	N/A
Hardware version	H1.0
Software version	S1.0
Operation Frequency:	433.92MHz
Modulation Type:	ASK
Antenna Type:	PCB Antenna
Antenna Gain:	-17.15 dBi
Ratings	Powered for battery: 3V

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

3.2 DESCRIPTION OF TEST MODES

For All Emission					
Final Test Mode Description					
Transmitting mode	Keep the EUT in continuously transmitting mode				

Note:

(1) Fully-charged battery is used during the test

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Spurious

Radiated Emission

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Dog Training Collar	N/A	S7	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- The support equipment was authorized by Declaration of Confirmation. (1)
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.
- "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3)

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conduction Emissions Test

Item	Kind of Equipment	Manufacturer	Туре No.	Serial No	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Sep. 30, 2024	Sep. 29, 2025
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	C-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Sep. 29, 2024	Sep. 28, 2025
5	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	N/A	١	١

Radiation Emissions & Radiation Spurious Emissions Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	100969	4.32	Sep. 29, 2024	Sep. 28, 2025
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	00877	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Sep. 30, 2024	Sep. 29, 2025
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Sep. 30, 2024	Sep. 29, 2025
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Oct. 11, 2024	Oct. 10, 2025
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	60747	N/A	Sep. 29, 2024	Sep. 28, 2025
9	Amplifier (1GHz-26.5GHz)	HuiPu	8449B	3008A00315	N/A	Sep. 29, 2024	Sep. 28, 2025
10	Amplifier (500MHz-40GHz)	QuanJuDa	DLE-161	097	N/A	Sep. 30, 2024	Sep. 29, 2025
11	Test Cable	N/A	R-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
12	Test Cable	N/A	R-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
13	Test Cable	N/A	R-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
14	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
15	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	1	\
16	Turntable	MF	MF-7802BS	N/A	N/A	λ	λ
17	Antenna tower	MF	MF-7802BS	N/A	N/A	1	1

RF Conducted Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-24102413854E Page 11 of 29

2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	RF-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	Test Cable	N/A	RF-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Test Cable	N/A	RF-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
6	ESG Signal Generator	Agilent	E4421B	N/A	B.03.84	Sep. 29, 2024	Sep. 28, 2025
7	Signal Generator	Agilent	N5182A	N/A	A.01.87	Sep. 29, 2024	Sep. 28, 2025
8	Magnetic Field Probe Tester	Narda	ELT-400	0-0344/M-17 52	N/A	Nov. 16, 2023	Nov. 15, 2024
9	Van der Hoofden measuring head	Schwarzbeck Mess-elektron ik	VDHH 9502	9502-039	N/A	Sep. 30, 2024	Sep. 29, 2025
10	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Sep. 30, 2024	Sep. 29, 2025
11	MWRF Power Meter Test system	MW	MW100-RF CB	N/A	N/A	Sep. 29, 2024	Sep. 28, 2025
12	D.C. Power Supply	LongWei	TPR-6405 D	N/A	N/A	Sep. 29, 2024	Sep. 28, 2025
13	RF Software	MW	MTS8310	V2.0.0.0	N/A	λ	λ

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT			
Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto		

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

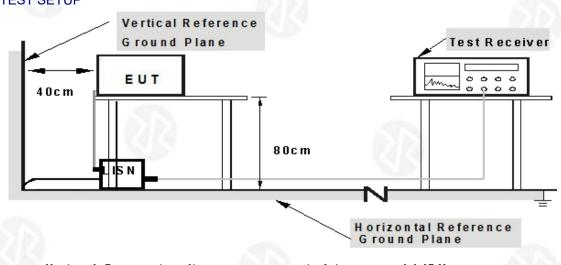
FREQUNCY (MHz)	Limit (Standard	
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz



4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- 4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 Test Result

The EUT is powered by DC only. The test items is not applicable.

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz				
Test site:	Measurement Dista	nce: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
		Peak	1MHz	10Hz	Average

4.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.231(b) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FUNDAMENTAL AND HARMONICS EMISSION LIMITS

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹

47 CFR 15.231(e) (enhanced display)

page 65 of 174

47 CFR 15.233

47 CFR Part 15 (up to date as of 12/05/2022) **Radio Frequency Devices**

Fundamental	Field strength of fundamental	Field strength of spurious emission
frequency (MHz)	(microvolts/meter)	(microvolts/meter)
Above 470	5,000	500

¹ Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, µV/m at 3 meters = 16.6666(F) - 2833.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW setting	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Shenzhen ZKT Technology Co., Ltd.

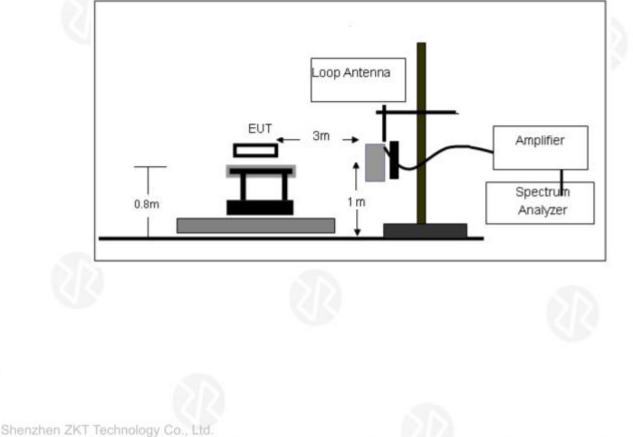
+86-400-000-9970

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

+86-755-2233 6688

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2.2 TEST PROCEDURE

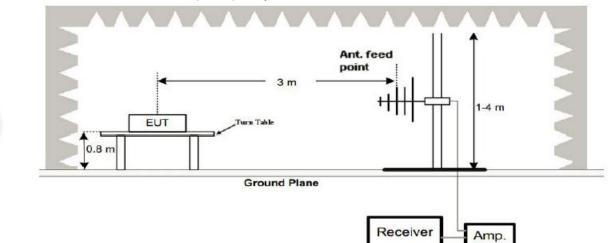

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

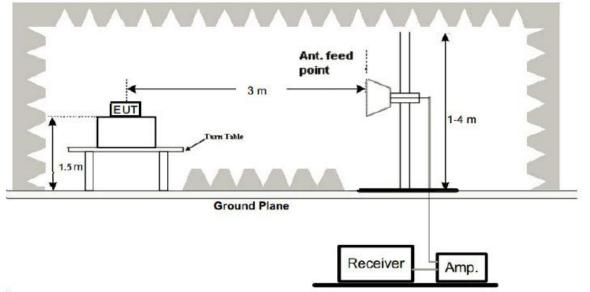
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case was X axis and the emissions were reported

4.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

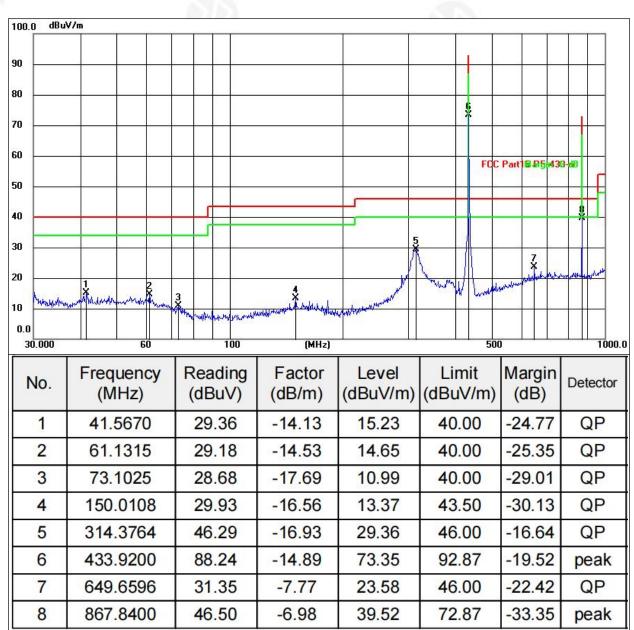
Radiated Spurious Emission (Below 9KHz - 30MHz)

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101 kPa	Polarization :	
Test Voltage :	DC 3.0V		
Test Mode :	TX Mode	50	
	1919	10 A 10 A	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
-				PASS
$\langle \langle \langle \langle \rangle \rangle \rangle$		(-D)		PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

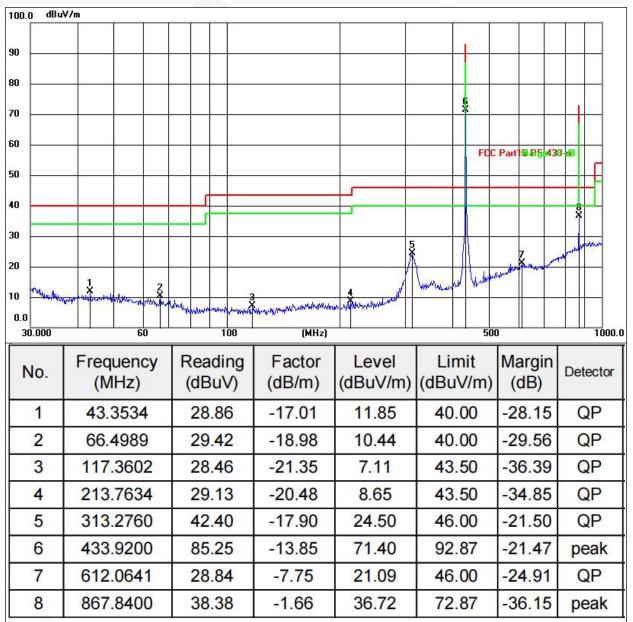

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

Radiated Spurious Emission (Between 30MHz - 1GHz)

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101 kPa	Polarization :	Horizontal
Test Voltage :	DC 3.0V		
Test Mode :	TX Mode		

Remarks:


1.Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor 2.The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101 kPa	Polarization :	Vertical
Test Voltage :	DC 3.0V		
Test Mode :	TX Mode		

Remarks:

Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
The emission levels of other frequencies are very lower than the limit and not show in test report.

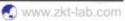
Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

For average Emission

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Limit AV	Margin	Polarizati on
433.92	73.35	-10.117	63.233	72.87	-9.637	Horizontal
867.84	39.52	-10.117	29.403	52.87	-23.467	Horizontal

Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 5.

	Peak	Duty				
Frequency	Level	cycle	AverageLevel	Limit	Margin	Polarizati
MHz	dBuV/m	factor	dBuV/m	AV		on
433.92	71.40	-10.117	61.283	72.87	-11.587	Vertical
867.84	36.72	-10.117	26.603	52.87	-26.267	Vertical


Notes: 1. Average emission Level = Peak Level + Duty cycle factor

2. Duty cycle level please see clause 6.

0

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Frequency	Peak	Duty	Average	Lir	nit	Margi	in dB	>>>
MHz	Level dBuV/m	cycle factor	Level dBuV/m	РК	AV	РК	AV	Polarization
1301.98	60.43	-10.117	50.313	74.00	54.00	-23.687	-3.687	Vertical
1735.32	55.89	-10.117	45.773	72.87	52.87	-27.097	-7.097	Vertical
2603.76	51.17	-10.117	41.053	72.87	52.87	-31.817	-11.817	Vertical
3037.29	58.02	-10.117	47.903	72.87	52.87	-24.967	-4.967	Vertical
3471.99	55.25	-10.117	45.133	74.00	54.00	-28.867	-8.867	Vertical
3905.14	48.29	-10.117	38.173	74.00	54.00	-35.827	-15.827	Vertical
1301.57	54.24	-10.117	44.123	72.87	52.87	-28.747	-8.747	Horizontal
1735.29	51.39	-10.117	41.273	72.87	52.87	-31.597	-11.597	Horizontal
2603.52	54.41	-10.117	44.293	72.87	52.87	-28.577	-8.577	Horizontal
3038.52	50.24	-10.117	40.123	74.00	54.00	-33.877	-13.877	Horizontal
3472.15	49.73	-10.117	39.613	74.00	54.00	-34.387	-14.387	Horizontal
3906.21	49.62	-10.117	39.503	74.00	54.00	-34.497	-14.497	Horizontal

Radiated Spurious Emission (1GHz to 10th harmonics)

Notes: 1.Average emission Level = Peak Level + Duty cycle factor

2.Duty cycle level please see clause 6.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

5. BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

According to FCC 15.231(c) requirement:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz to 900 MHz. Those devices operating above 900 MHz, the emission spurious shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

B.W (20dBc) Limit = 0.25% * f(MHz) = 0.25% * 433.92MHz = 1.0848MHz

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	1.5*OBW ~ 5*OBW	
RB	1%-5%OBW	
VB	3 RBW,	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 1%-5%OBW, VBW≥3 RBW, Sweep time = Auto.

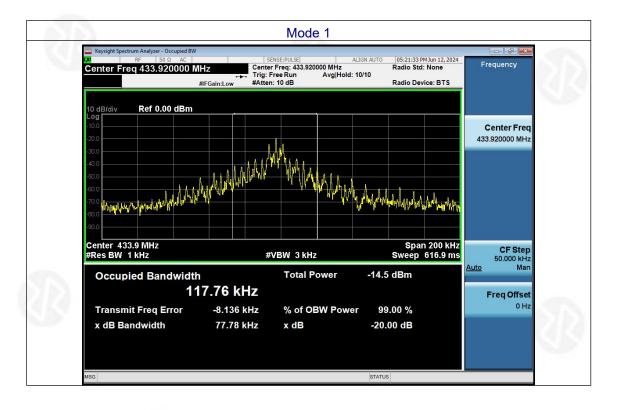
5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

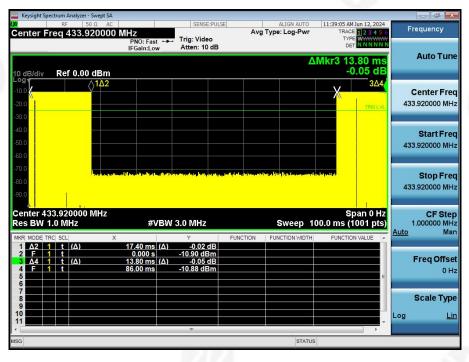


5.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 3.0V
Test Mode :	TX Mode		

Frequency	20dB Bandwidth	Limit	Result
Frequency	(kHz)	(MHz)	Result
433.92MHz	77.78	0.25%*433.92=1.0848	PASS

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 1MHz resolution bandwidth.

Averaging factor in dB =20log (duty cycle) The duration of one cycle =100ms The duty cycle is simply the on-time divided the duration of one cycle Duty Cycle = (17.4ms+13.8ms)/ 100ms =31.2ms / 100ms =0.312 Therefore, the averaging factor is found by 20log0.312 = -10.117dB

Test plot as follows:

On-time

According to FCC 15.231(e) requirement:

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

7.2 TEST PROCEDURE

Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

1.Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

2.Set RBW to 1 MHz and VBW of spectrum analyzer to 3 MHz with a convenient frequency span including 100 kHz bandwidth from band edge.

3.Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

4. Repeat above procedures until all measured frequencies were complete.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT

SPECTRUM ANALYZER

www.zkt-lab.com

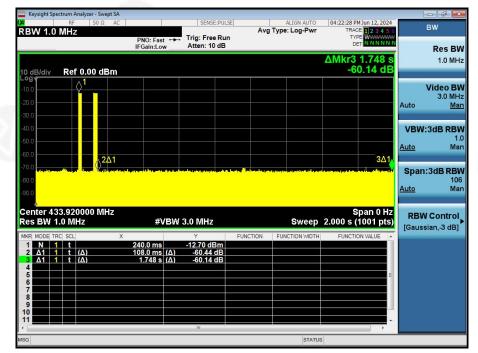
Project No.: ZKT-24102413854E

Page 26 of 29

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



7.6 TEST RESULTS

Dwell time (millisecond)	Limit (second)	Result
108ms	<1 S	Pass

Test plot as follows:

Silent Period	Limit	Result	
12.93S	>10s and 30*0.108S=3.24S	Pass	

enter Freg 433.92		SENSE:PULS		ALIGN AUTO	03:34:07 PM Jun 04, 2024 TRACE 1 2 3 4 5 (Frequency
enter Freq 455.92	PNO: Fast IFGain:Low	→→ Trig: Free Run Atten: 10 dB		i jpo: zog i ili	TYPE WWWWWWW DET NNNNN	<i>t</i>
dB/div Ref 0.00 d	dBm				ΔMkr1 12.93 s 57.63 dB	
99 					1Δ2	Center Fre 433.920000 M⊦
0.0 0.0						Start Fre 433.920000 M⊦
0.0 <mark>. Xaana kana ka</mark>	weeth and all start	atara and di ana itara di kanalina	The second set	la di sana	a la su de la	Stop Fre
						and the second
enter 433.920000 N es BW 1.0 MHz	#VE	BW 3.0 MHz			Span 0 Hz 15.00 s (1001 pts)	433.920000 MH
a a contraction of the second		Y	FUNCTION	Sweep FUNCTION WIDTH	Span 0 Hz 15.00 s (1001 pts) FUNCTION VALUE	433.920000 MH CF Ste 1.000000 MH
0	#VE × 12.93 s (Υ Δ) 57.63 dB	FUNCTION		15.00 s (1001 pts)	433.920000 MH CF Ste 1.000000 MH <u>Auto</u> Ma Freq Offsi 0 H Scale Typ
$\begin{array}{c} 0 \\ \text{enter 433.920000 } \\ \text{es BW 1.0 MHz} \\ \text{ss BW 1.0 MHz} \\ \hline 1 \\ \Delta 2 \\ 1 \\ \Delta 2 \\ 1 \\ \Delta 2 \\ 1 \\ 1 \\ \Delta 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	#VE × 12.93 s (Υ Δ) 57.63 dB	FUNCTION		15.00 s (1001 pts)	433.920000 M CF Str 1.000000 M <u>Auto</u> Freq Offs 0 Scale Ty

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

8. ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.2	203	
15.203 requirement:			
	-	nna other than that furnished by the re	
		attached antenna or of an antenna that	
		ay design the unit so that a broken ante k or electrical connector is prohibited.	enna c
EUT Antenna:			
	nna , the best case gain of the antenr	nas are -17.15 dBi, reference to the ap	pendix
for details			

9. TEST SETUP PHOTO

Reference to the appendix I for details.

10. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

***** END OF REPORT *****

