

TEST REPORT

Report Number.: 14014404-E2

Applicant: Schneider Electric Industries SAS

31 rue Pierre Mendes France 38050 - Grenoble Cedex 9, France

Model: 33102

Brand: Schneider Electric Industries SAS

FCC ID: 2AH7L-BCMW-V1

IC: 21522-BCMW-V1

EUT Description: Wireless Circuit Breaker Communication Module

Test Standard(s): FCC 47 CFR PART 15 SUBPART C: 2022

ISED RSS-247 ISSUE 2: 2017

ISED RSS-GEN ISSUE 5 + A2:2021

Date Of Issue:

2023-01-31

Prepared by:

UL LLC

12 Laboratory Dr.

Research Triangle Park, NC 27709 U.S.A.

TEL: (919) 549-1400

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	2022-07-25	Initial Issue	Charles Moody
V2	2022-08-17	Revised power	Brian Kiewra
V3	V3 2022-08-23 Correcting units in section 10.3 and lin		Charles Moody
V4	2022-09-26	Revised power	Brian Kiewra
V5	2022-10-03	Revised EUT descriptor in section 6.1	Brian Kiewra
V6	2022-11-22	Revised Section 6.2 and corrected formatting issue	Brian Kiewra
V7	2022-12-09	Added 10dB attenuator to Section 8	Brian Kiewra
V8	2023-01-31	Revised Antenna Gain	Charles Moody

This report shall not be reproduced except in full, without the written approval of UL LLC

TABLE OF CONTENTS

REPOR	RT REVISION HISTORY	2
TABLE	OF CONTENTS	3
1. AT	TTESTATION OF TEST RESULTS	5
2. TE	EST RESULTS SUMMARY	6
	ST METHODOLOGY	
4. FA	ACILITIES AND ACCREDITATION	6
5. DE	ECISION RULES AND MEASUREMENT UNCERTAINTY	7
5.1.	METROLOGICAL TRACEABILITY	7
5.2.	DECISION RULES	7
5.3.	MEASUREMENT UNCERTAINTY	7
5.4.	SAMPLE CALCULATION	7
6. EC	QUIPMENT UNDER TEST	8
6.1.	EUT DESCRIPTION	8
6.2.	MAXIMUM OUTPUT POWER	8
6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
6.4.	SOFTWARE AND FIRMWARE	8
6.5.	WORST-CASE CONFIGURATION AND MODE	8
6.6.	DESCRIPTION OF TEST SETUP	9
7. ME	EASUREMENT METHOD	10
8. TE	ST AND MEASUREMENT EQUIPMENT	11
9. AN	NTENNA PORT TEST RESULTS	14
9.1.	ON TIME AND DUTY CYCLE	14
	99% BANDWIDTH	
	2.1. BLE (1Mbps)	
	6 dB BANDWIDTH	
9.4.	OUTPUT POWER	
	4.1. BLE (1Mbps)	
	AVERAGE POWER	
	5.1. BLE (1Mbps)	
	6.1. BLE (1Mbps)	
	Page 3 of 43	

9.7. CONDUCTED SPURIOUS EMISSIONS9.7.1. BLE (1Mbps)	20 21
10. RADIATED TEST RESULTS	
10.1. LIMITS AND PROCEDURE	22
10.2. TRANSMITTER ABOVE 1 GHz 10.2.1. BLE (1Mbps)	
10.3. WORST CASE BELOW 30MHZ	34
10.4. WORST CASE BELOW 1 GHZ	36
10.5. WORST CASE 18-26 GHZ	38
11. AC POWER LINE CONDUCTED EMISSIONS	40
11.1.1. AC Power Line Norm	41
12. SETUP PHOTOS	43

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Schneider Electric Industries SAS

31 rue Pierre Mendes France 38050 - Grenoble Cedex 9, France

EUT DESCRIPTION: Wireless Circuit Breaker Communication Module

MODEL: 33102

BRAND: Schneider Electric Industries SAS

STANDARD

SERIAL NUMBER: Non-Serialized

SAMPLE RECEIPT DATE: 2022-07-05

DATE TESTED: 2022-07-06 – 2022-07-11

APPLICABLE STANDARDS

CFR 47 Part 15 Subpart C Refer to section 2
ISED RSS-247 Issue 2 Refer to section 2
ISED RSS-GEN Issue 5 + A2 Refer to section 2

TEST RESULTS

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the U.S. government.

Approved & Released For

UL LLC By:

Prepared By:

Brian Kiewra Project Engineer

Consumer, Medical, and IT Segment

UL LLC

Charles Moody Electrical Engineer

Consumer, Medical, and IT Segment

UL LLC

Page 5 of 43

UL LLC

12 Laboratory Dr., RTP, NC 27709; USA TEL: (919) 549-1400

This report shall not be reproduced except in full, without the written approval of UL LLC

2. TEST RESULTS SUMMARY

This report contains data provided by the applicant which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	ANSI C63.10 Section
See Comment		Duty Cycle	purposes only	11.6.
	RSS-GEN 6.7	99% OBW	Reporting	ANSI C63.10 Section
-		99 76 OBVV	purposes only	6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Complies	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Complies	None.
See Comment		Average power	Reporting	Per ANSI C63.10,
			purposes only	Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Complies	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Complies	None.
15.209, 15.205	RSS-GEN 8.9,	Radiated Emissions	Complies	None.
15.209, 15.205	8.10	Radiated Effissions	Compiles	
15.207 (a)	RSS-Gen 8.8	AC Power Lines Conducted	Complies	None
13.201 (a)		Measurements	Compiles	

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, RSS-GEN Issue 5 + A2, and RSS-247 Issue 2.

4. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, Certificate Number 0751.06, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 2800 Suite Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	US0067	27265	825374

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{LAB}
Radio Frequency	141.2Hz
Occupied Bandwidth, conducted	1.22%
RF output power, conducted	1.3 dB (PK) 0.45 dB (AV)
Unwanted emissions, conducted	±1.94 dB
Power Spectral Density, conducted	±2.466 dB
All emissions, radiated	6.01 dB
Conducted Emissions (0.150-30MHz) - LISN	±3.40 dB
Humidity	±3.39 % RH
Temperature	±0.57°C
Time	±3.39 %

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

 $36.5 \, dBuV + 0 \, dB + 10.1 \, dB + 0 \, dB = 46.6 \, dBuV$

Page 7 of 43

UL LLC

12 Laboratory Dr., RTP, NC 27709; USA

TEL: (919) 549-1400

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a Wireless Circuit Breaker Communication Module.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power (dBm)	Output Power (mW)
(MHz)			
2402 - 2480	BLE	0.28	1.07

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

The radio utilizes a PCB antenna, with a maximum gain of 0.61 dBi.

6.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was v0.0.3.

6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz and above 18GHz were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in its only orthogonal orientation and its only data rate (1Mbps). As provided by the manufacturer, the EUT only operates in one orientation and one data rate. Therefore, all final radiated testing was performed with the EUT in that defined orientation and data rate.

All testing performed at higher power setting than what power was measured. Manufacturer will set the device to operate at the lower power setting at which power was measured.

6.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number							
Laptop	Lenovo	T14S	PC26TDYM	-			
AC to DC Power Supply	Schneider Electric	ABLM1A24025	IB215103243	-			

I/O CABLES

	I/O Cable List							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	DC Power	1	6-Pin Plug	Power	<3m	Used to connect EUT to power supply		

TEST SETUP

The EUT is controlled using an over-the-air communication between the support laptop and the device. This allows for a wireless control of the UCE

SETUP DIAGRAMS

Please refer to 14014404-EP1 for setup diagrams

7. MEASUREMENT METHOD

On time and Duty Cycle: ANSI C63.10 Subclause -11.6

6 dB BW: ANSI C63.10 Subclause -11.8.1

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter Output Power: ANSI C63.10 Subclause -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11 and 6.10.4

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1 and 6.10.5

General Radiated Spurious Emissions: ANSI C63.10 - 2013, Section 6.3 to 6.6.

AC Power-line conducted emissions: ANSI C63.10 - 2013, Section 6.2

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used - Wireless Antenna Port Conducted Measurement Equipment

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 2				
HI0096	Environmental Meter	Fisherbrand	14-650-118	2021-09-21	2022-09-22
PWM003	RF Power Meter	Keysight	N1911A	2021-08-30	2022-08-30
PWS005	Peak and Avg Power Sensor, 50MHz – 18GHz	Keysight	N1921A	2022-06-15	2023-06-15
SA0027	Spectrum Analyzer	Keysight	N9030A	2022-05-24	2023-05-24
-	10dB Attenuator	CentricRF	C18S2-10	2022-05-03	2023-05-03
SOFTEMI	Antenna Port Software	UL	Version 2022.5.4		

Test Equipment Used - Line-Conducted Emissions - Voltage (Morrisville - Conducted 1)

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
CBL087	Coax cable, RG223, N-male to BNC-male, 20-ft.	Pasternack	PE3W06143-240	2022-04-05	2023-04-05
s/n 210701941	Environmental Meter	Fisher Scientific	15-077-963	2021-08-16	2023-08-16
LISN003	LISN, 50-ohm/50-uH, 250uH 2-conductor, 25A	Fischer Custom Com.	FCC-LISN-50/250-25- 2-01	2021-08-16	2022-08-16
75141	EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESCI 7	2021-08-17	2022-08-17
ATA222	Transient Limiter, 0.009-100MHz	Electro-Metrics	EM-7600	2022-04-05	2023-04-05
PS214	AC Power Source	Elgar	CW2501M (s/n 1523A02396)	NA	NA
SOFTEMI	EMI Software	UL Version 9.5 (18 Oct 2021))	

TEL: (919) 549-1400

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville – Chamber 4)

Equip.					
ID	Description	Manufacturer/Brand	Model Number	Last Cal.	Next Cal.
	1-18 GHz				
	Double-Ridged Waveguide Horn Antenna, 1 to 18				
AT0067	GHz	ETS Lindgren	3117	2022-05-24	2023-05-24
	Gain-Loss Chains				
C4-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2022-05-20	2023-05-20
	Receiver & Software				
206496	Spectrum Analyzer	Rohde & Schwarz	ESW44	2022-02-15	2023-02-15
SOFTEMI	EMI Software	UL	Version	9.5 (18 Oct 202	21)
	Additional Equipment used				
s/n 210701942	Environmental Meter	Fisher Scientific	15-077-963	2021-8-16	2023-08-16

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville -Chamber 2)

Description	Manufacturer/Brand	Model Number	Last Cal.	Next Cal.
0.009-30MHz				
Active Loop				
Antenna	ETS-Lindgren	6502	2021-08-19	2022-08-19
30-1000 MHz				
Hybrid Broadband				
Antenna	Sunol Sciences Corp.	JB3	2021-08-30	2022-08-30
18-40 GHz				
Horn Antenna, 18-				
26.5GHz	ARA	MWH-1826/B	2021-11-04	2022-11-04
Gain-Loss Chains				
Gain-loss string:				
0.009-30MHz	Various	Various	2022-05-10	2023-05-10
	Various	Various	2022-05-10	2023-05-10
			0000 05 40	0000 05 40
	Various	Various	2022-05-10	2023-05-10
Software				
Spectrum Analyzer	Rohde & Schwarz ESW44		2022-03-08	2023-03-08
EMI Software	UL	Version 9	.5 (18 Oct 202	1)
Additional				
	Fisher Scientific	15-077-963	2021-09-27	2022-09-27
	0.009-30MHz Active Loop Antenna 30-1000 MHz Hybrid Broadband Antenna 18-40 GHz Horn Antenna, 18- 26.5GHz Gain-Loss Chains Gain-loss string: 0.009-30MHz Gain-loss string: 25-1000MHz Gain-loss string: 18-40GHz Receiver & Software Spectrum Analyzer EMI Software	0.009-30MHz Active Loop Antenna BETS-Lindgren 30-1000 MHz Hybrid Broadband Antenna Sunol Sciences Corp. 18-40 GHz Horn Antenna, 18- 26.5GHz ARA Gain-Loss Chains Gain-loss string: 0.009-30MHz Various Gain-loss string: 25-1000MHz Various Gain-loss string: 18-40GHz Various Receiver & Software Spectrum Analyzer EMI Software EMI Software EMI Software UL Additional Equipment used Environmental	0.009-30MHz Active Loop Antenna ETS-Lindgren 6502 30-1000 MHz Hybrid Broadband Antenna Sunol Sciences Corp. JB3 18-40 GHz Horn Antenna, 18- 26.5GHz ARA MWH-1826/B Gain-Loss Chains Gain-loss string: 0.009-30MHz Various Various Gain-loss string: 25-1000MHz Various Various Various Gain-loss string: 18-40GHz Various Various Various Receiver & Software Spectrum Analyzer Rohde & Schwarz EMI Software Additional Equipment used Environmental	0.009-30MHz Active Loop Antenna ETS-Lindgren 6502 2021-08-19 30-1000 MHz Hybrid Broadband Antenna Sunol Sciences Corp. JB3 2021-08-30 18-40 GHz Horn Antenna, 18- 26.5GHz ARA MWH-1826/B 2021-11-04 Gain-Loss Chains Gain-loss string: 0.009-30MHz Various Various 2022-05-10 Gain-loss string: 25-1000MHz Various Various 2022-05-10 Gain-loss string: 18-40GHz Various Various 2022-05-10 Receiver & Software Software ESW44 2022-03-08 EMI Software UL Version 9.5 (18 Oct 202' Additional Equipment used Environmental

9. ANTENNA PORT TEST RESULTS

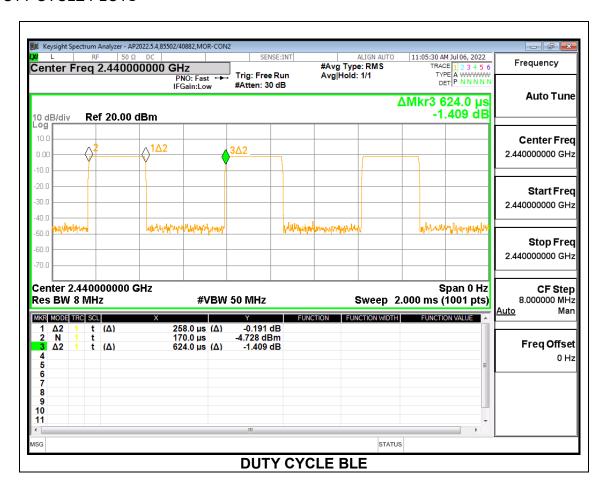
9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.


ON TIME AND DUTY CYCLE RESULTS

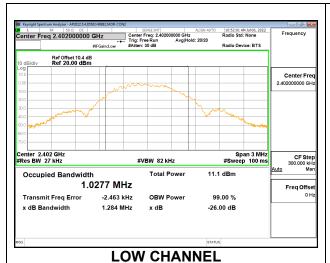
OIL HIME AILD DOLL OLD	TIME AND BOTT OT SEE RESSETS										
Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B					
	В		х	x Cycle Correction		Minimum VBW					
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)					
2.4GHz Band											
BLE	0.258	0.624	0.413	41.35	7.67	3.876					

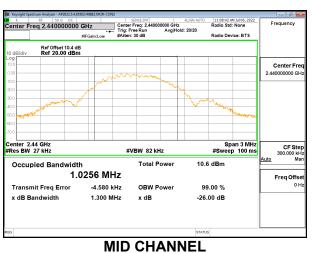
DATE: 2023-01-31

IC: 21522-BCMW-V1

DUTY CYCLE PLOTS

9.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

9.2.1. BLE (1Mbps)

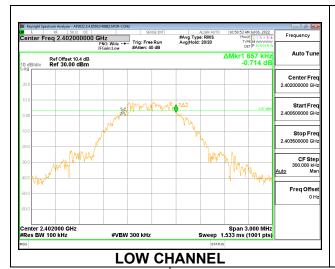
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0277
Middle	2440	1.0256
High	2480	1.0284

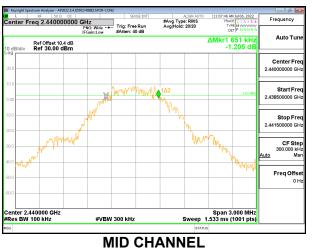
DATE: 2023-01-31

IC: 21522-BCMW-V1

Page 15 of 43

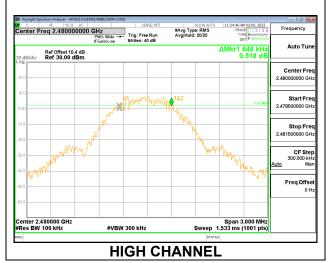
9.3. 6 dB BANDWIDTH


LIMITS


FCC §15.247 (a) (2) RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

9.3.1. BLE (1Mbps)


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)			
Low	2402	0.6570	0.5			
Middle	2440	0.6510	0.5			
High	2480	0.6480	0.5			

DATE: 2023-01-31

IC: 21522-BCMW-V1

Page 16 of 43

9.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3) RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.4 dB (including 9.65 dB pad and 0.75 dB cable) was entered as an offset in the power meter.

The power output was measured on the EUT antenna port using SMA cable with 9.65 dB attenuator connected to a power meter via wideband average power sensor. Peak output power was read directly from power meter.

RESULTS

9.4.1. BLE (1Mbps)

Tested By:	85502/40882
Date:	2022-07-06

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	0.280	30	-29.720
Middle	2440	-0.180	30	-30.180
High	2480	-0.630	30	-30.630

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a gated average power meter.

The cable assembly insertion loss of 10.4 dB (including 9.65 dB pad and 0.75 dB cable) was entered as an offset in the power meter.

The power output was measured on the EUT antenna port using SMA cable with 9.65 dB attenuator connected to a power meter via wideband average power sensor. Average output power was read directly from power meter.

RESULTS

9.5.1. BLE (1Mbps)

Tested By:	85502/40882
Date:	2022-07-06

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	-0.04
Middle	2440	-0.52
High	2480	-1.05

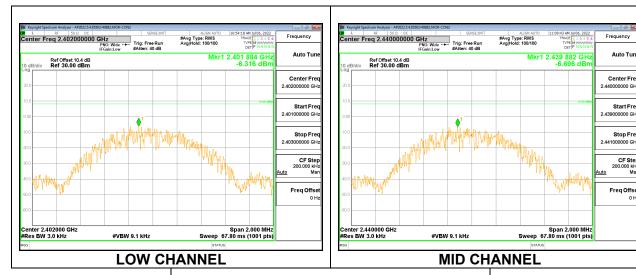
TEL: (919) 549-1400

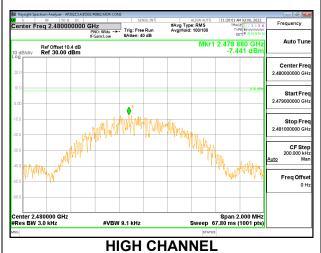
9.6. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e) RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


DATE: 2023-01-31


IC: 21522-BCMW-V1

RESULTS

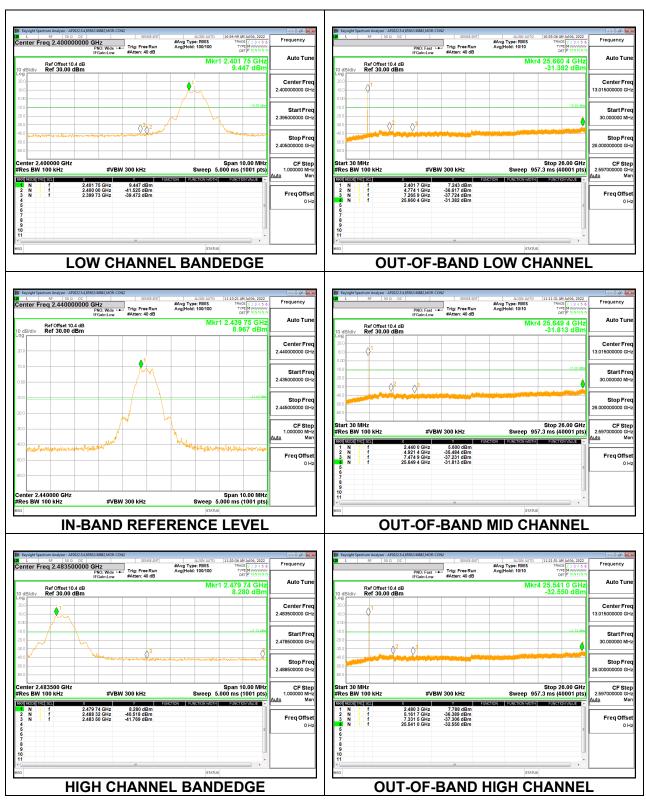
9.6.1. BLE (1Mbps)

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	-6.316	8	-14.32
Middle	2440	-6.696	8	-14.70
High	2480	-7.441	8	-15.44

Page 19 of 43

9.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS


FCC §15.247 (d) RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is -20 dBc.

RESULTS

TEL: (919) 549-1400

9.7.1. BLE (1Mbps)

Page 21 of 43

DATE: 2023-01-31

IC: 21522-BCMW-V1

10. RADIATED TEST RESULTS

10.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uA/m) at 3 m	Field Strength Limit (dBuA/m) at 3 m
0.009-0.490	6.37/F(kHz) @ 300 m	-
0.490-1.705	6.37/F(kHz) @ 30 m	=
1.705 - 30	.08 @ 30m	-
Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements in the 30-1000MHz range, 9kHz for peak and/or quasi-peak detection measurements in the 0.15-30MHz range and 200Hz for peak and/or quasi-peak detection measurements in the 9 to 150kHz range. Peak detection is used unless otherwise noted as quasi-peak or average (9-90kHz and 110-490kHz).

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements.

Page 22 of 43

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements. Linear Voltage Averaging was used.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

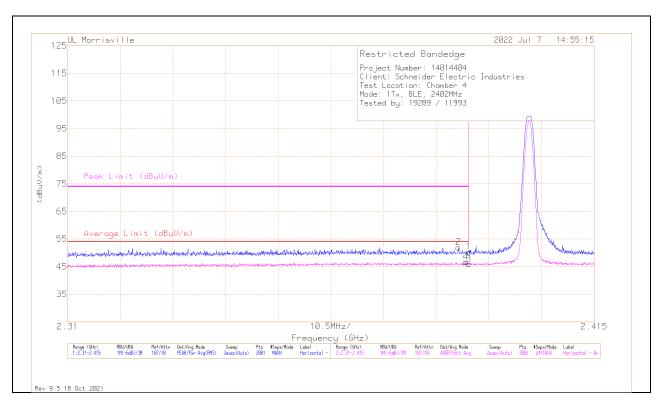
3D antenna use - For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel).

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

TEL: (919) 549-1400


10.2. TRANSMITTER ABOVE 1 GHz

10.2.1. BLE (1Mbps)

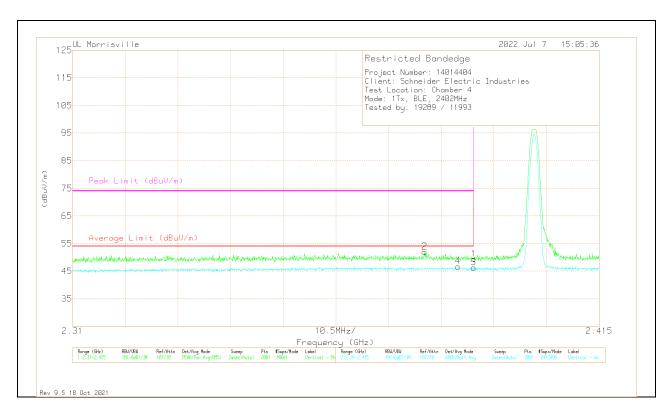
Antenna 1

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT

Marker	Frequency	Meter	Det	AT0067	Gain/Loss	DC Corr	Corrected	Average Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
1	* **	31.8	Pk	32.2	-13.6	0	50.4	-	-	74	-23.6	333	236	Н
	2.38996													
2	* **	33.35	Pk	32.2	-13.6	0	51.95	-	-	74	-22.05	333	236	Н
	2.38791													
3	* **	19.62	ADV	32.2	-13.6	7.67	45.89	54	-8.11	-	-	333	236	Н
	2.38996													
4	* **	20.38	ADV	32.2	-13.6	7.67	46.65	54	-7.35	-	-	333	236	Н
	2.38938													

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector

^{** -} indicates frequency in Taiwan NCC LP0002 Restricted Band

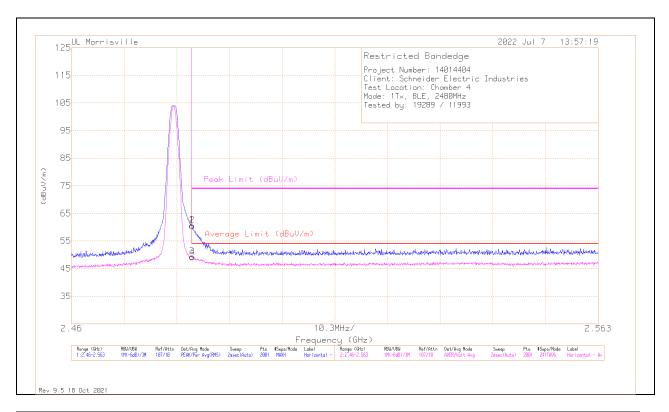
VERTICAL RESULT

DATE: 2023-01-31

IC: 21522-BCMW-V1

Marker	Frequency	Meter	Det	AT0067	Gain/Loss	DC Corr	Corrected	Average Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
1	* **	30.74	Pk	32.2	-13.6	0	49.34	-	-	74	-24.66	359	294	V
	2.38996													
2	* **	33.35	Pk	32.2	-13.6	0	51.95	-	-	74	-22.05	359	294	V
	2.38019													
3	* **	19.96	ADV	32.2	-13.6	7.67	46.23	54	-7.77	-	-	359	294	V
	2.38996													
4	* **	20.43	ADV	32.2	-13.6	7.67	46.7	54	-7.3	-	-	359	294	V
	2.38686													

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector

^{** -} indicates frequency in Taiwan NCC LP0002 Restricted Band

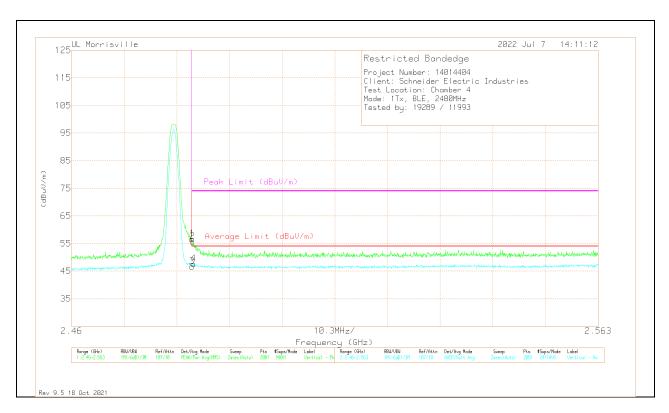
BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT

DATE: 2023-01-31 IC: 21522-BCMW-V1

Marker	Frequency	Meter	Det	AT0067	Gain/Loss	DC Corr	Corrected	Average Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
1	* **	41.69	Pk	32.6	-13.7	0	60.59	-	-	74	-13.41	42	271	Н
	2.48354													
2	* **	41.7	Pk	32.6	-13.7	0	60.6	-	-	74	-13.4	42	271	Н
	2.48359													
3	* **	22.76	ADV	32.6	-13.7	7.67	49.33	54	-4.67	-	-	42	271	Н
	2.48354													
4	* **	22.55	ADV	32.6	-13.7	7.67	49.12	54	-4.88	-	-	42	271	Н
	2.48364													

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector

^{** -} indicates frequency in Taiwan NCC LP0002 Restricted Band

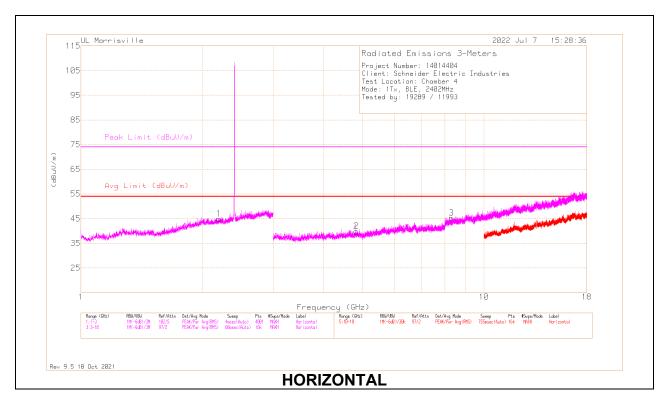
VERTICAL RESULT

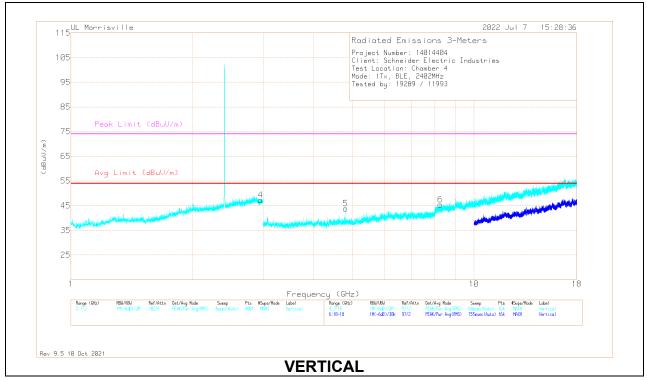
DATE: 2023-01-31

IC: 21522-BCMW-V1

Marker	Frequency	Meter	Det	AT0067	Gain/Loss	DC Corr	Corrected	Average Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
1	* **	37.77	Pk	32.6	-13.7	0	56.67	-	-	74	-17.33	15	307	V
	2.48354													
2	* **	36.85	Pk	32.6	-13.7	0	55.75	-	-	74	-18.25	15	307	V
	2.48369													
3	* **	20.09	ADV	32.6	-13.7	7.68	46.67	54	-7.33	-	-	15	307	V
	2.48354													
4	* **	21.06	ADV	32.6	-13.7	7.68	47.64	54	-6.36	-	-	15	307	V
	2.48384													

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector


^{** -} indicates frequency in Taiwan NCC LP0002 Restricted Band

HARMONICS AND SPURIOUS EMISSIONS

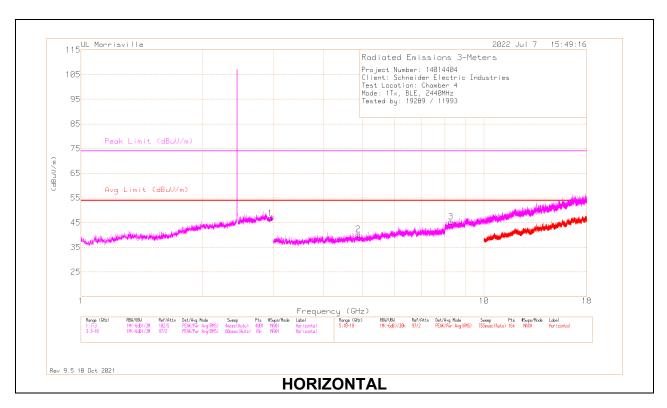
LOW CHANNEL RESULTS

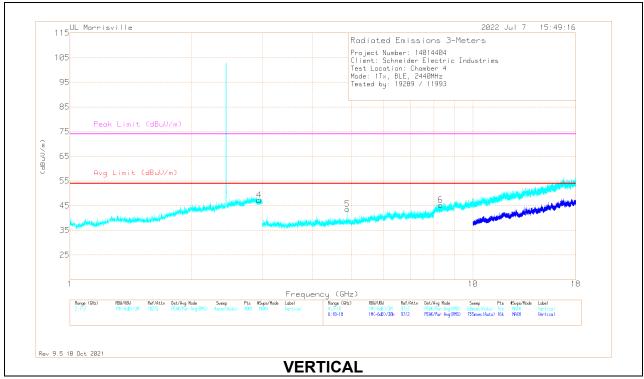
DATE: 2023-01-31 IC: 21522-BCMW-V1

Page 28 of 43

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AT0067	Gain/Loss	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
2	* **	37.71	Pk	34.1	-32	0	39.81	54	-14.19	74	-34.19	0-360	100	Н
	4.82531													
3	* **	36.61	Pk	35.7	-27	0	45.31	54	-8.69	74	-28.69	0-360	100	Н
	8.31281													
5	* **	41.52	Pk	34.1	-31.8	0	43.82	54	-10.18	74	-30.18	0-360	200	V
	4.80375													
6	* **	37.04	Pk	35.7	-27.3	0	45.44	54	-8.56	74	-28.56	0-360	200	V
	8.24906													
1	2.1985	26.93	Pk	32	-14	0	44.93	-	-	-	-	0-360	100	Н
4	2.957	27.08	Pk	32.7	-12.5	0	47.28	-	-	-	-	0-360	200	V


^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band


Pk - Peak detector

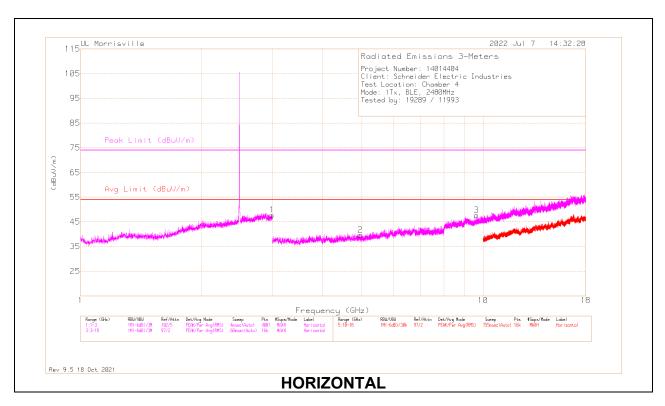
MID CHANNEL RESULTS

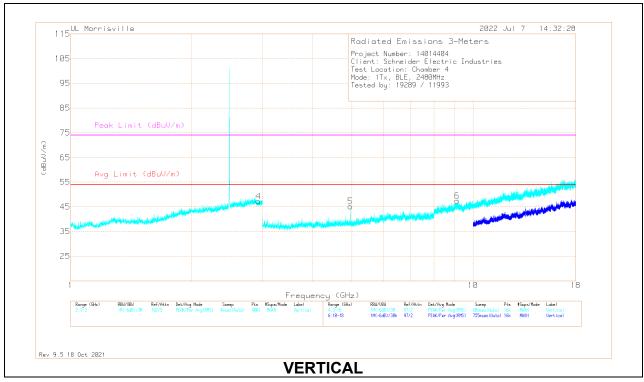
DATE: 2023-01-31

IC: 21522-BCMW-V1

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AT0067	Gain/Loss	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
2	* **	38.1	Pk	34	-31.9	0	40.2	54	-13.8	74	-33.8	0-360	100	Н
	4.87969													
3	* **	36.73	Pk	35.7	-27.1	0	45.33	54	-8.67	74	-28.67	0-360	100	Н
	8.27906													
5	* **	41.45	Pk	34	-31.9	0	43.55	54	-10.45	74	-30.45	0-360	200	V
	4.87969													
6	* **	36.59	Pk	35.7	-27	0	45.29	54	-8.71	74	-28.71	0-360	200	V
	8.31188													
4	2.9475	27.18	Pk	32.7	-12.6	0	47.28	-	-	-	-	0-360	200	V
1	2.951	26.58	Pk	32.7	-12.6	0	46.68	-	-	-	-	0-360	100	Н


^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band


Pk - Peak detector

HIGH CHANNEL RESULTS

DATE: 2023-01-31

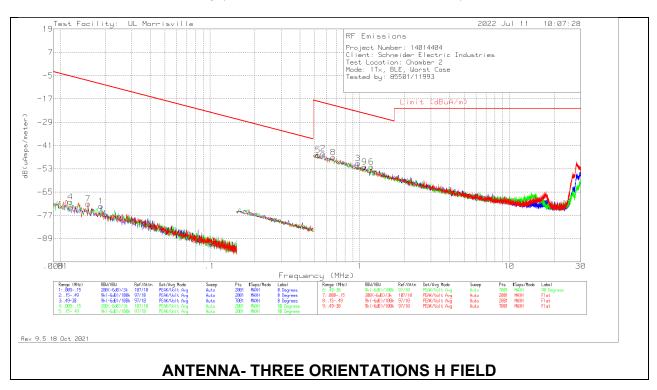
IC: 21522-BCMW-V1

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AT0067	Gain/Loss	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
2	* **	37.17	Pk	34	-31.5	0	39.67	54	-14.33	74	-34.33	0-360	100	Н
	4.9575													
5	* **	42.65	Pk	34	-31.5	0	45.15	54	-8.85	74	-28.85	0-360	200	V
	4.95938													
6	* **	37.06	Pk	36.2	-25.8	0	47.46	54	-6.54	74	-26.54	0-360	200	V
	9.13031													
4	2.93	27.28	Pk	32.6	-12.7	0	47.18	-	-	-	-	0-360	200	V
1	2.9865	27.47	Pk	32.9	-12.6	0	47.77	-	-	-	-	0-360	100	Н
3	9.63188	36.48	Pk	36.7	-25.5	0	47.68	-	-	-	-	0-360	100	Н

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector


10.3. WORST CASE BELOW 30MHZ

SPURIOUS EMISSIONS BELOW 30 MHz (WORST-CASE CONFIGURATION)

Note: All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz – 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).

DATE: 2023-01-31

IC: 21522-BCMW-V1

Below 30MHz Data H FIELD

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0079 (dB/m)	Gain/Loss (dB)	Dist. Corr. Factor (dB)	Corrected Reading dB(uAmps/meter)	QP/AV Limit (dBuA/m)	PK Limit (dBuA/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Loop Angle
4	.0117	43.69	Pk	-33.8	.1	-80	-70.01	-5.26	14.74	-64.75	0-360	401	90 degs
7	.01539	44.3	Pk	-35.4	.1	-80	-71	-7.64	12.36	-63.36	0-360	401	Flat
1	.01873	44.45	Pk	-36.9	.1	-80	-72.35	-9.34	10.66	-63.01	0-360	401	0 degs
5	.52794	34.27	Pk	-40.3	.1	-40	-45.93	-18.35	-	-27.58	0-360	401	90 degs
2	.5701	35.01	Pk	-40.3	.1	-40	-45.19	-19.02	-	-26.17	0-360	401	0 degs
8	.66707	32.94	Pk	-40.2	.2	-40	-47.06	-20.38	-	-26.68	0-360	401	Flat
3	.97484	29.89	Pk	-40.2	.2	-40	-50.11	-23.67	-	-26.44	0-360	401	0 degs
9	1.08024	27.87	Pk	-40.2	.2	-40	-52.13	-24.57	-	-27.56	0-360	401	Flat
6	1.19829	28.03	Pk	-40.2	.2	-40	-51.97	-25.47	-	-26.5	0-360	401	90 degs

Pk - Peak detector

Page 34 of 43

58 46

22 10

-38

000

Rev 9.5 18 Oct 2021

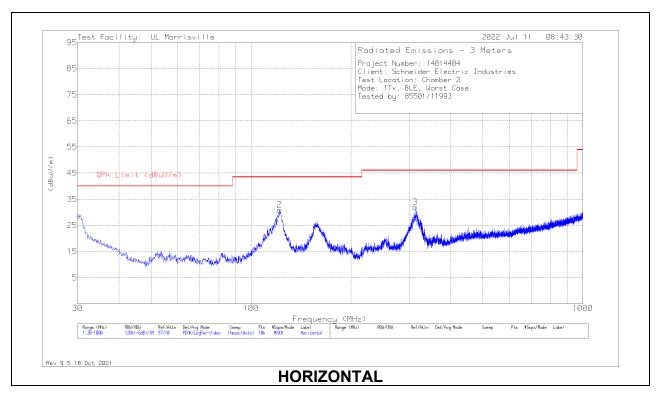
dB(uVolts/meter)

Test Facility: UL Morrisville

Frequency (MHz)

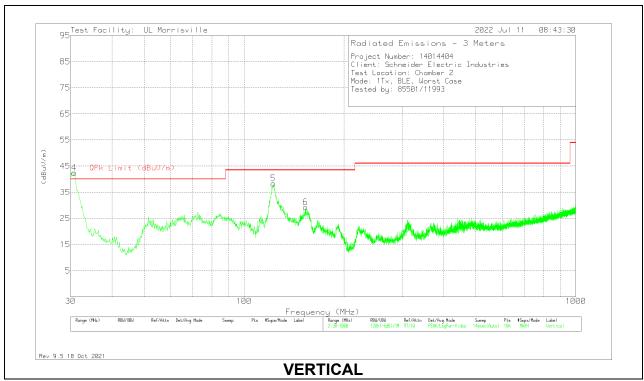
RF Emissions

Below 30MHz Data E FIELD


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0079 (dB/m)	Gain/Loss (dB)	Dist. Corr. Factor (dB)	Corrected Reading dB(uVolts/meter)	QP/AV Limit (dBuV/m)	PK Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Loop Angle
4	.0117	43.69	Pk	17.7	.1	-80	-18.51	46.24	66.24	-64.75	0-360	401	90 degs
7	.01539	44.3	Pk	16.1	.1	-80	-19.5	43.86	63.86	-63.36	0-360	401	Flat
1	.01873	44.45	Pk	14.6	.1	-80	-20.85	42.16	62.16	-63.01	0-360	401	0 degs
5	.52794	34.27	Pk	11.2	.1	-40	5.57	33.15	-	-27.58	0-360	401	90 degs
2	.5701	35.01	Pk	11.2	.1	-40	6.31	32.48	-	-26.17	0-360	401	0 degs
8	.66707	32.94	Pk	11.3	.2	-40	4.44	31.12	-	-26.68	0-360	401	Flat
3	.97484	29.89	Pk	11.3	.2	-40	1.39	27.83	-	-26.44	0-360	401	0 degs
9	1.08024	27.87	Pk	11.3	.2	-40	63	26.93	-	-27.56	0-360	401	Flat
6	1.19829	28.03	Pk	11.3	.2	-40	47	26.03	-	-26.5	0-360	401	90 degs

Pk - Peak detector

TEL: (919) 549-1400


10.4. WORST CASE BELOW 1 GHZ

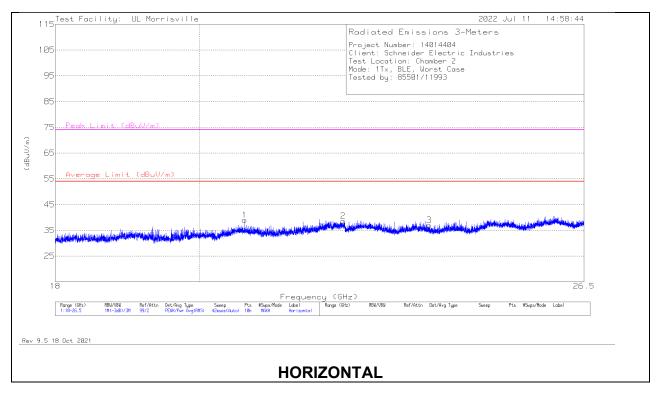
SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

DATE: 2023-01-31

IC: 21522-BCMW-V1

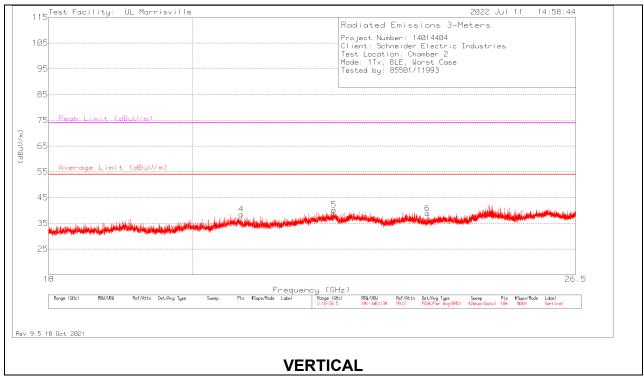
Page 36 of 43

Below 1GHz Data


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0073 (dB/m)	Gain/Loss (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	30.097	33.59	Pk	26.7	-31.5	28.79	40	-11.21	0-360	399	Н
4	30.6264	44.77	Qp	26.4	-31.5	39.67	40	33	236	101	V
2	121.956	41.26	Pk	20	-30.3	30.96	43.52	-12.56	0-360	199	Н
5	122.3659	44.86	Qp	20	-30.3	34.56	43.52	-8.96	249	102	V
6	153.287	40.76	Pk	18.5	-30	29.26	43.52	-14.26	0-360	101	V
3	312.464	40.79	Pk	19.9	-28.7	31.99	46.02	-14.03	0-360	99	Н

Pk - Peak detector

Qp - Quasi-Peak detector


10.5. WORST CASE 18-26 GHZ

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

DATE: 2023-01-31

IC: 21522-BCMW-V1

18 **–** 26GHz Data

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0063 (dB/m)	(dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 20.67553	43.6	Pk	33.9	-38.5	39	54	-15	74	-35	0-360	250	Н
2	* ** 22.21898	40.11	Pk	36.8	-38.3	38.61	54	-15.39	74	-35.39	0-360	101	Н
3	* ** 23.66468	39.77	Pk	34.9	-37.7	36.97	54	-17.03	74	-37.03	0-360	101	Н
4	* ** 20.73418	43.07	Pk	34	-38.6	38.47	54	-15.53	74	-35.53	0-360	300	V
5	* ** 22.19348	41.69	Pk	36.9	-38.3	40.29	54	-13.71	74	-33.71	0-360	300	V
6	* ** 23.76837	41.7	Pk	34.9	-37.7	38.9	54	-15.1	74	-35.1	0-360	300	V

TEL: (919) 549-1400

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

11. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

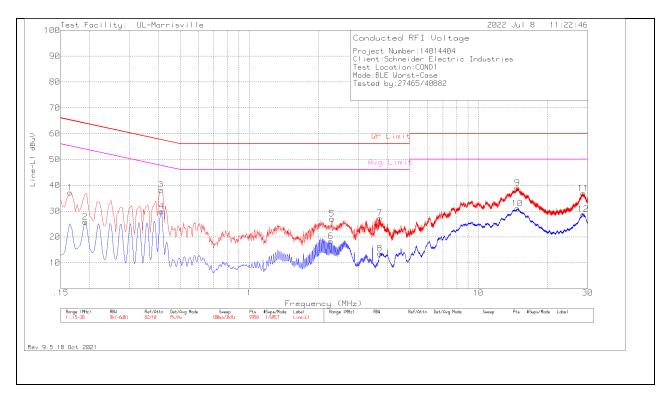
Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both lines.

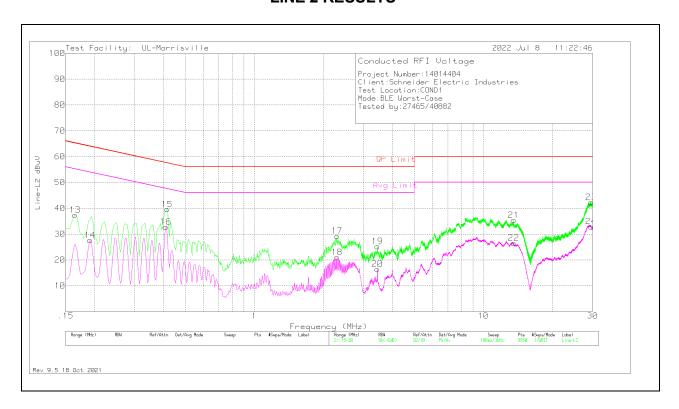

RESULTS

11.1.1. AC Power Line Norm

LINE 1 RESULTS

DATE: 2023-01-31

IC: 21522-BCMW-V1


				Ra	nge 1: Line-L1 .1	.5 - 30MHz				
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	QP Limit	Margin (dB)	Avg Limit	Margin (dB)
1	.165	27.14	Pk	.2	9.8	37.14	65.21	-28.07	55.21	-18.07
2	.192	15.78	Av	.2	9.8	25.78	63.95	-38.17	53.95	-28.17
3	.411	28.39	Pk	.1	9.8	38.29	57.63	-19.34	47.63	-9.34
4	.414	20	Av	.1	9.8	29.9	57.57	-27.67	47.57	-17.67
6	2.271	8.6	Αv	0	9.8	18.4	56	-37.6	46	-27.6
5	2.295	17.27	Pk	0	9.8	27.07	56	-28.93	46	-18.93
8	3.714	3.65	Av	0	9.9	13.55	56	-42.45	46	-32.45
7	3.717	17.4	Pk	0	9.9	27.3	56	-28.7	46	-18.7
10	14.799	20.8	Av	.1	10.1	31	60	-29	50	-19
9	14.82	28.85	Pk	.1	10.1	39.05	60	-20.95	50	-10.95
12	28.686	18.25	Av	.3	10.2	28.75	60	-31.25	50	-21.25
11	28.71	26.37	Pk	.3	10.2	36.87	60	-23.13	50	-13.13

Pk - Peak detector Av - Average detection

LINE 2 RESULTS

DATE: 2023-01-31

IC: 21522-BCMW-V1

Range 2: Line-L2 .15 - 30MHz										
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	QP Limit	Margin (dB)	Avg Limit	Margin (dB)
13	.165	27.39	Pk	.2	9.8	37.39	65.21	-27.82	55.21	-17.82
14	.192	17.61	Av	.2	9.8	27.61	63.95	-36.34	53.95	-26.34
16	.411	22.89	Αv	.1	9.8	32.79	57.63	-24.84	47.63	-14.84
15	.417	29.65	Pk	.1	9.8	39.55	57.51	-17.96	47.51	-7.96
17	2.298	19.48	Pk	0	9.8	29.28	56	-26.72	46	-16.72
18	2.298	11.22	Av	0	9.8	21.02	56	-34.98	46	-24.98
20	3.444	6.54	Av	0	9.9	16.44	56	-39.56	46	-29.56
19	3.447	15.34	Pk	0	9.9	25.24	56	-30.76	46	-20.76
21	13.56	25.28	Pk	.1	10	35.38	60	-24.62	50	-14.62
22	13.56	16.45	Αv	.1	10	26.55	60	-33.45	50	-23.45
24	29.556	22.43	Αv	.3	10.2	32.93	60	-27.07	50	-17.07
23	29.574	31.79	Pk	.3	10.2	42.29	60	-17.71	50	-7.71

Pk - Peak detector Av - Average detection

12. SETUP PHOTOS

Please refer to 14014404-EP1 for setup photos

END OF TEST REPORT