FCC RADIO TEST REPORT

Report No. : FR951708

FCC RADIO TEST REPORT

FCC ID	:	2ADZR4G05A
Equipment	:	FastMile 4G Receiver
Brand Name	:	NOKIA
Model Name	:	4G05-A
Applicant	:	Nokia Shanghai Bell Co., Ltd. 388#, Ningqiao Road, China (Shanghai) Pilot Free
		Trade Zone, Shanghai 201206, China
Manufacturer		Nokia Shanghai Bell Co., Ltd. 388#, Ningqiao Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201206, China
Standard	:	47 CFR FCC Part 15.247

The product was received on May 17, 2019, and testing was started from May 17, 2019 and completed on Jun. 25, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Cliff Chang//

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB Ver1.0 Page Number : 1 of 24 Issued Date : Aug. 30, 2019 Report Version : 01

Table of Contents

History	y of this test report	3
Summ	ary of Test Result	4
1	General Description	5
1.1 1.2 1.3 1.4	Information Applicable Standards Testing Location Information Measurement Uncertainty	6 6
2	Test Configuration of EUT	7
 2.1 2.2 2.3 2.4 2.5 2.6 	Test Channel Mode The Worst Case Measurement Configuration EUT Operation during Test Accessories Support Equipment Test Setup Diagram	8 9 9
3	Transmitter Test Result	.13
3.1 3.2 3.3 3.4 3.5 3.6 3.7	AC Power-line Conducted Emissions	.15 .16 .17 .18 .19
4	Test Equipment and Calibration Data	.23
Appen	ndix A. Test Results of AC Power-line Conducted Emissions ndix B. Test Results of 20dB Bandwidth and Carrier Frequency Separation ndix C. Test Results of Maximum Conducted Output Power	
Appen	ndix D. Test Results of Number of Hopping Frequencies and Hopping Bandedge	
Appen	ndix E. Test Results of Time of Occupancy (Dwell Time)	
Appen	ndix F. Test Results of Emissions in Non-restricted Frequency Bands	
	ndix G. Test Results of Emissions in Restricted Frequency Bands	
••	ndix H. Test Photos	
Photog	graphs of EUT v01	

History of this test report

Report No.	Version	Description	Issued Date
FR951708	01	Initial issue of report	Aug. 30, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	20dB Bandwidth	PASS	-
3.2	15.247(a)	Carrier Frequency Separation	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(a)	Number of Hopping Frequencies and Hopping Band edge	PASS	-
3.5	15.247(a)	Time of Occupancy (Dwell Time)	PASS	-
3.6	15.247(d)	Emissions in Non-restricted Frequency PASS -		-
3.7	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

None

Reviewed by: Cliff Chang Report Producer: Cindy Peng

1 General Description

1.1 Information

1.1.1 **RF General Information**

Frequency Range (MHz)	Bluetooth Version	Ch. Frequency (MHz)	Channel Number
2400-2483.5	BR / EDR	2402-2480	0-78 [79]

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-BR(1Mbps)	1	1TX
2.4-2.4835GHz	BT-EDR(2Mbps)	1	1TX
2.4-2.4835GHz	BT-EDR(3Mbps)	1	1TX

Note:

- Bluetooth BR uses a GFSK (1Mbps).
- Bluetooth EDR uses a combination of $\pi/4$ -DQPSK (2Mbps) and 8DPSK (3Mbps).
- Bluetooth BR/EDR uses as a system using FHSS modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., 2(2, 3) means have 2 outputs for port 2 and port 3. 2 means have 2 outputs for port 1 and port 2.

1.1.2 Antenna Information

Ant.	Port	Brand Holder	Model Name	Antenna Type	Connector	Gain (dBi)
1	1	Signal Plus Technology Co., Ltd.	6011F00107	PCB Antenna	I-PEX	5

Note 1: The above information was declared by manufacturer.

Note 2: The EUT has one antenna for Bluetooth use.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-BR(1Mbps)	0.437	3.6	421.5u	3k
BT-EDR(2Mbps)	0.372	4.29	2.908m	1k
BT-EDR(3Mbps)	0.362	4.41	1.663m	1k

Note:

• DC is Duty Cycle.

DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	From PoE
Test Software Version	putty

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- FCC KDB 558074 D01 v05r02

1.3 Testing Location Information

	Testing Location					
	HWA YA	ADD	:	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)		
		TEL	:	886-3-327-3456 FAX : 886-3-327-0973		
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.		
		TEL	•	886-3-656-9065 FAX : 886-3-656-9085		

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH02-CB	Eddie Weng	22~24°C / 50~60%	Jun. 11, 2019~Jun. 25, 2019
Radiated (below 1GHz)	03CH05-CB	Stim Sung	23~25°C / 55~60%	Jun. 13, 2019
Radiated (above 1GHz)	03CH03-CB	Stim Sung	22~24°C / 50~55%	Jun. 13, 2019
AC Conduction	CO01-CB	Deven Huang	22~23°C / 55~58%	May 17, 2019

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086B with Industry Canada.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	5.1 dB	Confidence levels of 95%
Conducted Emission	2.4 dB	Confidence levels of 95%
Output Power Measurement	1.5 dB	Confidence levels of 95%
Bandwidth Measurement	10.0 x10 ⁻⁵	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
BT-BR(1Mbps)	-
2402MHz	OxOf
2440MHz	OxOf
2480MHz	0x0e
BT-EDR(2Mbps)	-
2402MHz	OxOf
2440MHz	OxOf
2480MHz	OxOf
BT-EDR(3Mbps)	-
2402MHz	OxOf
2440MHz	OxOf
2480MHz	0x0f

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	Tests Item AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral			
Operating Mode Normal Link with LTE Band 1			

TI	The Worst Case Mode for Following Conformance Tests		
Tests Item	20dB Bandwidth Carrier Frequency Separation Maximum Conducted Output Power Number of Hopping Frequencies Hopping Bandedge Time of Occupancy (Dwell Time) Emissions in Non-restricted Frequency Bands		
Test Condition	Test Condition Conducted measurement at transmit chains		

Th	The Worst Case Mode for Following Conformance Tests		
Tests Item	Emissions in Restricted Frequency Bands		
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.		
Operating Mode < 1GHz CTX			
Operating Mode > 1GHz	СТХ		

Note 1: The EUT can only be used at Y axis position.

Note 2: The PoE is for measurement only, would not be marketed.

Equipment	Brand Name	Model Name	FCC ID
SIM card	N/A	N/A	N/A
PoE	NOKIA	G0545-530-060-PSE1000	N/A

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link:

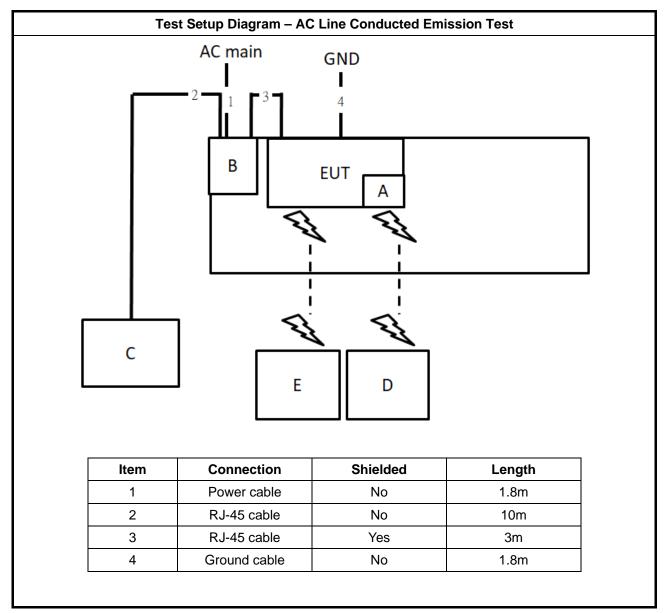
During the test, the EUT operation to normal function.

2.4 Accessories

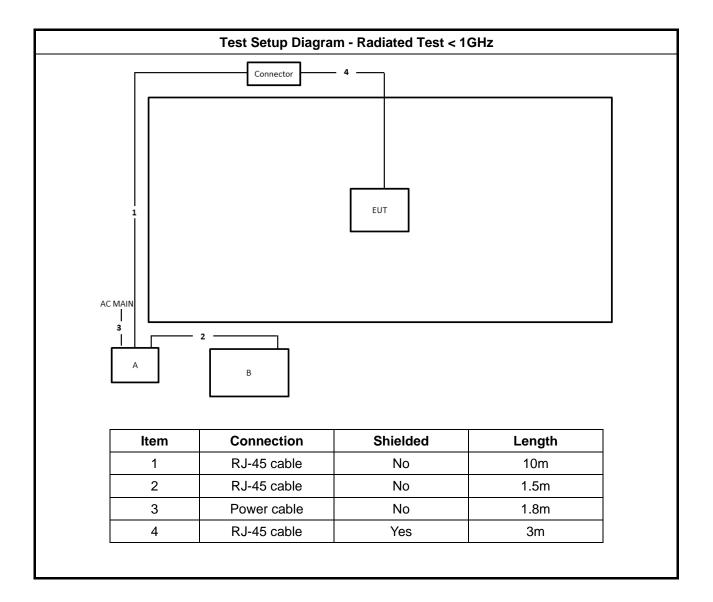
	Accessories
No.	Description
1	Sealing collar*1
2	RJ-45 cable*1: Shielded, 3m

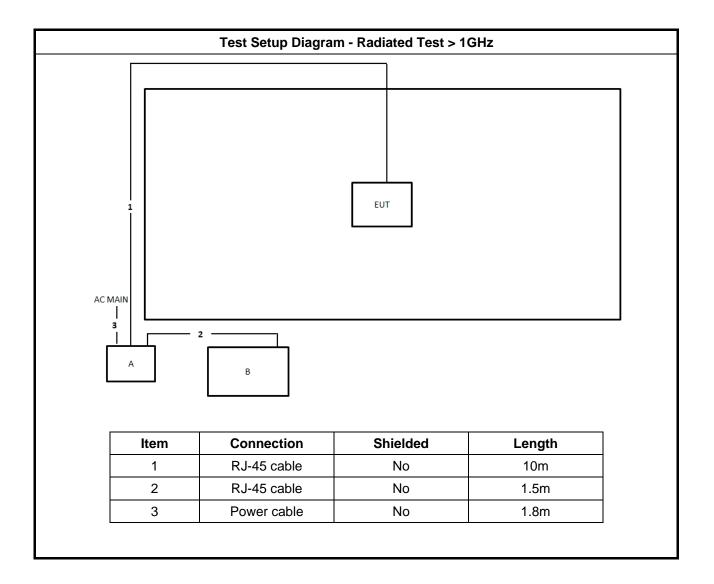
2.5 Support Equipment

For AC Conduction:


	Support Equipment			
No.	Equipment Brand Name Model Name FCC ID		FCC ID	
А	SIM card	N/A	N/A	N/A
В	PoE	NOKIA	G0545-530-060-PSE1000	N/A
С	LAN NB	DELL	T3400	N/A
D	LTE base station	Anritsu	MT8820C	N/A
Е	Smart phone	Samsung	Galaxy J2	N/A

For Radiated and RF Conducted:


	Support Equipment			
No.	Equipment	Brand Name	Model Name	FCC ID
А	PoE	NOKIA	G0545-530-060-PSE1000	N/A
В	NB	DELL	E4300	N/A


2.6 Test Setup Diagram

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

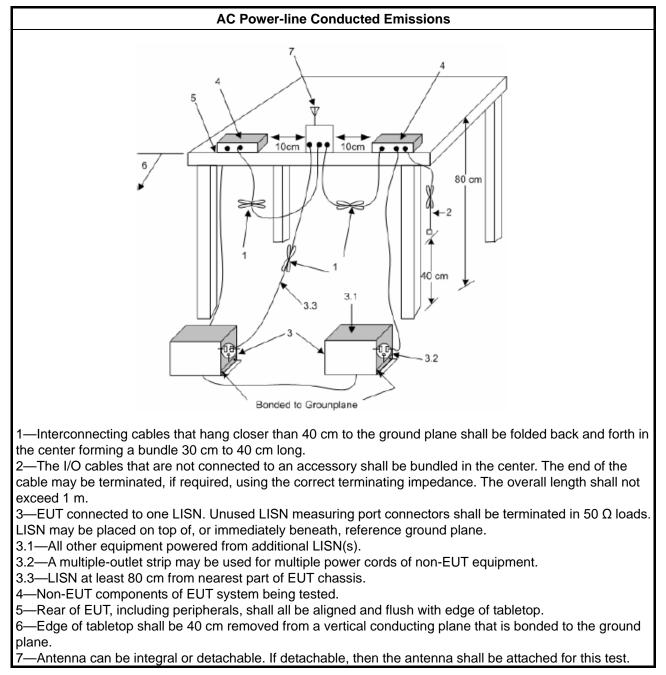
3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz) Quasi-Peak Average				
0.15-0.5 66 - 56 * 56 - 46 *				
0.5-5 56		46		
5-30 60 50				
Note 1: * Decreases with the logarithm of the frequency.				

-

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

Test Method

• Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

3.1.5 Test Result of AC Power-line Conducted Emissions

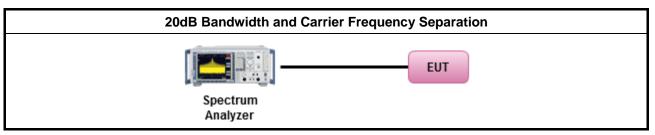
Refer as Appendix A

3.2 20dB Bandwidth and Carrier Frequency Separation

3.2.1 20dB Bandwidth and Carrier Frequency Separation Limit

20dB Bandwidth and Carrier Frequency Separation Limit for Frequency Hopping Systems

-	902-928 MHz Band:
	 N ≥50 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 250 kHz.
	 50 >N≥25 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth>250 kHz.
-	2400-2483.5 MHz Band:
	 N ≥75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz).
	 75>N ≥ 15 and ChS ≥ MAX (20 dB bandwidth 2/3,25 kHz).
•	5725-5850 MHz Band:
	 N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 1 MHz.
N:N	umber of Hopping Frequencies; ChS : Hopping Channel Separation


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method
 Refer as ANSI C63.10-2013, clause 6.9.1 for 20 dB bandwidth measurement.
 Refer as ANSI C63.10-2013, clause 7.8.2 for carrier frequency separation measurement.

3.2.4 Test Setup

3.2.5 Test Result of 20dB Bandwidth

Refer as Appendix B

3.2.6 Test Result of Carrier Frequency Separation

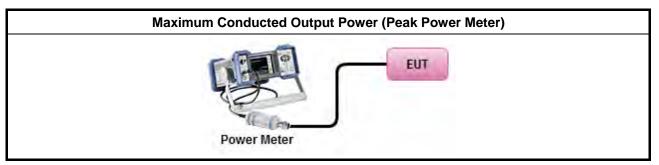
Refer as Appendix B

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit			
 902-928 MHz Band: 			
N ≥50; Power 30dBm; EIRP 36dBm			
■ 50 >N≥ 25; Power 24dBm; EIRP 30dBm			
• 2400-2483.5 MHz Band:			
 N ≥ 75; Power 30dBm; EIRP 36dBm 			
• 75 >N ≥ 15; Power 21dBm; EIRP 27dBm			
 5725-5850 MHz Band: 			
 N ≥ 75; Power 30dBm; EIRP 36dBm 			
N:Number of Hopping Frequencies			

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

Test Method

• Refer as ANSI C63.10-2013, clause 7.8.5 for output power measurement.

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

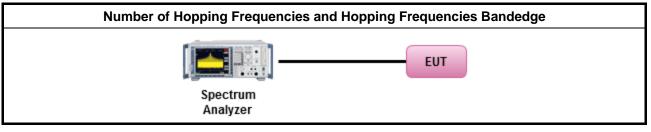
3.4 Number of Hopping Frequencies and Hopping Bandedge

3.4.1 Number of Hopping Frequencies Limit

	Number of Hopping Frequencies Limit
•	902-928 MHz Band:
	 N ≥50 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 250 kHz.
	 50 >N≥ 25 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth>250 kHz.
•	2400-2483.5 MHz Band:
	■ N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz).
	■ 75 >N ≥ 15 and ChS ≥ MAX (20 dB bandwidth 2/3,25 kHz).
•	5725-5850 MHz Band:
	 N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 1 MHz.
N:N	umber of Hopping Frequencies; ChS : Hopping Channel Separation

3.4.2 Hopping Bandedge Limit

Refer clause 3.6.1 and clause 3.7.1


3.4.3 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.4 Test Procedures

	Test Method
•	Refer as ANSI C63.10-2013, clause 7.8.3 for number of hopping frequencies measurement.
•	Refer as ANSI C63.10-2013, clause 7.8.6 for hopping frequencies Bandedge measurement.

3.4.5 Test Setup

3.4.6 Test Result of Number of Hopping Frequencies

Refer as Appendix D

3.4.7 Test Result of Number of Hopping Frequencies Bandedge

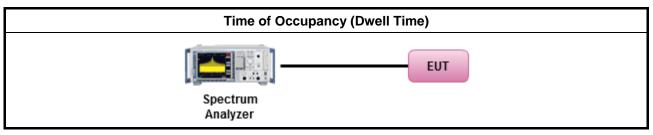
Refer as Appendix D

3.5 Time of Occupancy (Dwell Time)

3.5.1 Time of Occupancy (Dwell Time) Limit

20dB Bandwidth and Carrier Frequency Separation Limit for Frequency Hopping Systems

•	902-928 MHz Band:
	 N ≥50; 0.4s in 20s period
	 50 >N≥ 25; 0.4s in 10s period
•	2400-2483.5 MHz Band:
	 N ≥ 75; 0.4s in N x 0.4 period
	 75 >N ≥ 15; 0.4s in N x 0.4 period
•	5725-5850 MHz Band:
	 N ≥ 75; 0.4s in 30s period
N :N	umber of Hopping Frequencies


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
•	Refer as ANSI C63.10-2013, clause 7.8.4 for dwell time measurement.
•	Bluetooth ACL packets can be 1, 3, or 5 time slots. Following as dwell time. Operate DH5 at maximum dwell time and maximum duty cycle.
	 The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel.

3.5.4 Test Setup

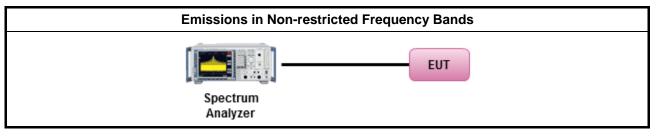
3.5.5 Test Result of Time of Occupancy (Dwell Time)

Refer as Appendix E

3.6 Emissions in Non-restricted Frequency Bands

3.6.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit						
RF output power procedure	Limit (dBc)					
Peak output power procedure	20					
	n the peak conducted output power measured within band shall be attenuated by at least 20 dB relative to					


3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

	Test Method
-	Refer as ANSI C63.10-2013, clause 7.8.8 for unwanted emissions into non-restricted bands.

3.6.4 Test Setup

3.6.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix F

3.7 Emissions in Restricted Frequency Bands

3.7.1 Emissions in Restricted Frequency Bands Limit

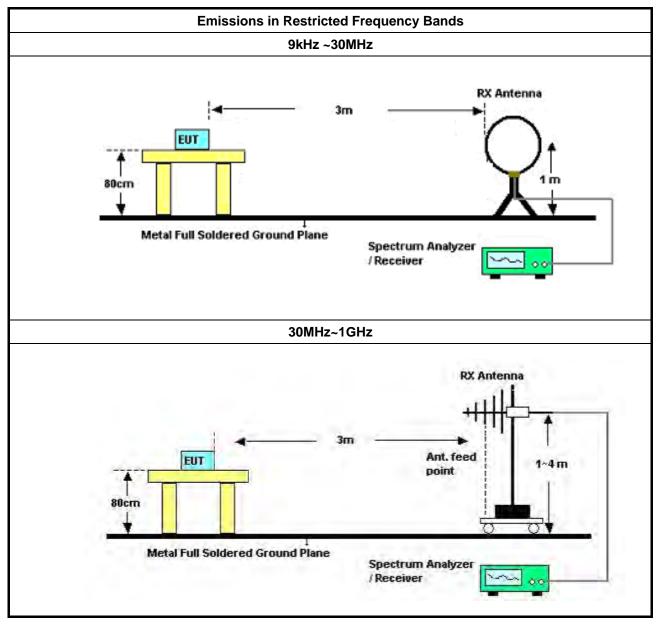
	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

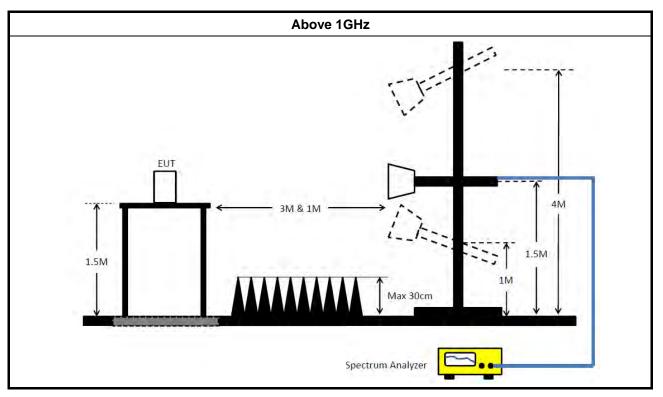
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

3.7.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.7.3 Test Procedures

	Test Method
-	The average emission levels shall be measured in [hopping duty factor].
•	Refer as ANSI C63.10; clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
•	For the transmitter unwanted emissions shall be measured using following options below:
	 Refer as ANSI C63.10, clause 4.1.4.2.1 QP value.
	 Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak.
	 Refer as ANSI C63.10, clause 4.1.4.2.4 average value of hopping pulsed emissions.
	 Refer as ANSI C63.10, clause 4.1.4.2.4 average value of hopping pulsed emissions.


Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.7.4 Test Setup

3.7.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.7.6 Emissions in Restricted Frequency Bands (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

3.7.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix G

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 28, 2019	Jan. 29, 2020	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Dec. 24, 2018	Dec. 23, 2019	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Jan. 11, 2019	Jan. 10, 2020	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	May 22, 2018	May 21, 2019	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 29, 2019	Mar. 28, 2020	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESE & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 28, 2019	Mar. 27, 2020	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	May 01, 2019	Apr. 30, 2020	Radiation (03CH05-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Jan. 31, 2019	Jan. 30, 2020	Radiation (03CH05-CB)
EMI Test Receiver	R&S	ESCS	100359	9kHz ~ 2.75GHz	Jul. 03, 2018	Jul. 02, 2019	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	LOW Cable-04+23	30MHz~1GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH05-CB)
Horn Antenna	Horn Antenna ETS • Lindgren		6821	750MHz~18GHz	Jan. 24, 2019	Jan. 23, 2020	Radiation (03CH03-CB)
Horn Antenna Schwarzbeck		BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jun. 28, 2018	Jun. 27, 2019	Radiation (03CH03-CB)
Pre-Amplifier Agilent		8449B	3008A02097	1GHz ~ 26.5GHz	Dec. 20, 2018	Dec. 19, 2019	Radiation (03CH03-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 04, 2018	Jul. 03, 2019	Radiation (03CH03-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Jan. 31, 2019	Jan. 30, 2020	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-20+27	1GHz ~ 18GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-27	1GHz ~ 18GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH03-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Feb. 25, 2019	Feb. 24, 2020	Conducted (TH02-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Sep. 03, 2018	Sep. 02, 2019	Conducted (TH02-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Sep. 03, 2018	Sep. 02, 2019	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-01	1 GHz – 26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-02	1 GHz – 26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-3	1 GHz – 26.5 GHz	Oct. 24, 2018	Oct. 23, 2019	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-04	1 GHz – 26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-05	1 GHz – 26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH02-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

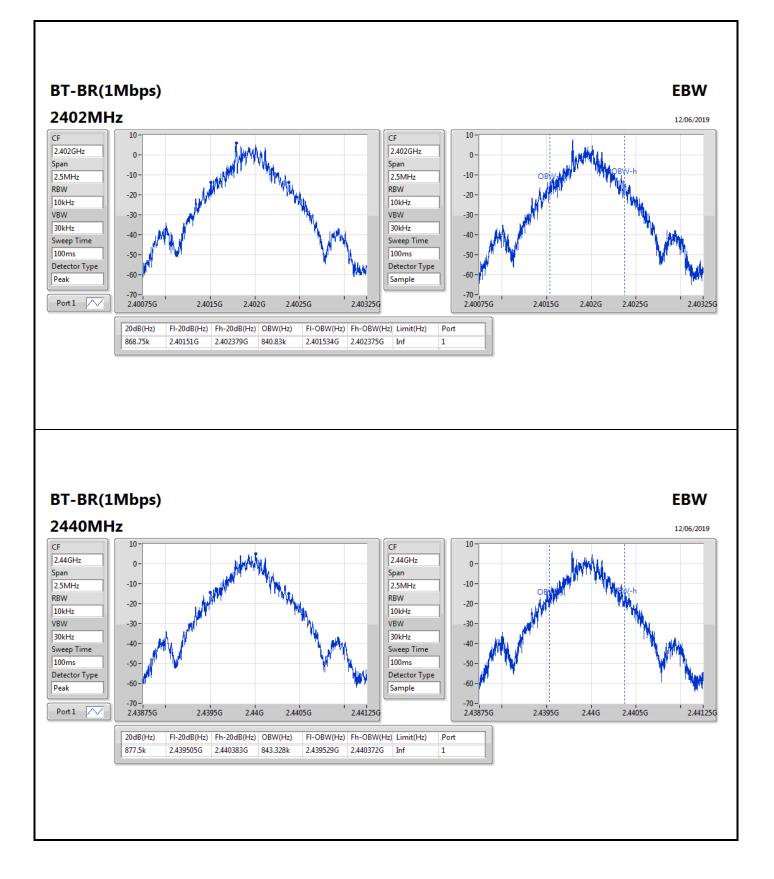
Mode 1	17/05/2019
	QP
	Lim.AV AV
	AV
10- 0-	
13UK IM 10M 30M	
Type Freq Level Limit Margin Factor Condition Comment Raw AF CL AT	
(Hz) (dBuV) (dBuV) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB	
QP 150k 46.74 66.00 -19.26 10.00 Line - 36.74 0.05 0.16 9.79 AV 150k 35.79 56.00 -20.21 10.00 Line - 25.79 0.05 0.16 9.79	
AV 130k 53.79 50.00 -20.21 10.00 Line - 23.79 0.05 0.10 9.79 QP 343.5k 45.94 59.12 -13.18 9.99 Line - 35.95 0.06 0.12 9.81	
AV 343.5k 39.85 49.12 -9.27 9.99 Line "Worst" 29.86 0.06 0.12 9.81	
QP 892.5k 36.58 56.00 -19.42 10.08 Line - 26.50 0.07 0.19 9.82	
QP 892.5k 36.58 56.00 -19.42 10.08 Line - 26.50 0.07 0.19 9.82 AV 892.5k 28.89 46.00 -17.11 10.08 Line - 18.81 0.07 0.19 9.82	
QP 892.5k 36.58 56.00 -19.42 10.08 Line - 26.50 0.07 0.19 9.82 AV 892.5k 28.89 46.00 -17.11 10.08 Line - 18.81 0.07 0.19 9.82 QP 1.95M 36.02 56.00 -19.98 10.15 Line - 25.87 0.09 0.23 9.83	
QP 892.5k 36.58 56.00 -19.42 10.08 Line - 26.50 0.07 0.19 9.82 AV 892.5k 28.89 46.00 -17.11 10.08 Line - 18.81 0.07 0.19 9.82 QP 1.95M 36.02 56.00 -19.98 10.15 Line - 25.87 0.09 0.23 9.83 AV 1.95M 29.53 46.00 -16.47 10.15 Line - 19.38 0.09 0.23 9.83	
QP 892.5k 36.58 56.00 -19.42 10.08 Line - 26.50 0.07 0.19 9.82 AV 892.5k 28.89 46.00 -17.11 10.08 Line - 18.81 0.07 0.19 9.82 QP 1.95M 36.02 56.00 -19.98 10.15 Line - 25.87 0.09 0.23 9.83 AV 1.95M 29.53 46.00 -16.47 10.15 Line - 19.38 0.09 0.23 9.83 QP 3.813M 38.00 56.00 -18.00 10.07 Line - 19.38 0.09 0.23 9.83	
QP 892.5k 36.58 56.00 -19.42 10.08 Line - 26.50 0.07 0.19 9.82 AV 892.5k 28.89 46.00 -17.11 10.08 Line - 18.81 0.07 0.19 9.82 QP 1.95M 36.02 56.00 -19.98 10.15 Line - 25.87 0.09 0.23 9.83 AV 1.95M 29.53 46.00 -16.47 10.15 Line - 19.38 0.09 0.23 9.83	

17/05/2019	IN THE CASE OF T		(**)(**)***						1	80- 70- 60- 50-
	The fit of the Walk De Vice of the State of		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	<u>, // //\</u> //						70- 60-
	ling of an bally of the second se		www.www							60-
	is destrikt (ferster 1974 – Marine Basser 1979 – Marine Basser 1970 – Ma		vyr/wy							
	linet standa ta ta su a su a su a su a su a su a su		, mrvmy							
	1546 1487 438 438 448 448 448 448 448 448 448 448		mr.	Muhh						50-
	2 14 14 14 14 14 14 14 14 14 14 14 14 14		MALAN MA	Man	- D					
		n may ha	mpr/my	MAM	- D - D				7. N	V
	aw too a constraint	1 · · · ·	1111		18. 8 MA 23	m Aw	n. M	1 + ~	N/V	
				11	ψν. V.	- X / f	MM		4	30-
				·		W.				20-
										10-
										0-
10M 30M					M	1				150k
AF CL AT			Comment	Condition	Factor	Margin	Limit	Level	Freq	Туре
										0.0
			-							
0.04 0.12 9.81			-	Neutral	9.97	-13.52	59.23	45.71	339k	QP
0.04 0.12 9.81	0.04 0.1	27.27	"Worst"	Neutral	9.97	-11.99	49.23	37.24	339k	AV
0.06 0.19 9.82			-	Neutral	10.07	-19.28	56.00	36.72	897k	QP
0.06 0.19 9.82			-	Neutral	10.07	-16.81	46.00	29.19	897k	AV
0.07 0.23 9.83			-	Neutral	10.13	-19.97	56.00	36.03	1.964M	QP
0.07 0.23 9.83			-	Neutral	10.13	-16.28	46.00	29.72	1.964M 3.764M	AV
0.10 0.14 9.81 0.10 0.14 9.81			-	Neutral Neutral	10.05	-17.61 -15.64	56.00 46.00	38.39 30.36	3.764M 3.764M	QP AV
0.17 5.01	0.10	20101	-	Neutral	10.05	10.04	40.00	50.50	3.1.04101	-11
(dB) (dB) (dB) 0.04 0.16 9.79 0.04 0.16 9.79 0.04 0.15 9.79 0.04 0.15 9.79	(dB) (d 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1	(dBuV) 37.34 26.79 32.56 20.84	- - -	Neutral Neutral Neutral Neutral	(dB) 9.99 9.99 9.98 9.98	(dB) -18.67 -19.22 -22.52 -24.24	(dBuV) 66.00 56.00 65.06 55.06	(dBuV) 47.33 36.78 42.54 30.82	(Hz) 150k 150k 168k 168k	QP AV QP AV

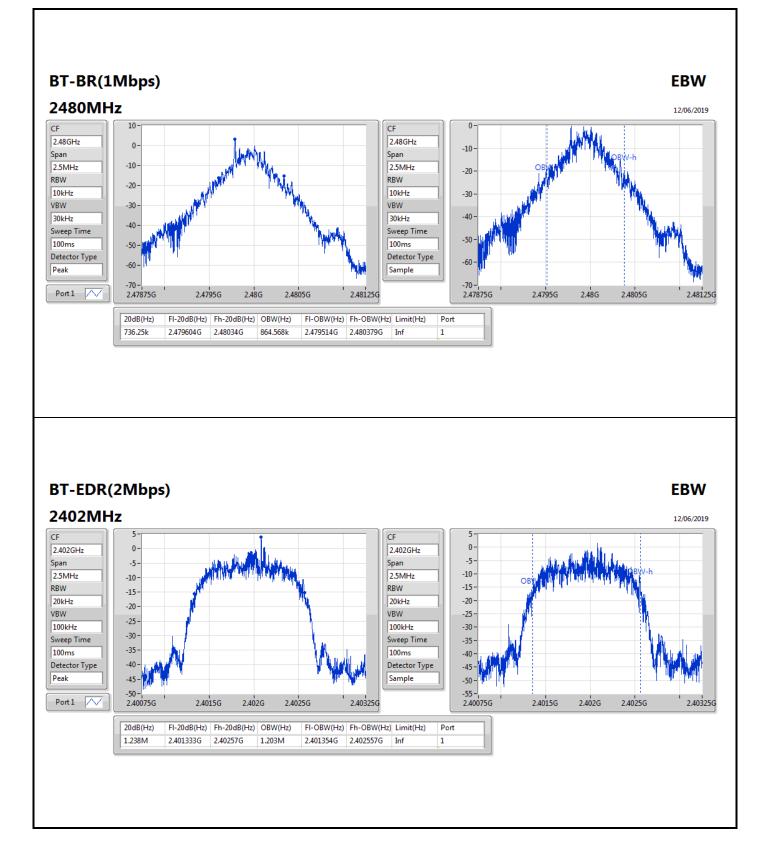
Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-BR(1Mbps)	877.5k	864.568k	865KF1D	736.25k	840.83k
BT-EDR(2Mbps)	1.321M	1.203M	1M20G1D	1.238M	1.194M
BT-EDR(3Mbps)	1.231M	1.161M	1M16G1D	1.186M	1.157M

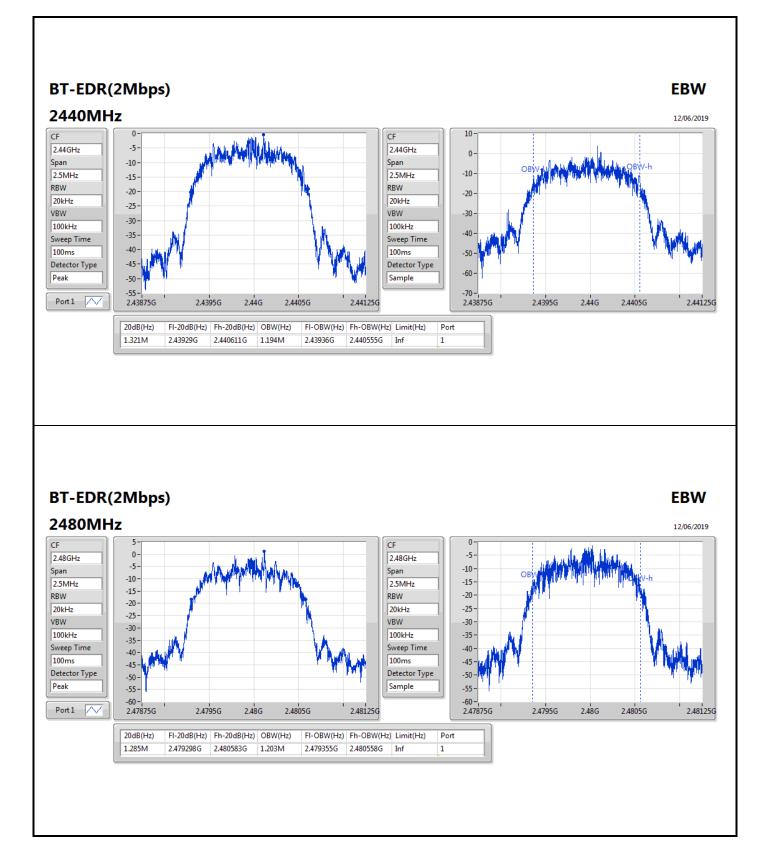
Max-N dB = Maximum 20dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 20dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

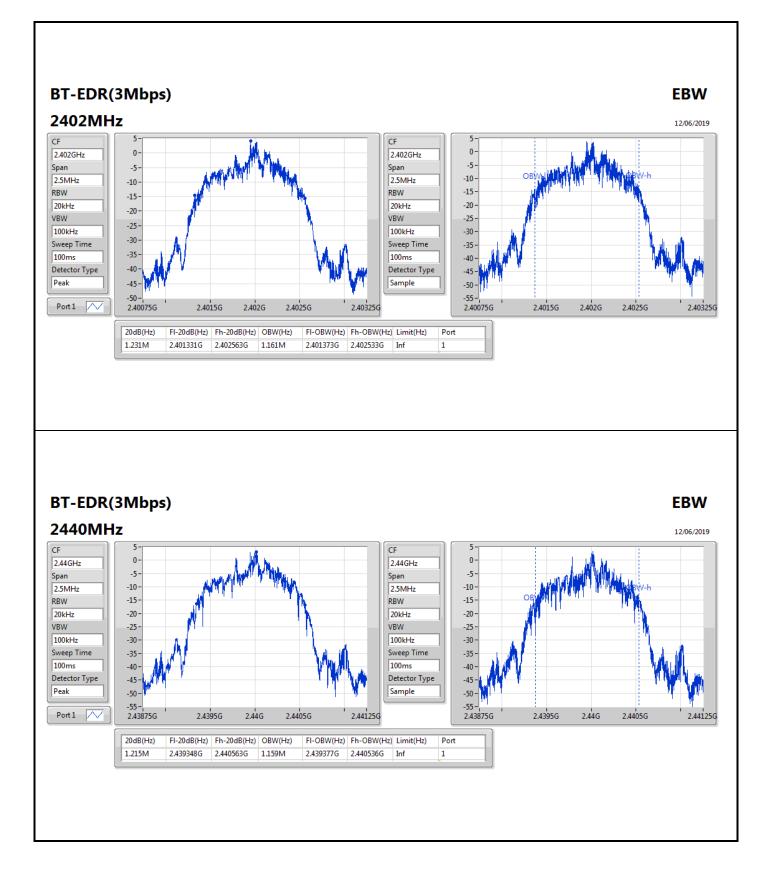


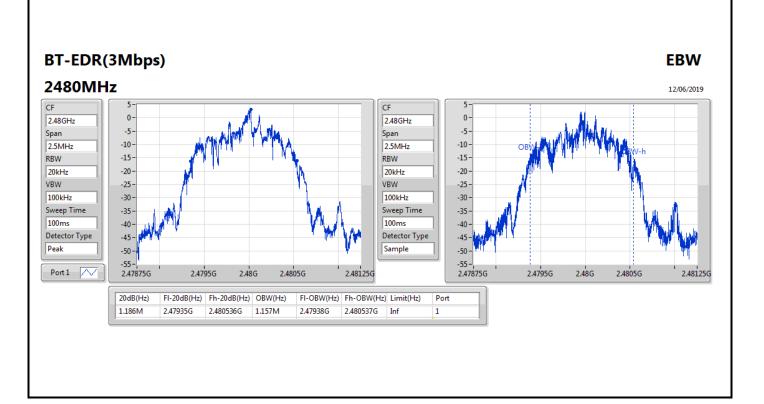
Result


Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	Inf	868.75k	840.83k
2440MHz	Pass	Inf	877.5k	843.328k
2480MHz	Pass	Inf	736.25k	864.568k
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	Inf	1.238M	1.203M
2440MHz	Pass	Inf	1.321M	1.194M
2480MHz	Pass	Inf	1.285M	1.203M
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	Inf	1.231M	1.161M
2440MHz	Pass	Inf	1.215M	1.159M
2480MHz	Pass	Inf	1.186M	1.157M

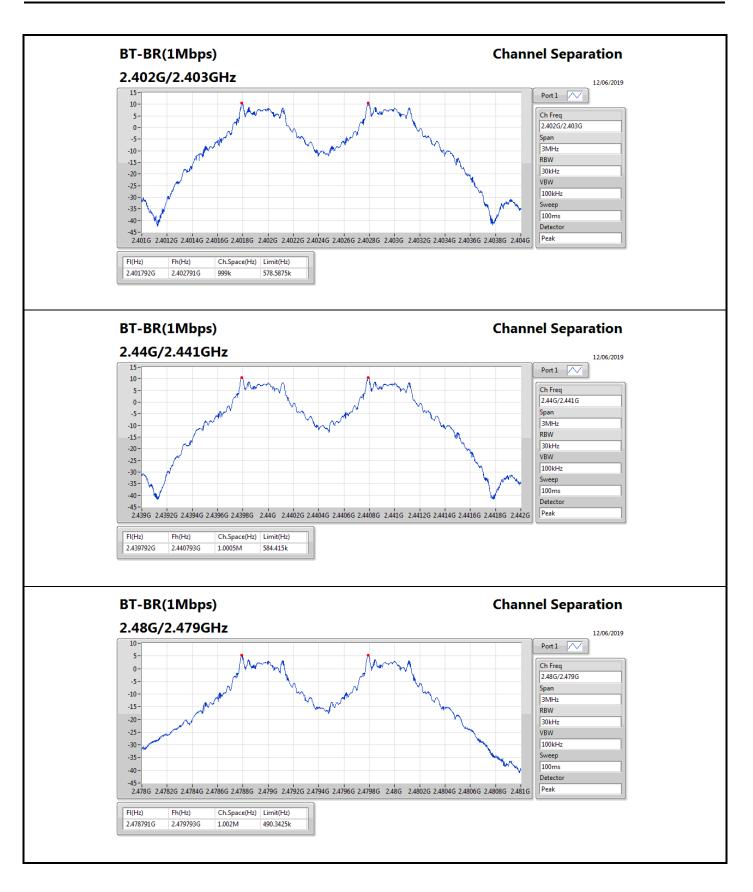
Port X-N dB = Port X 20dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

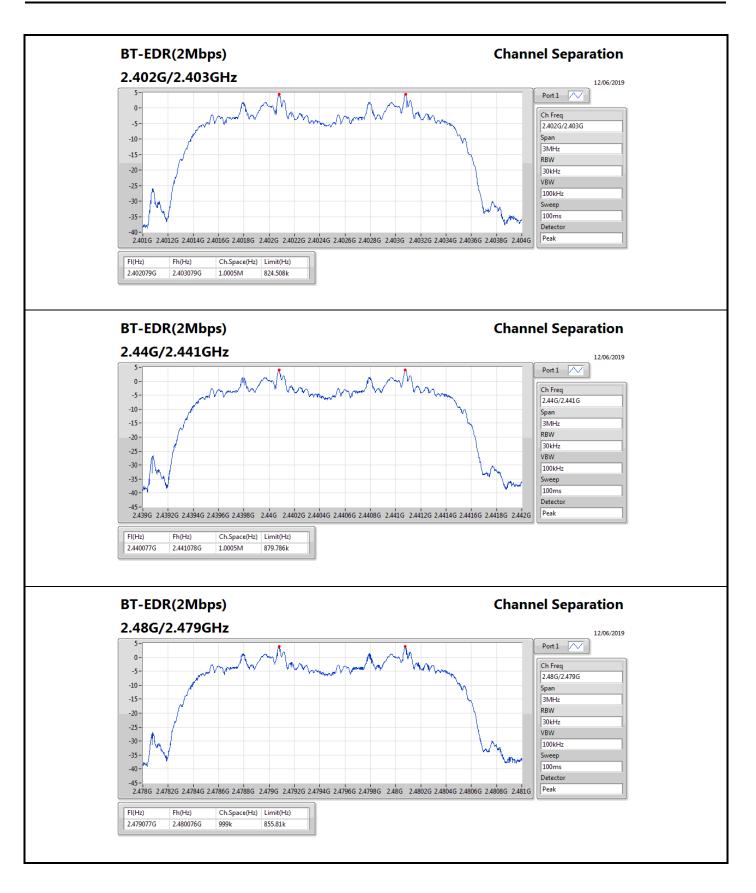




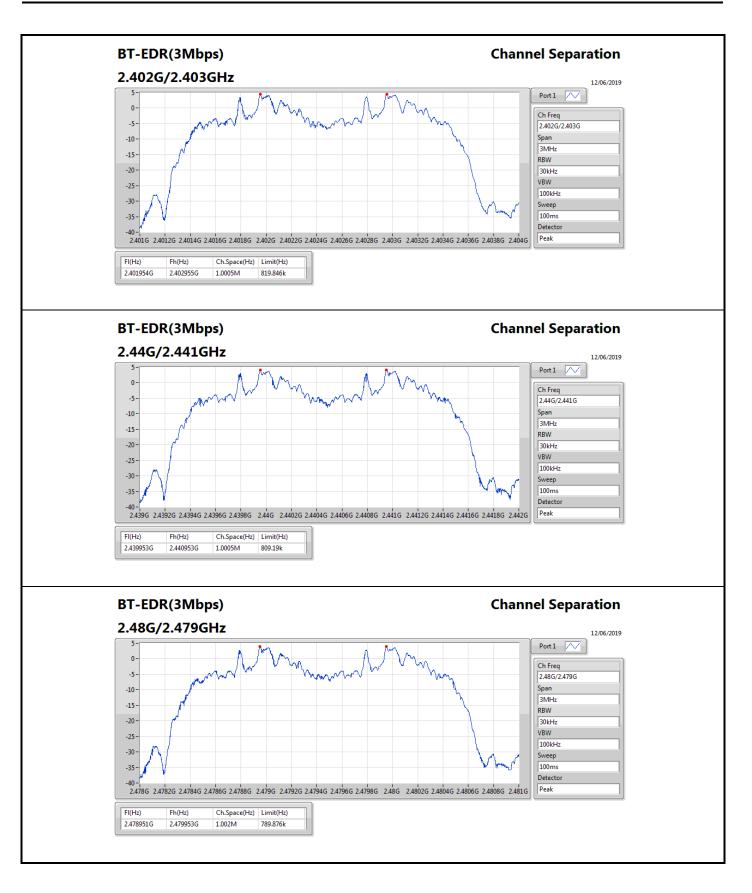


Summary


Mode	Max-Space	Min-Space	
	(Hz)	(Hz)	
2.4-2.4835GHz	-	-	
BT-BR(1Mbps)	1.002M	999k	
BT-EDR(2Mbps)	1.0005M	999k	
BT-EDR(3Mbps)	1.002M	1.0005M	


Result

Mode	Result	FI	Fh	Ch.Space	Limit
		(Hz)	(Hz)	(Hz)	(Hz)
BT-BR(1Mbps)	-	-	-	-	-
2402MHz	Pass	2.401792G	2.402791G	999k	578.5875k
2440MHz	Pass	2.439792G	2.440793G	1.0005M	584.415k
2480MHz	Pass	2.478791G	2.479793G	1.002M	490.3425k
BT-EDR(2Mbps)	-	-	-	-	-
2402MHz	Pass	2.402079G	2.403079G	1.0005M	824.508k
2440MHz	Pass	2.440077G	2.441078G	1.0005M	879.786k
2480MHz	Pass	2.479077G	2.480076G	999k	855.81k
BT-EDR(3Mbps)	-	-	-	-	-
2402MHz	Pass	2.401954G	2.402955G	1.0005M	819.846k
2440MHz	Pass	2.439953G	2.440953G	1.0005M	809.19k
2480MHz	Pass	2.478951G	2.479953G	1.002M	789.876k



Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	10.82	0.01208
BT-EDR(2Mbps)	4.62	0.00290
BT-EDR(3Mbps)	4.57	0.00286

Average Power-FHSS Result

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	5.00	10.54	21.00
2440MHz	Pass	5.00	10.82	21.00
2480MHz	Pass	5.00	5.42	21.00
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	5.00	4.62	21.00
2440MHz	Pass	5.00	4.29	21.00
2480MHz	Pass	5.00	4.09	21.00
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	5.00	4.57	21.00
2440MHz	Pass	5.00	4.29	21.00
2480MHz	Pass	5.00	4.04	21.00

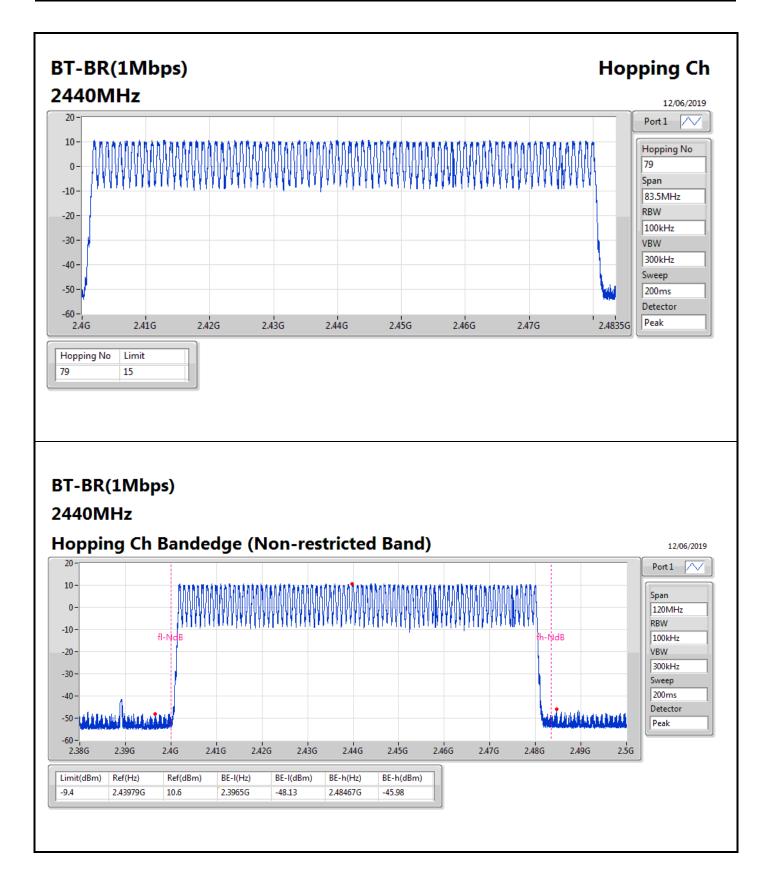
DG = Directional Gain; **Port X** = Port X output power

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	10.93	0.01239
BT-EDR(2Mbps)	6.81	0.00480
BT-EDR(3Mbps)	7.45	0.00556

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	5.00	10.65	21.00
2440MHz	Pass	5.00	10.93	21.00
2480MHz	Pass	5.00	5.54	21.00
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	5.00	6.81	21.00
2440MHz	Pass	5.00	6.47	21.00
2480MHz	Pass	5.00	6.37	21.00
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	5.00	7.45	21.00
2440MHz	Pass	5.00	7.19	21.00
2480MHz	Pass	5.00	7.09	21.00

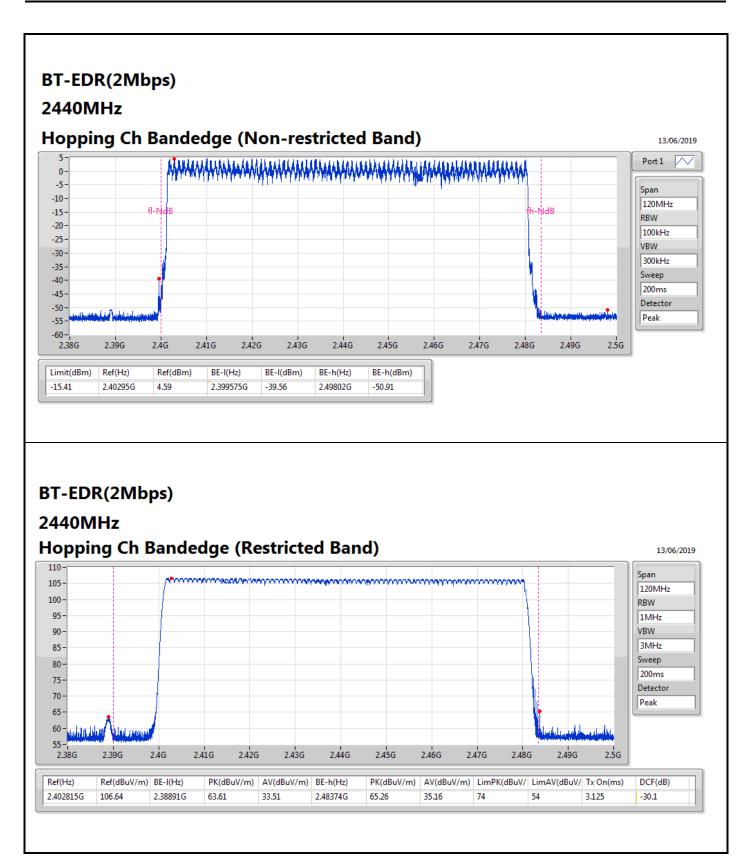
DG = Directional Gain; **Port X** = Port X output power



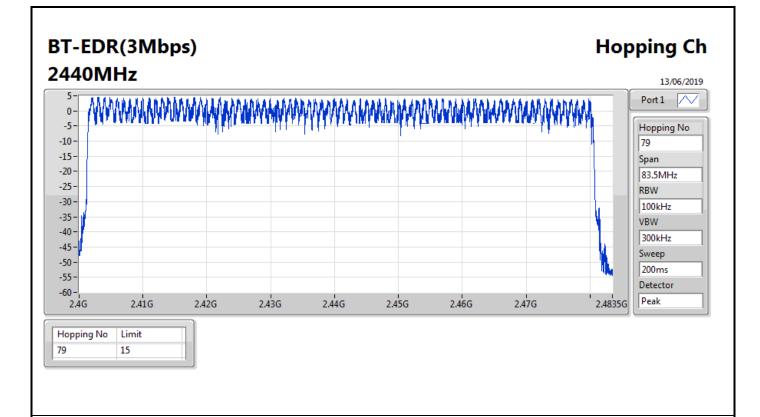
Mode	Max-Hop No
2.4-2.4835GHz	-
BT-BR(1Mbps)	79
BT-EDR(2Mbps)	79
BT-EDR(3Mbps)	79

Result			
Mode	Result	Hopping No	Limit
BT-BR(1Mbps)	-	-	-
2440MHz	Pass	79	15
BT-EDR(2Mbps)	-	-	-
2440MHz	Pass	79	15
BT-EDR(3Mbps)	-	-	-
2440MHz	Pass	79	15

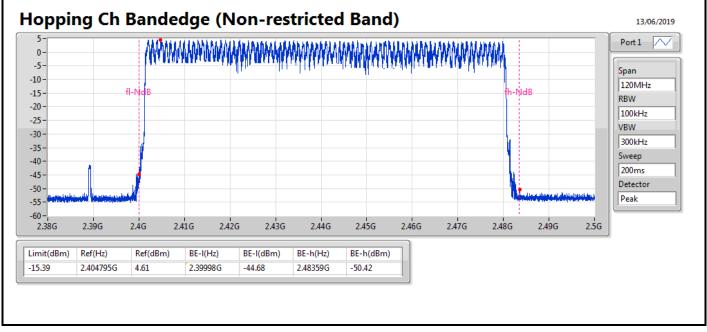
Hopping No


79

Limit

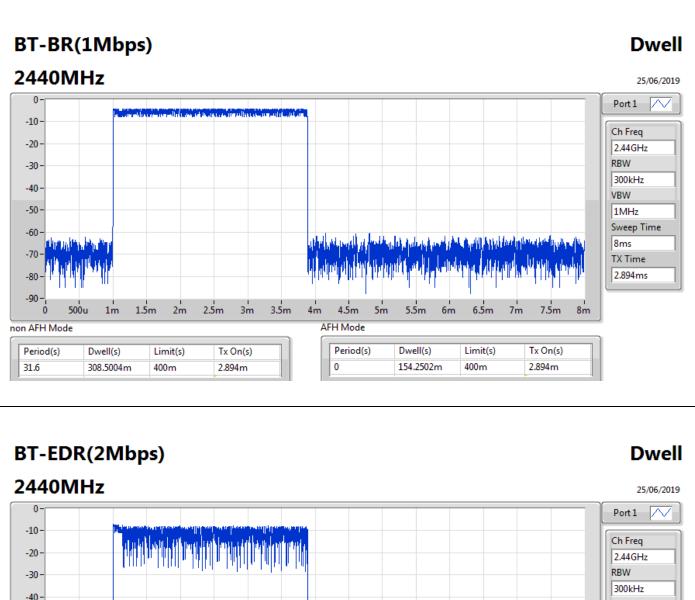

15

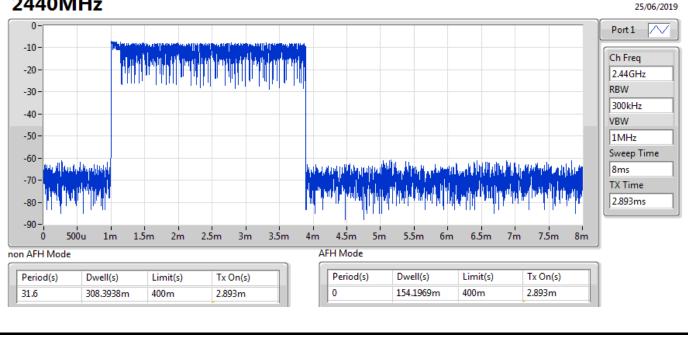
BT-BR(1Mbps) 2440MHz Hopping Ch Bandedge (Restricted Band) 12/06/2019 115 Span 110recorrector for the contract of the contract120MHz 105-RBW 100 -1MHz 95-VBW 90 3MHz 85 -Sweep 80 -200ms 75-Detector 70 -Peak 65 -60 -**55** · 2.38G 2.41G 2.42G 2.44G 2.45G 2.39G 2.4G 2.43G 2.46G 2.47G 2.49G 2.56 2.48G Ref(Hz) Ref(dBuV/m) BE-I(Hz) PK(dBuV/m) AV(dBuV/m) BE-h(Hz) PK(dBuV/m) AV(dBuV/m) LimPK(dBuV/ LimAV(dBuV/ Tx On(ms) DCF(dB) 2.40178G 110.83 2.38765G 65.99 35.89 2.49163G 66.65 36.55 74 54 3.125 -30.1 BT-EDR(2Mbps) **Hopping Ch** 2440MHz 13/06/2019 5 Port1 /// 0--5-Hopping No -10-79 -15-Span -20 -83.5MHz -25-RBW -30 -100kHz -35-VBW -40-300kHz -45-Sweep -50 -200ms -55-Detector -60· 2.42G 2.45G Peak 2.41G 2.43G 2.44G 2.46G 2.47G 2.4835G 2.4G



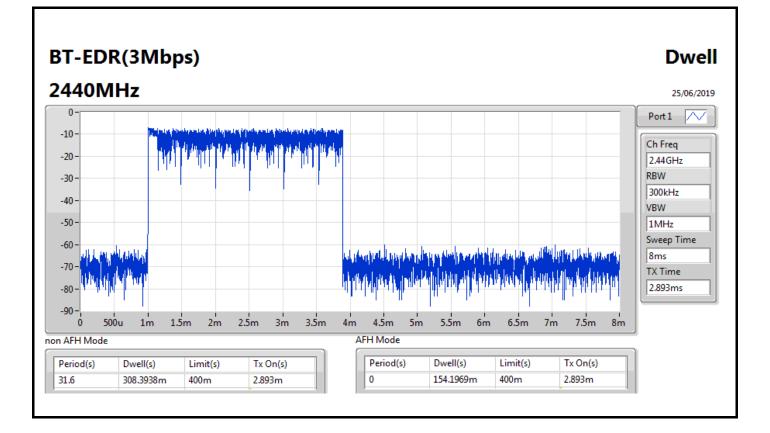
BT-EDR(3Mbps)

2440MHz


Mode	Max-Dwell
	(s)
2.4-2.4835GHz	-
BT-BR(1Mbps)	308.5004m
BT-EDR(2Mbps)	308.3938m
BT-EDR(3Mbps)	308.3938m

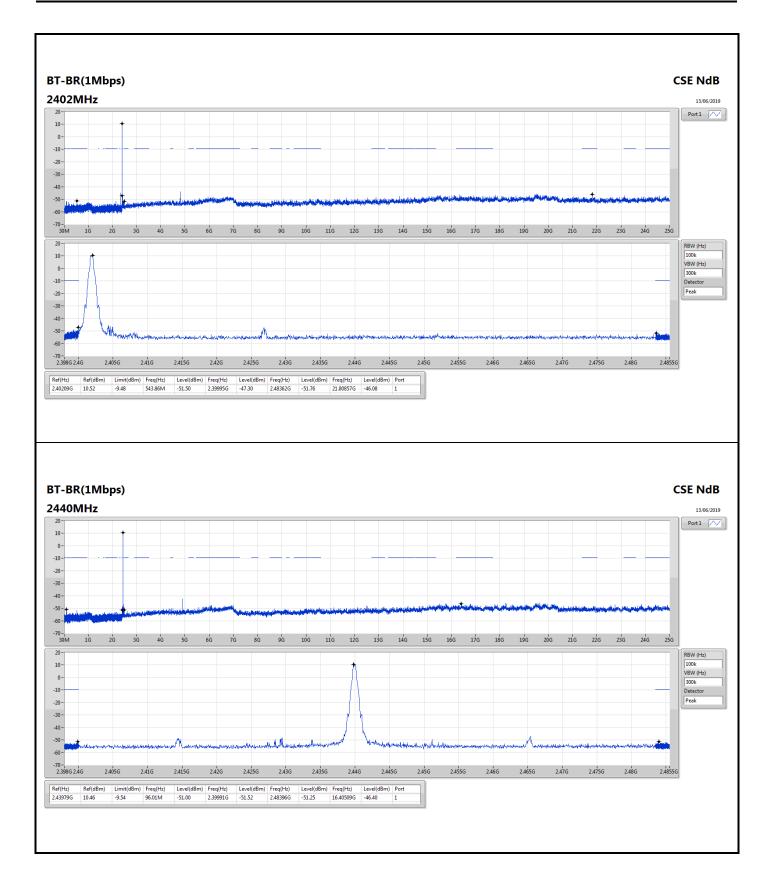


Result


Mode	Result	Period	Dwell	Limit	Tx On
		(s)	(s)	(s)	(s)
BT-BR(1Mbps)	-	-	-	-	-
2440MHz	Pass	31.6	308.5004m	400m	2.894m
BT-EDR(2Mbps)	-	-	-	-	-
2440MHz	Pass	31.6	308.3938m	400m	2.893m
BT-EDR(3Mbps)	-	-	-	-	-
2440MHz	Pass	31.6	308.3938m	400m	2.893m

Appendix F

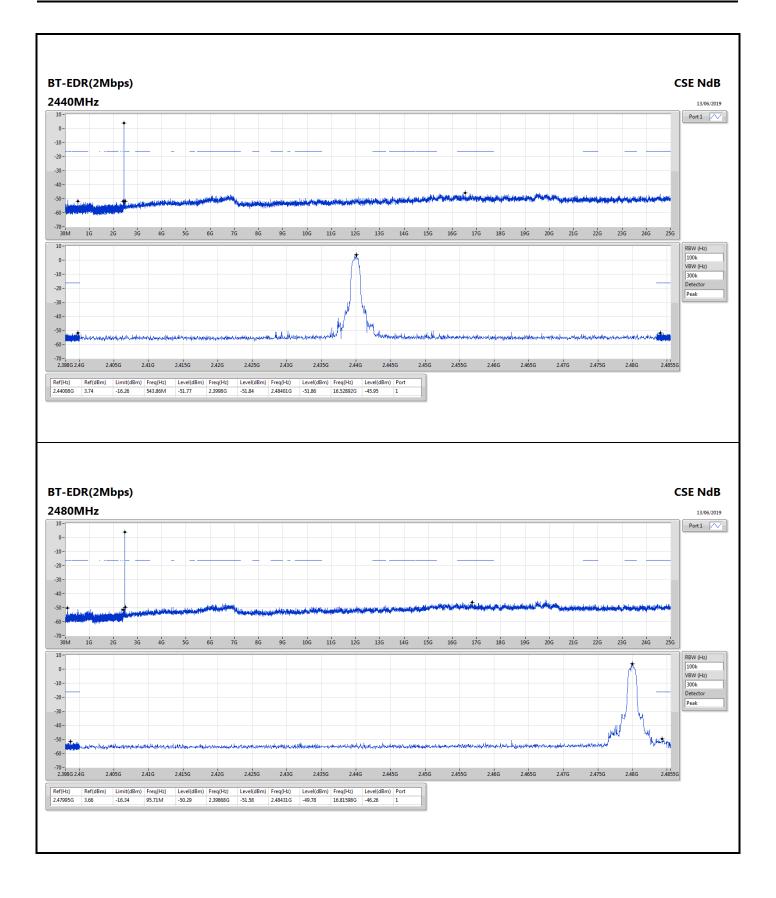
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-
BT-BR(1Mbps)	Pass	2.47983G	10.33	-9.67	543.86M	-51.09	2.39899G	-52.59	2.48492G	-49.13	17.18747G	-46.17	1
BT-EDR(2Mbps)	Pass	2.40192G	4.42	-15.58	95.71M	-51.83	2.39961G	-39.07	2.4849G	-51.90	16.75406G	-46.24	1
BT-EDR(3Mbps)	Pass	2.40192G	4.43	-15.57	96.01M	-50.05	2.39997G	-39.94	2.48458G	-51.77	6.80828G	-46.26	1

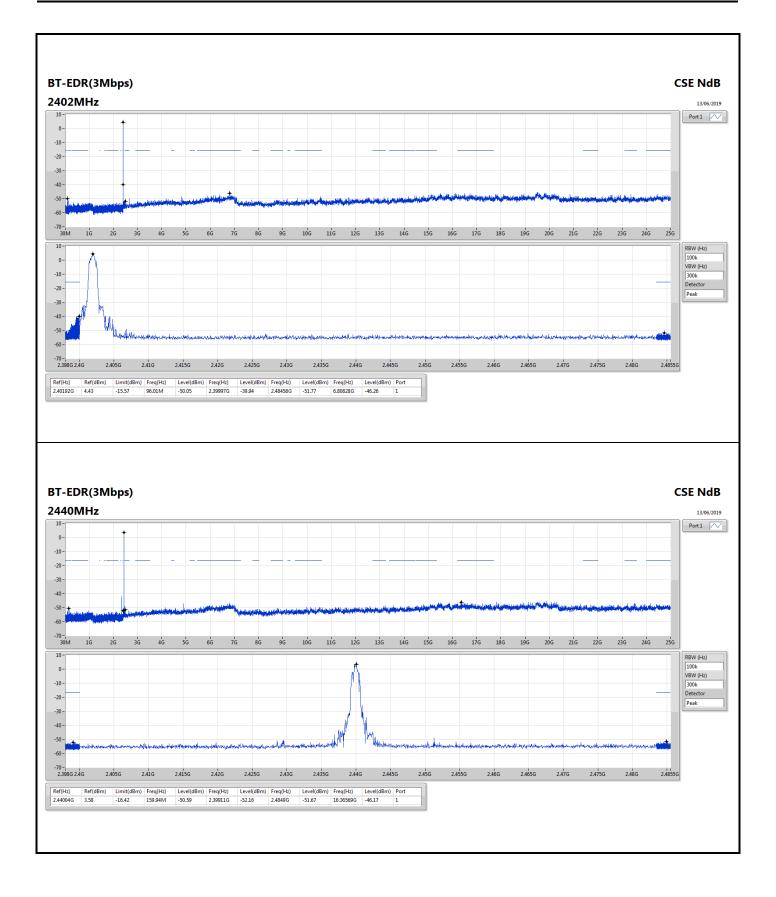

CSE-FHSS(Non-restricted Band) Result

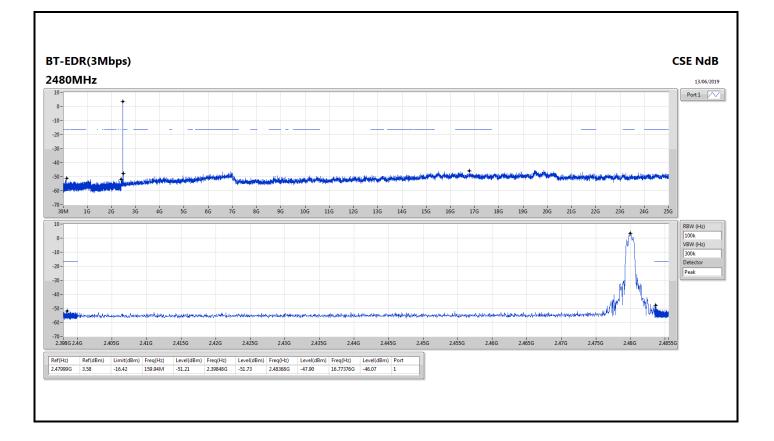
Appendix F

Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-BR(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.40209G	10.52	-9.48	543.86M	-51.50	2.39995G	-47.30	2.48362G	-51.76	21.80857G	-46.08	1
2440MHz	Pass	2.43979G	10.46	-9.54	96.01M	-51.00	2.39991G	-51.52	2.48396G	-51.25	16.40509G	-46.40	1
2480MHz	Pass	2.47983G	10.33	-9.67	543.86M	-51.09	2.39899G	-52.59	2.48492G	-49.13	17.18747G	-46.17	1
BT-EDR(2Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.40192G	4.42	-15.58	95.71M	-51.83	2.39961G	-39.07	2.4849G	-51.90	16.75406G	-46.24	1
2440MHz	Pass	2.44008G	3.74	-16.26	543.86M	-51.77	2.3998G	-51.84	2.48401G	-51.86	16.52892G	-45.95	1
2480MHz	Pass	2.47995G	3.66	-16.34	95.71M	-50.29	2.39868G	-51.58	2.48431G	-49.78	16.81598G	-46.26	1
BT-EDR(3Mbps)	-	-		-	-		-		-	-	-	-	-
2402MHz	Pass	2.40192G	4.43	-15.57	96.01M	-50.05	2.39997G	-39.94	2.48458G	-51.77	6.80828G	-46.26	1
2440MHz	Pass	2.44004G	3.58	-16.42	159.94M	-50.59	2.39911G	-52.16	2.4849G	-51.67	16.36569G	-46.17	1
2480MHz	Pass	2.47999G	3.58	-16.42	159.94M	-51.21	2.39848G	-51.73	2.48368G	-47.90	16.77376G	-46.07	1





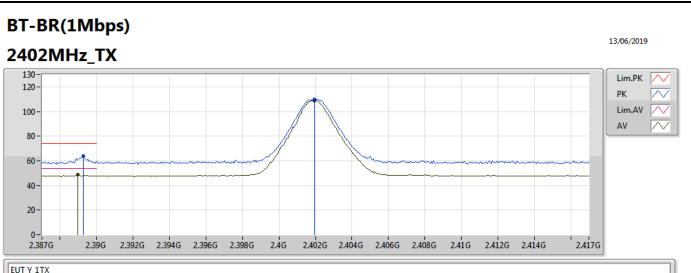


erating Function			C	ΓV				Per	arizat	tion		Ve
	100 Level (dl 90 80 70 60 50 50 50 50 50 50 50 50 50 50 50 50 50	3uV/m)									6-13 Time	
		6 1	200.	300.	سمبریکی مع مد میکردینی 400.		0. ncy (MH:	600. :)	700.	800	. 900	. 1000
	Freq	Level		Over Limit			ntenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Pha
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2 3 4 5 6	56.19 65.89	31.60 32.19	40.00 40.00 43.50	-8.40 -11.31	49.87 46.18	0.94 1.00 1.27		31.57 31.81 31.87 31.98	100 100 200 125 125	250 199		VERTICA VERTICA VERTICA VERTICA VERTICA

Operating Function				C	ГХ				Pol	ariza	tion		Horiz	zonta
		100 Level (d) 90	3uV/m)							Date	e: 2019-	06-13 Time:		
		50 40 23 30 40 20 10 0 30 10	3 \////// D. :	6	300.	400.)0. ncy (MH;	600. 2)	700.	800		1000	
		Freq	Level		Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	1 2 3 4 5 6	34.85 41.64	32.42 33.40 33.06 30.01 31.24	40.00 40.00 43.50 43.50	-6.60 -6.94 -13.49 -12.26	43.96	0.86 1.00 1.31 1.34	dB/m 22.87 18.81 12.60 17.30 17.85 16.40	31.54 31.87 31.98 31.91	cm 125 200 300 200 200 100	270 260 232 245	Peak Peak Peak Peak Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	L L L
1: ">20dB" means 6	emiss	sion level	s that	texce	ed the	e leve ission	I of 20) dB t	elow 1	he ap	oplica	ble limit		

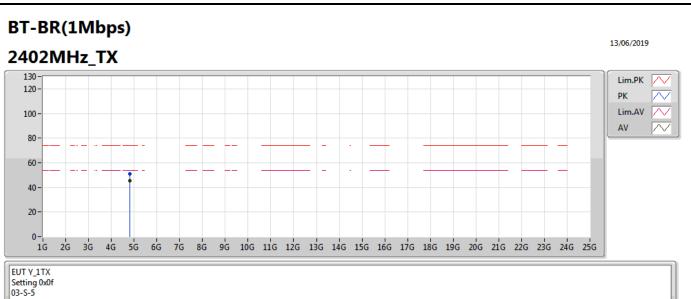
RSE TX above 1GHz Result

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Factor (dB)	Dist (m)	Condition	Azimuth	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
BT-BR(1Mbps)	Pass	AV	4.95993G	49.29	54.00	-4.71	5.44	3	Horizontal	344	2.31	-



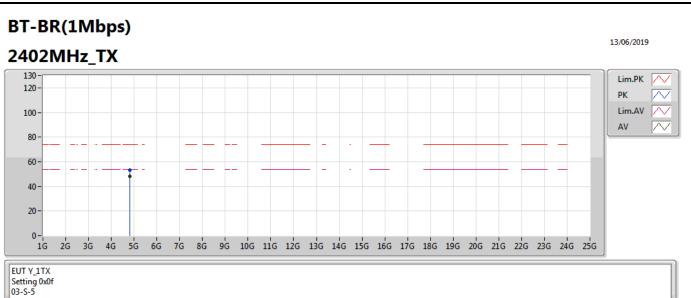
EUT Y_1TX Setting 0x0f 03-S-5 FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.38832G	59.42	74.00	-14.58	32.06	3	Vertical	139	1.03	-		
AV	2.38928G	47.93	54.00	-6.07	32.06	3	Vertical	139	1.03	-		
PK	2.40194G	99.63	Inf	-Inf	32.10	3	Vertical	139	1.03	-		
AV	2.40194G	98.93	Inf	-Inf	32.10	3	Vertical	139	1.03	-		



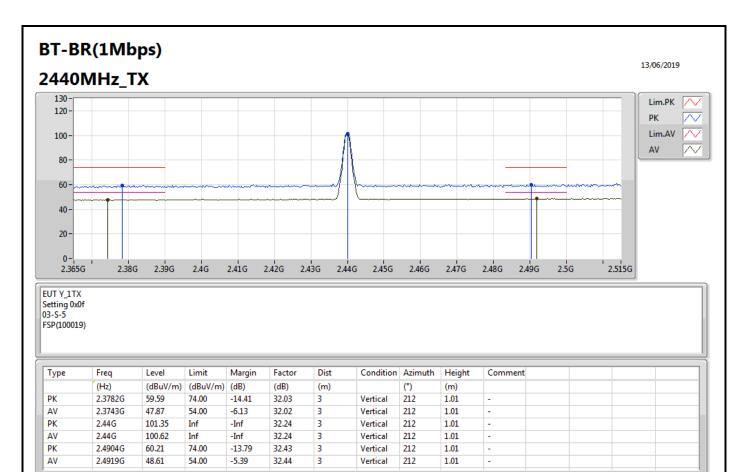
EUT Y_1TX Setting 0x0f 03-S-5 FSP(100019)

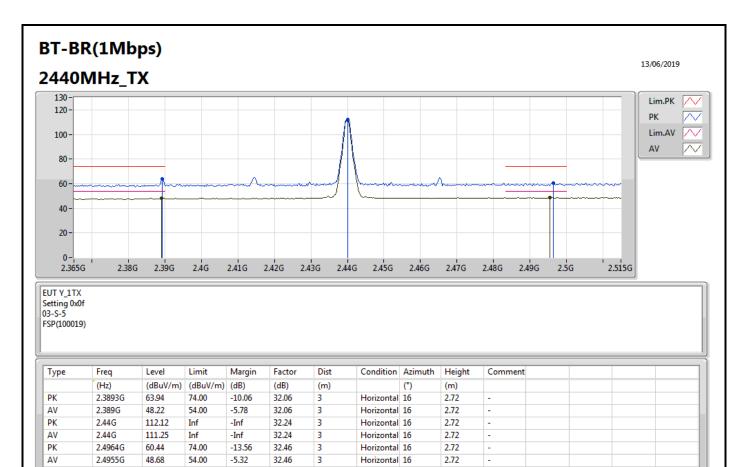
Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.38928G	63.83	74.00	-10.17	32.06	3	Horizontal	21	2.25	-		
AV	2.38898G	48.60	54.00	-5.40	32.06	3	Horizontal	21	2.25	-		
PK	2.40194G	109.73	Inf	-Inf	32.10	3	Horizontal	21	2.25	-		
AV	2.40194G	108.97	Inf	-Inf	32.10	3	Horizontal	21	2.25	-		



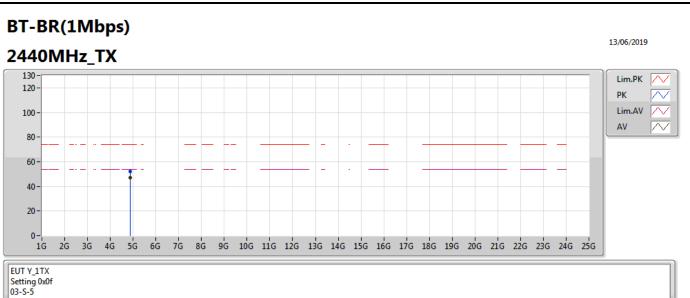
FSP(100019)

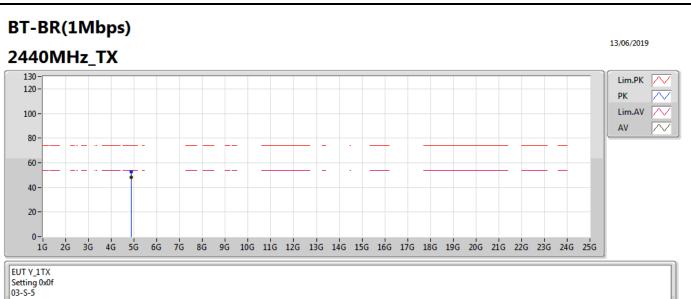
Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.80364G	51.16	74.00	-22.84	5.06	3	Vertical	85	1.02	-		
AV	4.80388G	45.31	54.00	-8.69	5.06	3	Vertical	85	1.02	-		




FSP(100019)

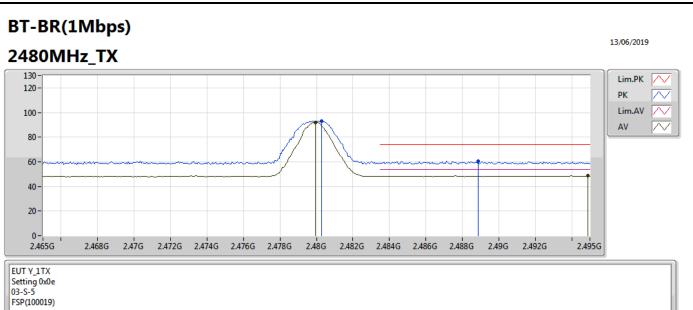
Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.80416G	53.01	74.00	-20.99	5.06	3	Horizontal	349	2.45	-		
AV	4.80394G	48.16	54.00	-5.84	5.06	3	Horizontal	349	2.45	-		



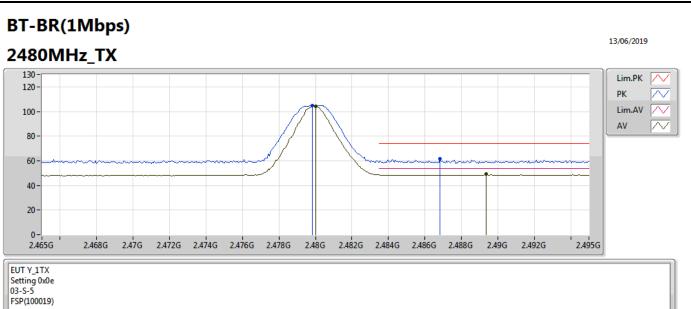


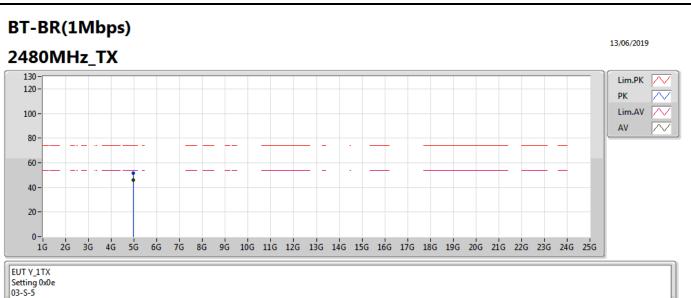
FSP(100019)

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.87957G	52.16	74.00	-21.84	5.25	3	Vertical	131	1.09	-		
AV	4.87966G	46.99	54.00	-7.01	5.25	3	Vertical	131	1.09	-		

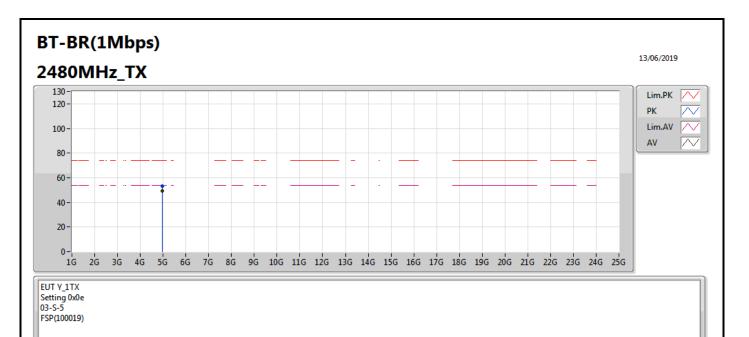


03-S-5 FSP(100019)

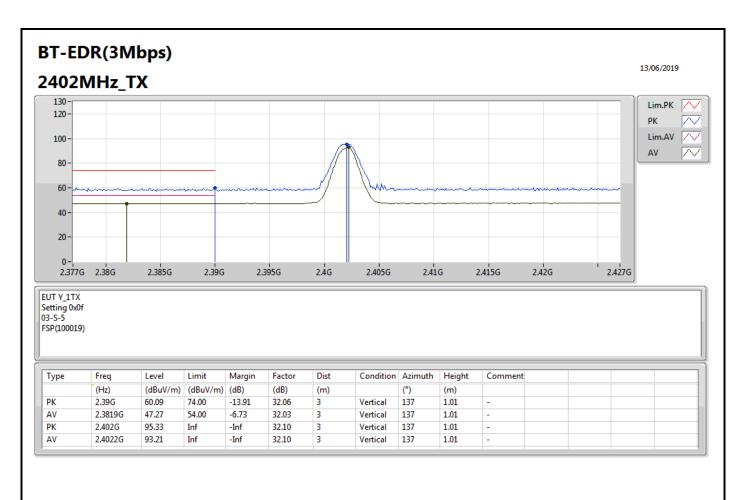

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.8801G	52.59	74.00	-21.41	5.25	3	Horizontal	346	2.33	-		
AV	4.87988G	48.03	54.00	-5.97	5.25	3	Horizontal	346	2.33	-		


Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.4803G	92.77	Inf	-Inf	32.39	3	Vertical	20	1.50	-		
AV	2.47994G	92.10	Inf	-Inf	32.39	3	Vertical	20	1.50	-		
PK	2.48888G	60.39	74.00	-13.61	32.43	3	Vertical	20	1.50	-		
AV	2.49488G	48.58	54.00	-5.42	32.45	3	Vertical	20	1.50	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	2.47982G	104.92	Inf	-Inf	32.39	3	Horizontal	9	2.65	-		
AV	2.48G	104.33	Inf	-Inf	32.39	3	Horizontal	9	2.65	-		
PK	2.48684G	61.38	74.00	-12.62	32.42	3	Horizontal	9	2.65	-		
AV	2.48936G	49.14	54.00	-4.86	32.43	3	Horizontal	9	2.65	-		



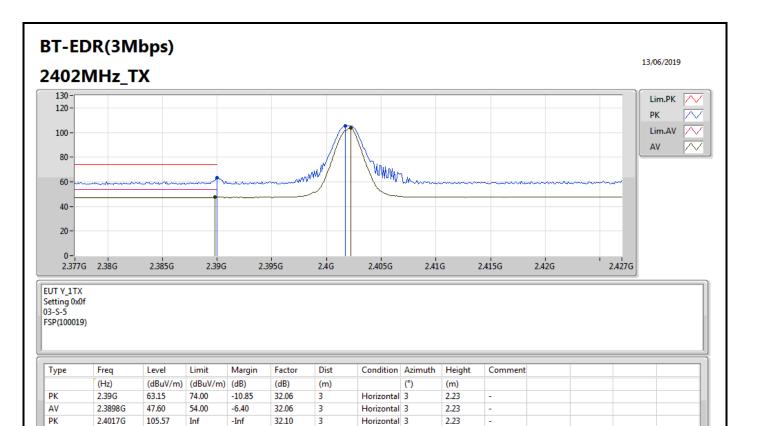
FSP(100019)


Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.95991G	51.80	74.00	-22.20	5.44	3	Vertical	54	2.03	-		
AV	4.95988G	46.00	54.00	-8.00	5.44	3	Vertical	54	2.03	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.96008G	53.23	74.00	-20.77	5.44	3	Horizontal	344	2.31	-		
AV	4.95993G	49.29	54.00	-4.71	5.44	3	Horizontal	344	2.31	-		

AV

2.4022G

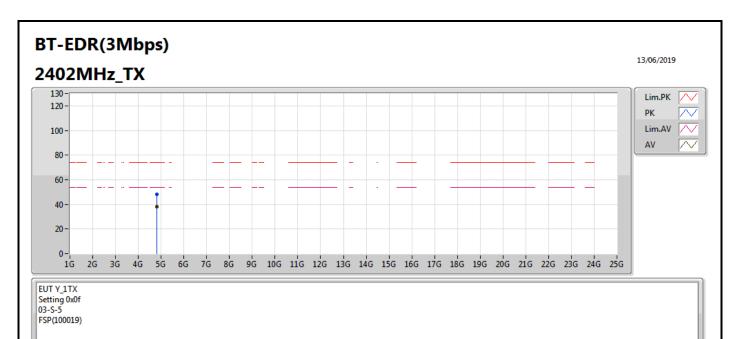

103.51

Inf

-Inf

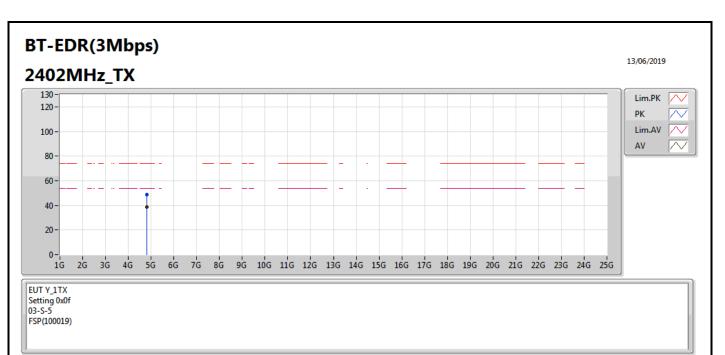
32.10

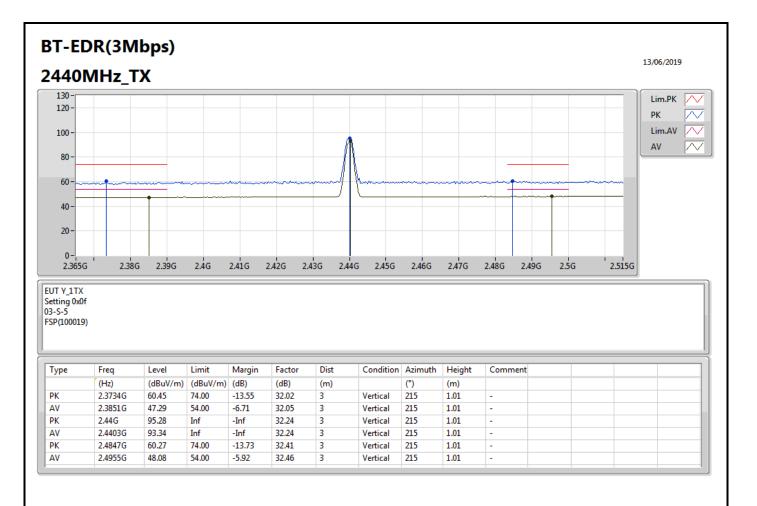
3

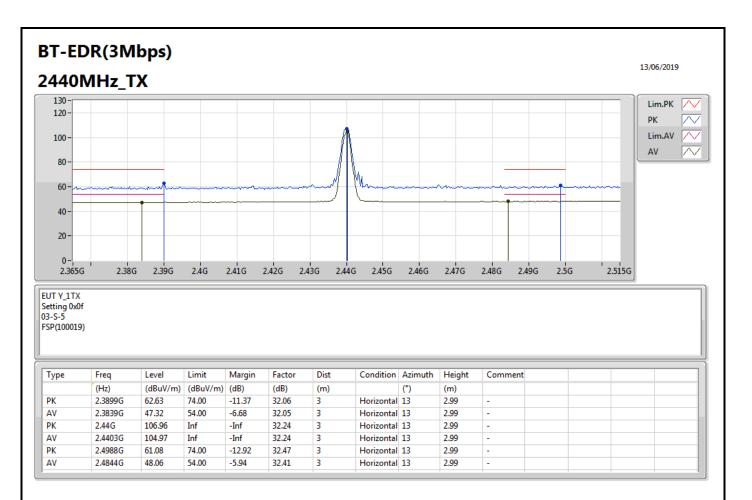


Horizontal 3

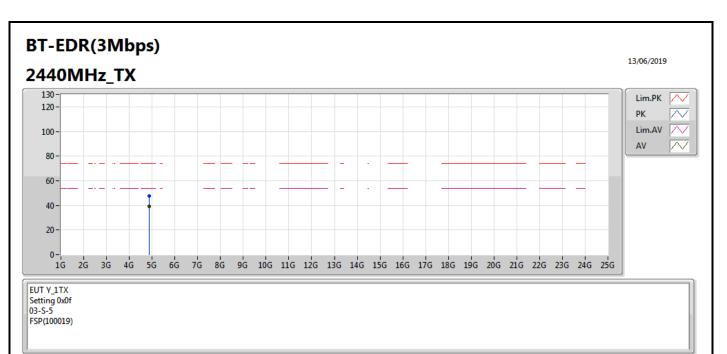
2.23

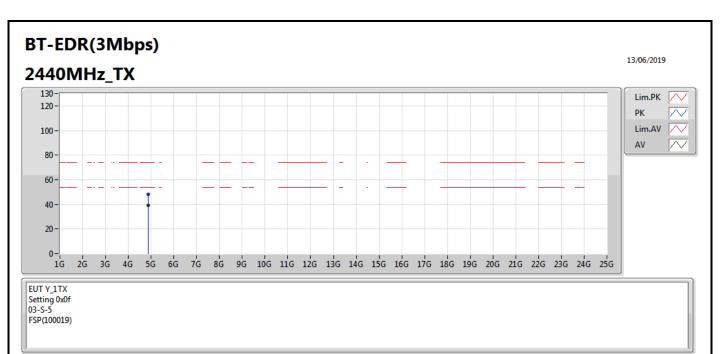

_

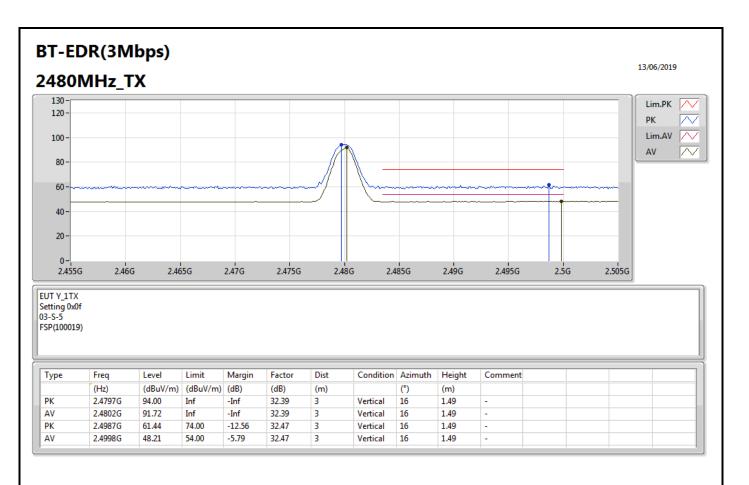

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.8041G	48.18	74.00	-25.82	5.06	3	Vertical	117	1.07	-		
AV	4.80392G	37.93	54.00	-16.07	5.06	3	Vertical	117	1.07	-		



Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.80334G	48.80	74.00	-25.20	5.06	3	Horizontal	348	2.87	-		
AV	4.80388G	38.77	54.00	-15.23	5.06	3	Horizontal	348	2.87	-		






Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.87996G	47.77	74.00	-26.23	5.25	3	Vertical	132	1.07	-		
AV	4.87996G	38.99	54.00	-15.01	5.25	3	Vertical	132	1.07	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.87942G	48.37	74.00	-25.63	5.25	3	Horizontal	7	2.38	-		
AV	4.87988G	39.30	54.00	-14.70	5.25	3	Horizontal	7	2.38	-		

2.4835G

2.4835G

67.30

49.06

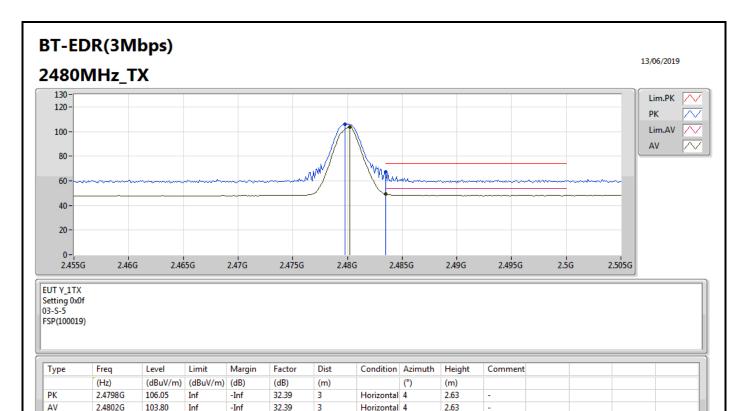
74.00

54.00

-6.70

-4.94

32.41


32.41

3

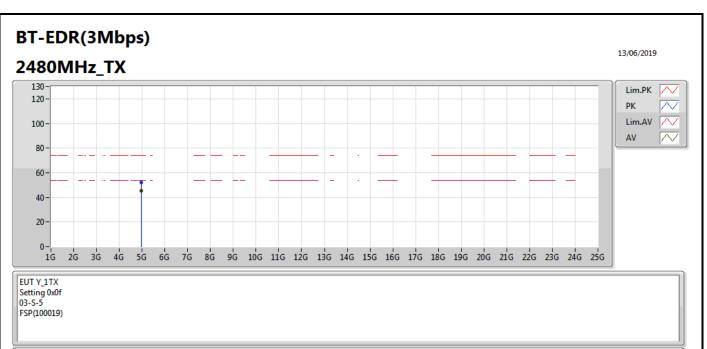
3

PK

AV

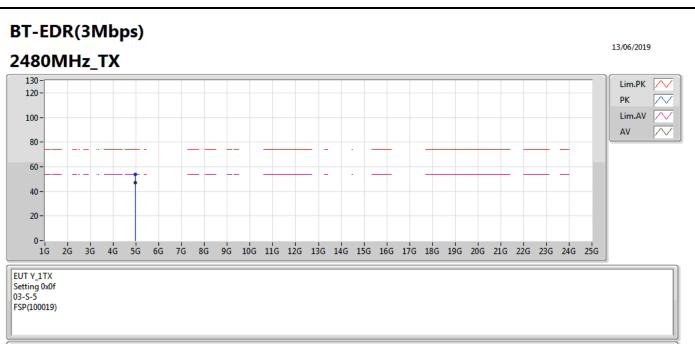
Horizontal 4

Horizontal 4


2.63

2.63

-


_

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.95977G	52.04	74.00	-21.96	5.44	3	Vertical	134	1.01	-		
AV	4.95999G	45.34	54.00	-8.66	5.44	3	Vertical	134	1.01	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.96019G	53.71	74.00	-20.29	5.44	3	Horizontal	347	2.36	-		
AV	4.95997G	47.22	54.00	-6.78	5.44	3	Horizontal	347	2.36	-		