

Global United Technology Services Co., Ltd.

Report No.: GTS202108000221F03

TEST REPORT

Wyrestorm Technologies LLC **Applicant:**

23 Wood Rd, Round Lake, New York 12151, United States **Address of Applicant:**

Manufacturer/Factory: Shen Zhen Proitav Technology Co., Ltd

Address of 301-401, Building 16, Hejing Industrial Park, No.87, Hexiu West Road, Heping Community, Fuhai St., Baoan District, Manufacturer/Factory:

Shenzhen, China

Equipment Under Test (EUT)

Product Name: **HDMI Switcher**

Model No.: SW-540-TX-W (MS330-A01)

Trade Mark: WyreStorm

FCC ID: 2A2CW-SW540TXW

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: August 23, 2021

Date of Test: August 24, 2021-September 10, 2021

Date of report issued: September 13, 2021

PASS * Test Result:

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 41

2 Version

Version No.	Date Date	Description		
00	September 13, 2021	Original		

Prepared By:	Joseph Cly	Date:	September 13, 2021
	Project Engineer		
Check By:	Labingon Lund	Date:	September 13, 2021
	Reviewer		

Report No.: GTS202108000221F03

3 Contents

		Page
1		1
2	2 VERSION	2
3	CONTENTS	3
4	4 TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	5 GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.5 TEST LOCATION	
6	TEST INSTRUMENTS LIST	8
7	7 TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	
	7.3 CONDUCTED PEAK OUTPUT POWER	16
	7.4 CHANNEL BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	7.5 POWER SPECTRAL DENSITY	
	7.6.1 Radiated Emission Method	
	7.7 SPURIOUS EMISSION	
	7.7.1 Radiated Emission Method	
_		
8	TEST SETUP PHOTO	41
9	EUT CONSTRUCTIONAL DETAILS	41

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.407(a)(3)	Pass
Channel Bandwidth and 99% Occupied Bandwidth	FCC part 15.407(e)	Pass
Power Spectral Density	FCC part 15.407(a)(3)	Pass
Band Edge	FCC part 15.407(b)(4)	Pass
Spurious Emission	FCC part 15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	FCC part 15.407(g)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.
- 3. Test Method: KDB 662911 D01 Multiple Transmitter Output v02r01

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	

5 General Information

5.1 General Description of EUT

Product Name:	HDMI Switcher
Model No.:	SW-540-TX-W (MS330-A01)
Serial No.:	WS2126000026
Test sample(s) ID:	GTS202108000221-1
Sample(s) Status:	Engineer sample
Operation Frequency:	802.11ac(HT20): 5745MHz~5825MHz
Channel numbers:	5
Channel bandwidth:	20MHz
Modulation technology:	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral Antenna
Antenna gain:	ANT 1: 2dBi
2 2 2	ANT 2: 2dBi
Power supply:	Adapter 1:
	Model: NBS24J120200D5
	Input: AC 100-240V, 50/60Hz, 0.6A
9 9 9	Output: DC 12.0V, 2.0A, 24.0W
	Adapter 2:
	Model: FJ-SW1202000N
9 8 8	Input: AC 100-240V, 50/60Hz, 0.6A Max
	Output: DC 12.0V, 2.0A, 24.0W

8	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz	
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz	
165	5825MHz	2	8 7	8	8 8	2 6	8	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

C	Frequency (MHz)	9
Test channel	802.11ac(HT20)	
Lowest channel	5745	4
Middle channel	5785	2
Highest channel	5825	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 6 of 41

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11ac(HT20)	6.5Mbps		

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	iated Emission:			4		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Report No.: GTS202108000221F03

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022		

RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022		

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022			
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

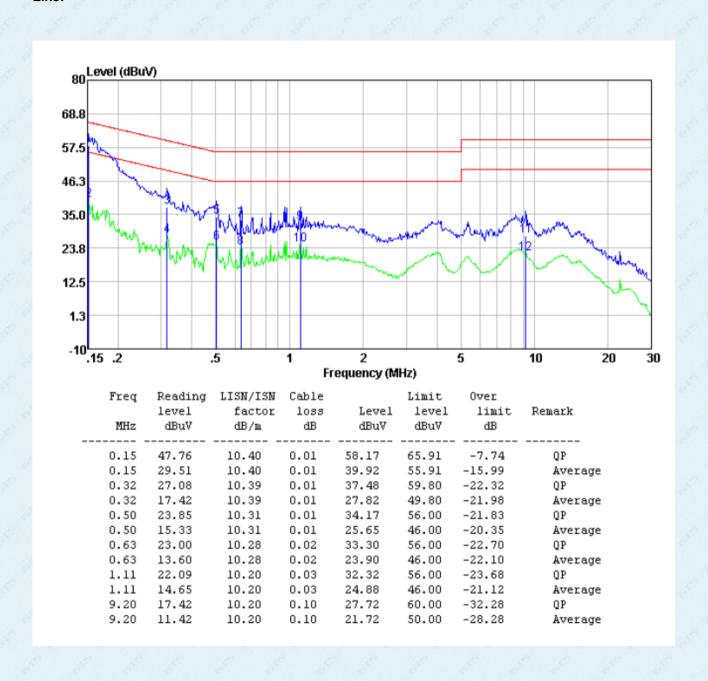
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

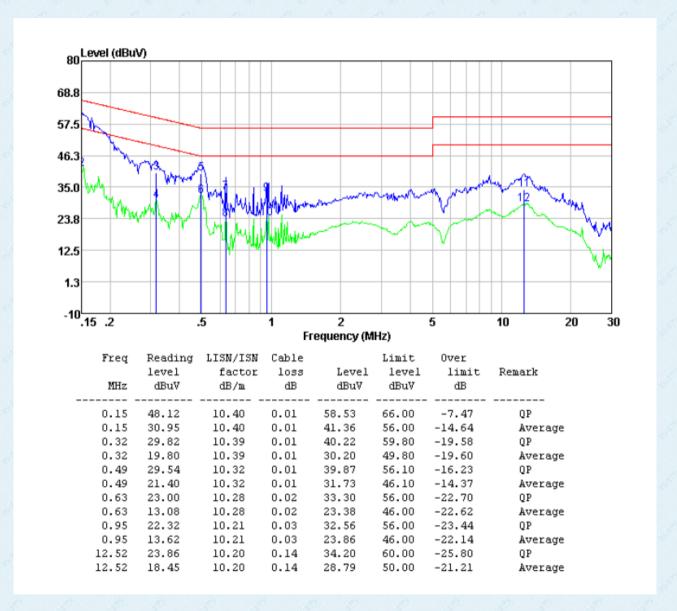
The antenna is Integral antenna, the best case gain of the antenna is 2dBi, reference to the appendix II for details

7.2 Conducted Emissions

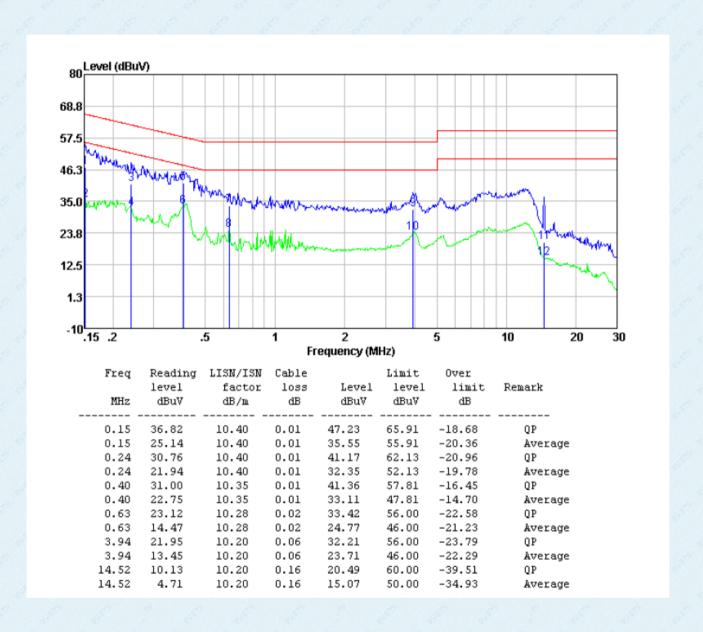
Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz	- 6 6 1							
Class / Severity:	Class B		2 2 -						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto								
Limit:	Fraguency range (MHz)	Frequency range (MHz) Limit (dBuV)							
		Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
Test setup:	* Decreases with the logarithm Reference Plane	of the frequency.							
	AUX Equipment Test table/Insulation plane	Filter — AC p EMI Receiver	ower						
Test procedure:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe	network (L.I.S.N.).	This provides a						
Test procedure:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization	n network (L.I.S.N.). edance for the measuralso connected to the n/50uH coupling imported the block diagram of the checked for maximum difference coupling in the maximum emisural of the interface c	This provides a uring equipment. He main power through a edance with 500hm of the test setup and he conducted sision, the relative ables must be changed						
Test procedure: Test Instruments:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and	n network (L.I.S.N.). edance for the measuralso connected to the n/50uH coupling imported the block diagram of the checked for maximum emisural of the interface coupling on conducted residuals.	This provides a uring equipment. He main power through a edance with 500hm of the test setup and he conducted sision, the relative ables must be changed						
	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2	n network (L.I.S.N.). edance for the measurals connected to the hotout coupling imported the block diagram of the block diagram of the maximum emisural of the interface country on conducted residuals.	This provides a uring equipment. He main power through a edance with 500hm of the test setup and he conducted sision, the relative ables must be changed						
Test Instruments:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details	n network (L.I.S.N.). edance for the measuralso connected to the h/50uH coupling imported the block diagram of the checked for maximum emisural the maximum emisural of the interface coupling on conducted responses to the conducted respon	This provides a uring equipment. He main power through a edance with 500hm of the test setup and he conducted sision, the relative ables must be changed						
Test Instruments: Test mode:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details Refer to section 5.2 for details	n network (L.I.S.N.). edance for the measuralso connected to the h/50uH coupling imported the block diagram of the checked for maximum emisual of the interface county on conducted response to the cond	This provides a uring equipment. The main power through a edance with 500hm of the test setup and the conducted sion, the relative ables must be changed measurement.						


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

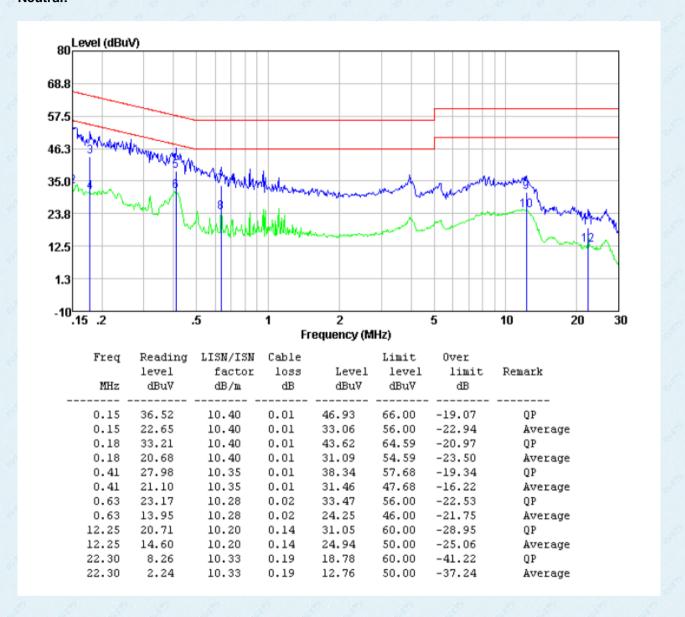
Measurement data


Report No.: GTS202108000221F03

Adapter 1 Line:


Neutral:

Adapter 2 Line:


Report No.: GTS202108000221F03

Neutral:

Report No.: GTS202108000221F03

Notes.

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3) ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Test Method:						
Limit:	30dBm					
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data: The detailed test data see Appendix for WIFI_5.8G.

7.4 Channel Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)					
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Limit:	>500KHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass // // // // // // // // // // // // /					

Measurement Data: The detailed test data see Appendix for WIFI_5.8G.

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)					
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Limit:	30dBm/500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data: The detailed test data see Appendix for WIFI_5.8G.

7.6 Band edge

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 20		8 8		8 8			
Test Frequency Range:	9kHz to 40GHz, o		e is reporte	d 🧑	<i>. j</i> 0 . <i>j</i> 0			
Test site:	Measurement Dis	stance: 3m		4 4				
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
		RMS	1MHz	3MHz	RMS			
Limit:	All emissions sha more above or be 25 MHz above or the band edge ind above or below the edge increasing li	elow the band of below the band creasing linear he band edge,	edge increa d edge, and ly to a level and from 5	sing linearly t d from 25 MH of 15.6 dBm/ MHz above o	o 10 dBm/MHz at z above or below MHz at 5 MHz or below the band			
Test setup:	Tum Table	< 3m	Test Antenna	1				
Test Procedure:	determine the 2. The EUT was antenna, which tower. 3. The antenna higround to determine the horizontal and measurement. 4. For each suspicant then the along the rotal target the maximum. 5. The test-received Specified Band. 6. If the emission limit specified, the EUT would 10dB margin waverage methology. 7. The radiation rand found the	a 3 meter camposition of the set 3 meters and was mounted reight is varied rected emission ntenna was turble was turned reading. Wer system was dwidth with Mallevel of the Ell then testing collaboration of the reported. Or would be re-tested as specified measurements X axis position.	ber. The take highest race way from the don the top from one maintain value exations of the highest to height from 0 decorates as set to Peak wimum Hold JT in peak buld be stop Otherwise the done by and then recare performing which it	ole was rotated liation. The interference of a variable neter to four neter to four neter to find a second and a second	e-receiving height antenna heters above the strength. Both e set to make the to its worst case eter to 4 meters degrees to find ction and dB lower than the peak values of that did not have ak, quasi-peak or lata sheet.			
Took In other case and a	worst case mo		in the repu	nt.	(8)			
Test Instruments:	Refer to section 6	ou for details	Y					

		Report No.: GTS202108000221F03
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	19 19 19 19 19

Remarks:

- 1. Only the worst case Main Antenna test data..
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

All adapter have test, only the worst case adapter 1 report.

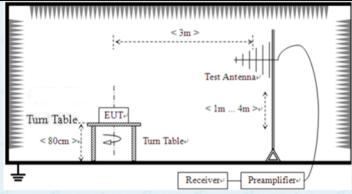
ANT 1

	IEEE 802.11ac 20								
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5650.00	35.21	32.36	9.72	23.83	53.46	68.20	-14.74	Horizontal	
5700.00	36.01	32.50	9.79	23.84	54.46	105.20	-50.74	Horizontal	
5720.00	36.21	32.53	9.81	23.85	54.70	110.80	-56.10	Horizontal	
5725.00	44.32	32.53	9.83	23.86	62.82	122.20	-59.38	Horizontal	
5850.00	42.31	32.70	9.99	23.87	61.13	122.20	-61.07	Horizontal	
5855.00	35.34	32.72	9.99	23.88	54.17	110.80	-56.63	Horizontal	
5875.00	36.82	32.74	10.04	23.89	55.71	105.20	-49.49	Horizontal	
5925.00	38.42	32.80	10.11	23.90	57.43	68.20	-10.77	Horizontal	
5650.00	35.24	32.36	9.72	23.83	53.49	68.20	-14.71	Vertical	
5700.00	36.09	32.50	9.79	23.84	54.54	105.20	-50.66	Vertical	
5720.00	36.11	32.53	9.81	23.85	54.60	110.80	-56.20	Vertical	
5725.00	43.03	32.53	9.83	23.86	61.53	122.20	-60.67	Vertical	
5850.00	41.28	32.70	9.99	23.87	60.10	122.20	-62.10	Vertical	
5855.00	36.32	32.72	9.99	23.88	55.15	110.80	-55.65	Vertical	
5875.00	35.85	32.74	10.04	23.89	54.74	105.20	-50.46	Vertical	
5925.00	36.24	32.80	10.11	23.90	55.25	68.20	-12.95	Vertical	

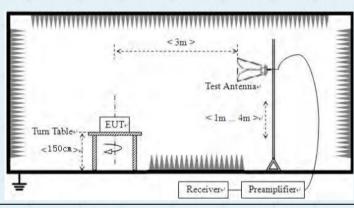
ANT 2

Report No.: GTS202108000221F03

IEEE 802.11ac 20									
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5650.00	33.25	32.36	9.72	23.83	51.50	68.20	-16.70	Horizontal	
5700.00	36.32	32.50	9.79	23.84	54.77	105.20	-50.43	Horizontal	
5720.00	35.21	32.53	9.81	23.85	53.70	110.80	-57.10	Horizontal	
5725.00	42.32	32.53	9.83	23.86	60.82	122.20	-61.38	Horizontal	
5850.00	39.86	32.70	9.99	23.87	58.68	122.20	-63.52	Horizontal	
5855.00	35.64	32.72	9.99	23.88	54.47	110.80	-56.33	Horizontal	
5875.00	36.02	32.74	10.04	23.89	54.91	105.20	-50.29	Horizontal	
5925.00	36.37	32.80	10.11	23.90	55.38	68.20	-12.82	Horizontal	
5650.00	34.69	32.36	9.72	23.83	52.94	68.20	-15.26	Vertical	
5700.00	35.41	32.50	9.79	23.84	53.86	105.20	-51.34	Vertical	
5720.00	35.62	32.53	9.81	23.85	54.11	110.80	-56.69	Vertical	
5725.00	44.29	32.53	9.83	23.86	62.79	122.20	-59.41	Vertical	
5850.00	43.65	32.70	9.99	23.87	62.47	122.20	-59.73	Vertical	
5855.00	36.85	32.72	9.99	23.88	55.68	110.80	-55.12	Vertical	
5875.00	36.42	32.74	10.04	23.89	55.31	105.20	-49.89	Vertical	
5925.00	36.03	32.80	10.11	23.90	55.04	68.20	-13.16	Vertical	



7.7 Spurious Emission


7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Sec	ction 15.209, P	art 15E Sec	tion 15.407	7(b)(4)		
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 40GHz						
Test site:	Measurement Dist	tance: 3m	8 6		6		
Receiver setup:	Frequency	Detector	Detector RBW		Value		
•	9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Valu		
	150kHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Valu		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Valu		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above IGI12	AV	1MHz	3MHz	Average Value		
FCC Limit:							
		ld strength (microvo)0/F(kHz)	its/meter)	Measuremer	nt distance (meters)		
		000/F(kHz)					
	1.705-30.0 30						
	30-88 100						
	88-216 150						
	216-960 200** Above 960 500						
	The emission lim	employing a C	ISPR qua	si-peak de	etector except fo		
		employing a C ands 9-90 kHz emission limits	CISPR qua z, 110-490 s in these t	si-peak de kHz and a three band	etector except fo above 1000		
Test setup:	measurements of the frequency bandle. Radiated of	employing a Cands 9-90 kHz emission limits employing an	CISPR quaz, 110-490 s in these traverage de DkHz to 30	si-peak de kHz and a three band etector. MHz	etector except fo above 1000		

For radiated emissions above 1GHz

Test Procedure:

- The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

	W		\$7°	Report No.:	GTS202108	3000221F03	
Test Instruments:			5" - 5"				
Test mode:	Test mode: Refer to section 5.2 for details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V,	60Hz	2 0	0	9 3		
Test results:	Pass		0 W				

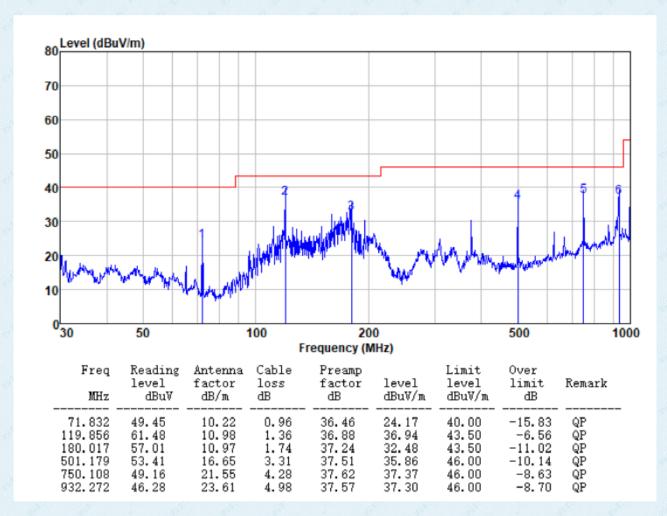
Remarks:

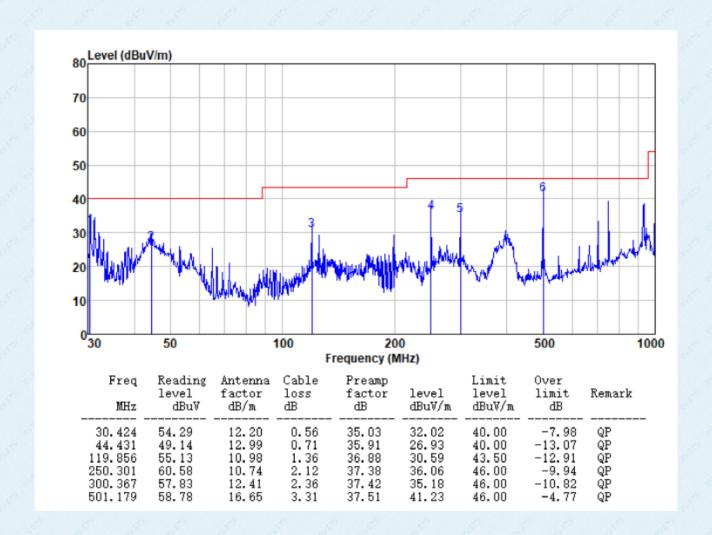
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz

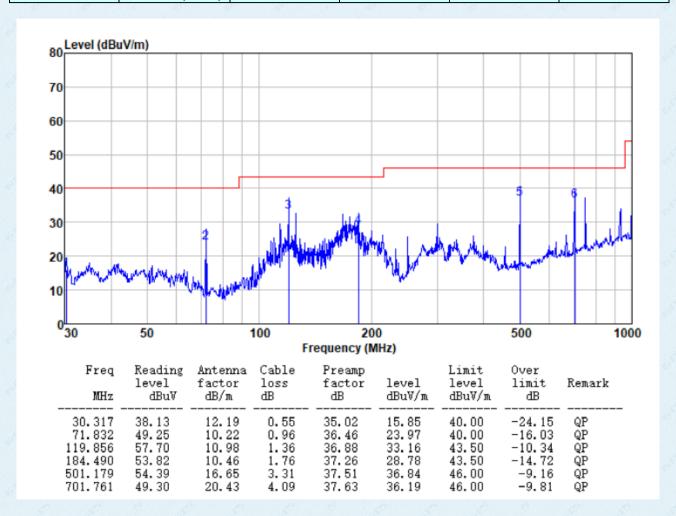
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

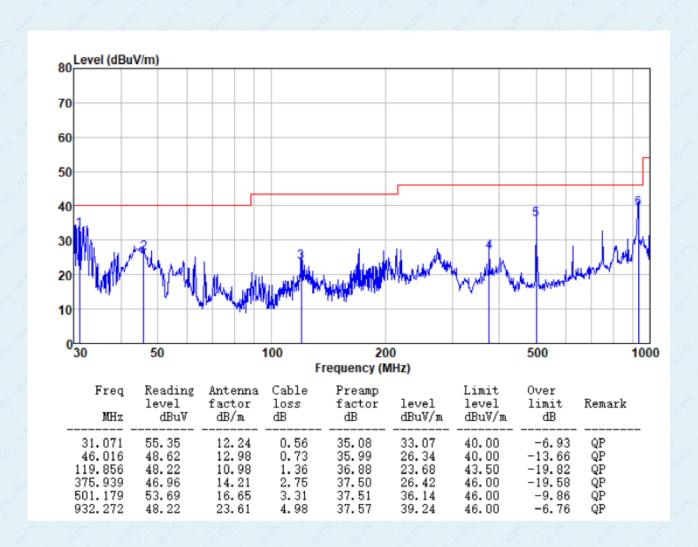

All antennas have test, only the worst case ANT 1 report. Below 1GHz

Adapter 1

1	Test mode:	802.11ac(HT20)	Test channel:	Lowest	Polarziation:	Horizontal	K
---	------------	----------------	---------------	--------	---------------	------------	---

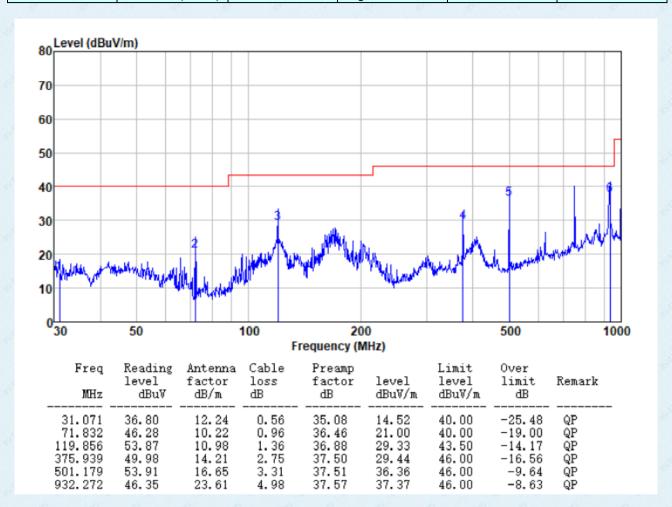


Report No.: GTS202108000221F03

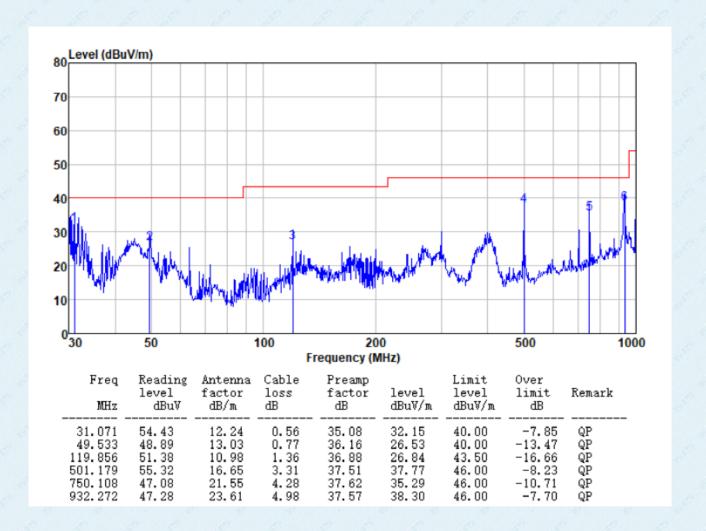


Report No.: GTS202108000221F03

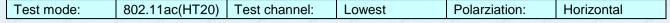
Test mode: 802.11ac(HT20) Test channel: Middle Polarziation: Horizontal

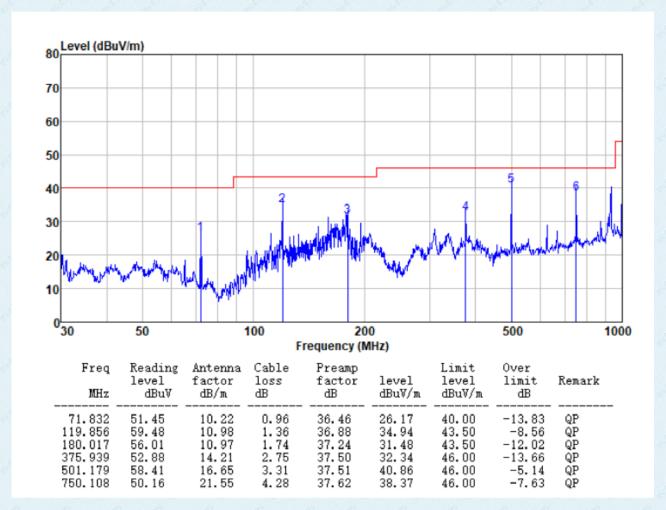


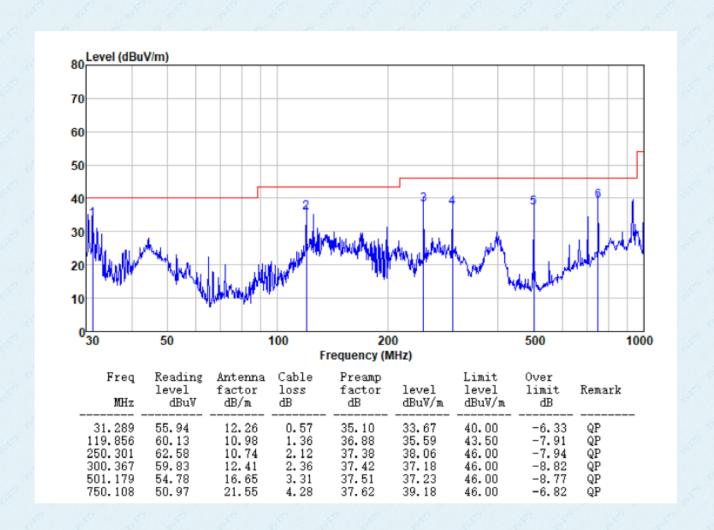
Report No.: GTS202108000221F03


Report No.: GTS202108000221F03

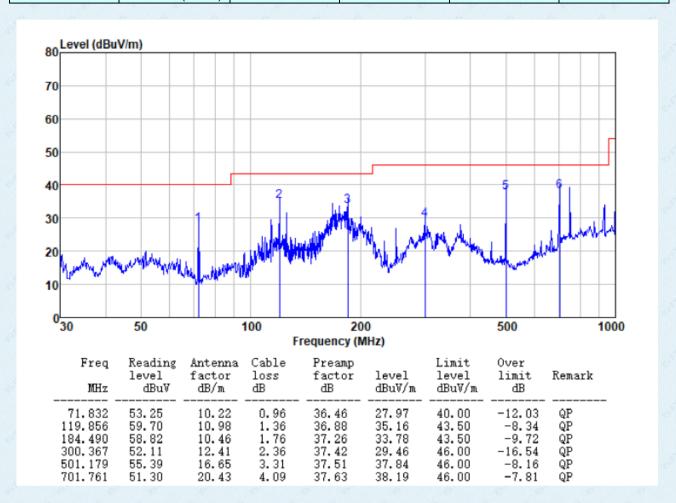
Test mode: 802.11ac(HT20) Test channel: Highest Polarziation: Horizontal


Report No.: GTS202108000221F03

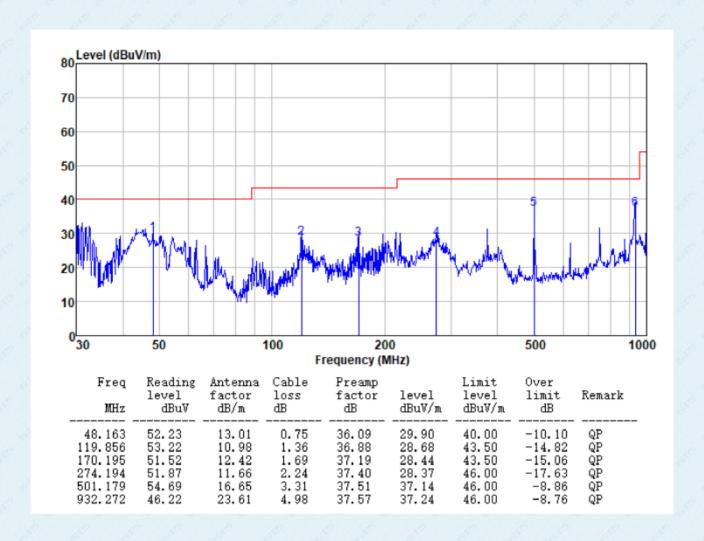

Test mode: 802.11ac(HT20) Test channel:	Highest	Polarziation:	Vertical
---	---------	---------------	----------


Adapter 2

Report No.: GTS202108000221F03

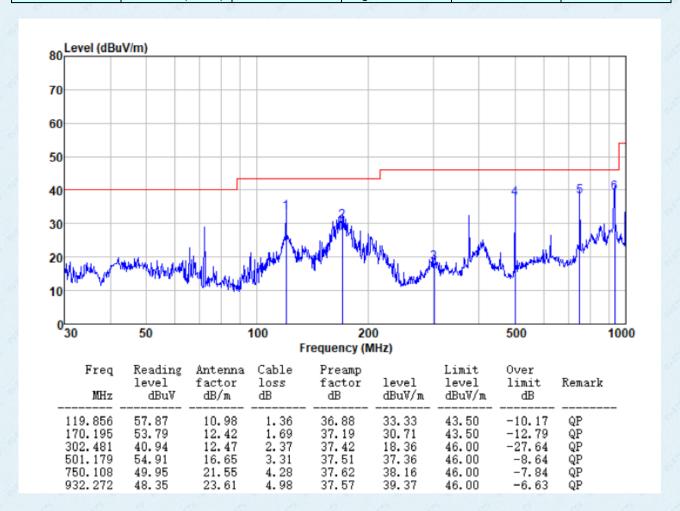


Report No.: GTS202108000221F03

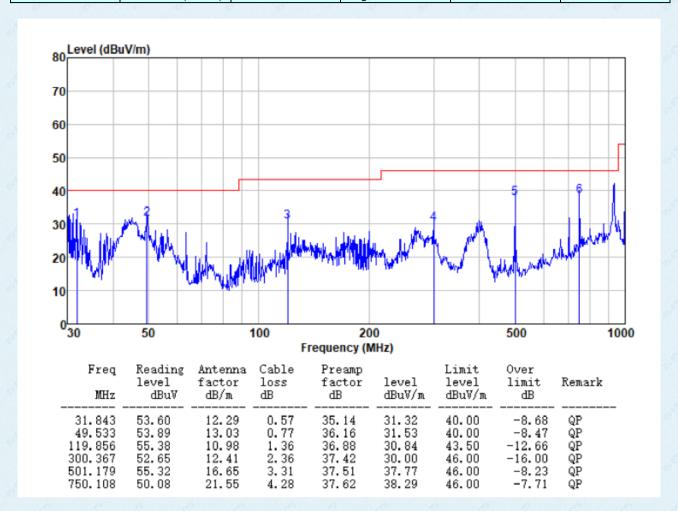


Report No.: GTS202108000221F03

Test mode: 802.11ac(HT20) Test channel: Middle Polarziation: Horizontal



Report No.: GTS202108000221F03


Report No.: GTS202108000221F03

Test mode: 802.11ac(HT20) Test channel: Highest Polarziation: Horizontal

Report No.: GTS202108000221F03

Test mode: 802.11ac(HT20) Test channel: Highest Polarziation: Vertical

Above 1GHz:

Adapter 1

Test mode:		802.11a		Test channel:		lowest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11490	23.96	21.64	45.60	68.20	-22.60	PK
∨	17235	22.31	21.80	44.11	68.20	-24.09	PK
Н	11490	22.03	21.83	43.86	68.20	-24.34	PK
Ø H	17235	20.31	21.67	41.98	68.20	-26.22	PK

Test mode:		802.11a		Test channel:		Middle	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11570	21.21	21.64	42.85	68.20	-25.35	PK
V	17355	19.03	21.80	40.83	68.20	-27.37	PK
Н	11570	19.32	21.83	41.15	68.20	-27.05	PK
Н	17355	18.25	21.67	39.92	68.20	-28.28	PK

Test mode:		802.11a		Test channel:		Highest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11610	22.03	21.64	43.67	68.20	-24.53	PK
V	17415	20.31	21.80	42.11	68.20	-26.09	PK
Я Н	11610	19.25	21.83	41.08	68.20	-27.12	PK
Н	17415	18.32	21.67	39.99	68.20	-28.21	PK

Adapter 2

Report No.: GTS202108000221F03

Test mode:		802.11a		Test channel:		lowest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11490	22.03	21.64	43.67	68.20	-24.53	PK
V	17235	20.38	21.80	42.18	68.20	-26.02	PK
<i>у</i> н 🔏	11490	20.54	21.83	42.37	68.20	-25.83	PK
H	17235	20.39	21.67	42.06	68.20	-26.14	PK

Test mode:		802.11a		Test channel:		Middle	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
9 V	11570	20.34	21.64	41.98	68.20	-26.22	PK
V	17355	18.21	21.80	40.01	68.20	-28.19	PK
Н	11570	17.03	21.83	38.86	68.20	-29.34	PK
Н	17355	17.62	21.67	39.29	68.20	-28.91	PK

Test mode:		802.11a		Test channel:		Highest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11610	18.32	21.64	39.96	68.20	-28.24	PK
V	17415	18.45	21.80	40.25	68.20	-27.95	PK
Ĥ	11610	19.36	21.83	41.19	68.20	-27.01	PK
Я Н	17415	18.24	21.67	39.91	68.20	-28.29	PK

Notes

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. The test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)
Test Method:	ANSI C63.10:2013, FCC Part 2.1055
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector
Test Instruments:	Refer to section 6 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass Pass Pass Pass Pass Pass Pass Pass

Measurement Data: The detailed test data see Appendix for WIFI_5.8G.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----END-----