

Product : Wireless-AXE11000 Tri-band Gigabit Router,

ROG Rapture Tri-band Gaming Router,

ROG Rapture GT-AXE11000 tri-band Gaming Router,

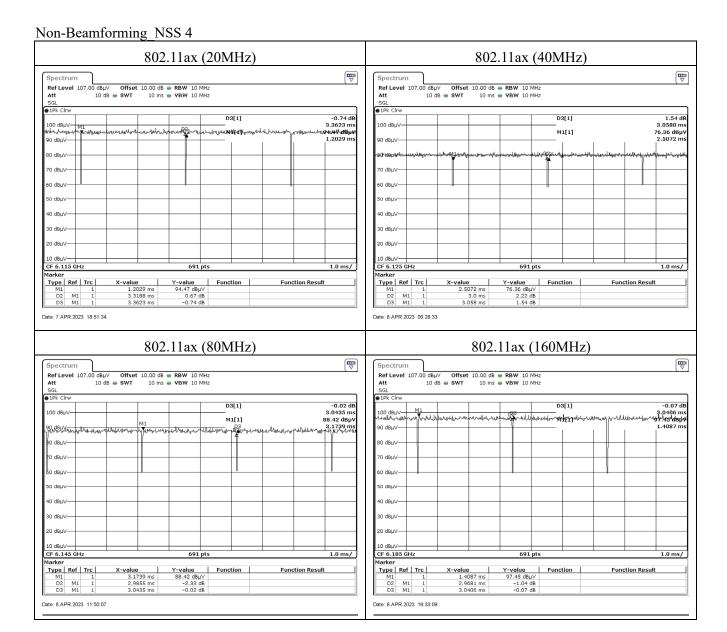
WiFi 6E ROG Rapture GT-AXE11000 Tri-band Gaming Router

Test Item : Duty Cycle Test Date : 2023/04/08

Non-Beamforming NSS-4

Mode	Time On	Time On + Time Off	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
802.11 ax20	3.3188	3.3623	98.71	0.06
802.11 ax40	3.0000	3.0580	98.10	0.08
802.11 ax80	2.9855	3.0435	98.09	0.08
802.11 ax160	2.9681	3.0406	97.62	0.10

Note:


Offset = $20 \log(1/\text{duty cycle})$

According to KDB 789033

If power averaging (rms) mode was used in step (iv) above, the correction factor is $10 \log (1/x)$, where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB must be added to the measured emission levels.

If linear voltage averaging mode was used in step (iv) above, the correction factor is $20 \log (1/x)$, where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB must be added to the measured emission levels.

Product : Wireless-AXE11000 Tri-band Gigabit Router,

ROG Rapture Tri-band Gaming Router,

ROG Rapture GT-AXE11000 tri-band Gaming Router,

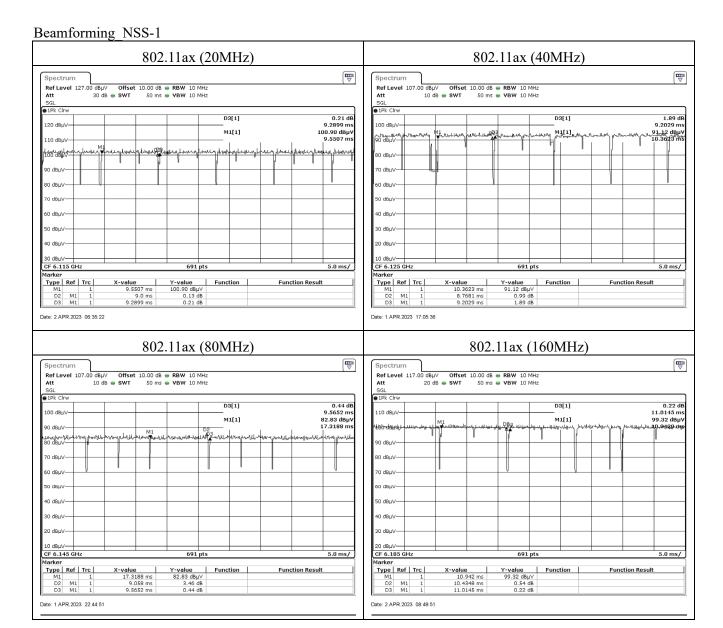
WiFi 6E ROG Rapture GT-AXE11000 Tri-band Gaming Router

Test Item : Duty Cycle Test Date : 2023/04/01

Beamforming NSS-1

Mode	Time On	Time On + Time Off	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
802.11 ax20	9.0000	9.2899	96.88	0.14
802.11 ax40	8.7681	9.2029	95.28	0.21
802.11 ax80	9.0580	9.5652	94.70	0.24
802.11 ax160	10.4348	11.0145	94.74	0.23

Note:


Offset = $20 \log(1/\text{duty cycle})$

According to KDB 789033

If power averaging (rms) mode was used in step (iv) above, the correction factor is $10 \log (1/x)$, where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB must be added to the measured emission levels.

If linear voltage averaging mode was used in step (iv) above, the correction factor is $20 \log (1/x)$, where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB must be added to the measured emission levels.

Product : Wireless-AXE11000 Tri-band Gigabit Router,

ROG Rapture Tri-band Gaming Router,

ROG Rapture GT-AXE11000 tri-band Gaming Router,

WiFi 6E ROG Rapture GT-AXE11000 Tri-band Gaming Router

Test Item : Duty Cycle Test Date : 2023/04/01

Beamforming NSS-2

Mode	Time On	Time On + Time Off	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
802.11 ax20	10.7910	11.1594	96.70	0.15
802.11 ax40	9.5652	10.0000	95.65	0.19
802.11 ax80	10.6522	10.9420	97.35	0.12
802.11 ax160	10.9420	11.2319	97.42	0.11

Note:

Offset = $20 \log(1/\text{duty cycle})$

According to KDB 789033

If power averaging (rms) mode was used in step (iv) above, the correction factor is $10 \log (1/x)$, where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB must be added to the measured emission levels.

If linear voltage averaging mode was used in step (iv) above, the correction factor is $20 \log (1/x)$, where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB must be added to the measured emission levels.

Date: 2.APR.2023 09:18:08

Y-value 90.46 dBμV 1.24 dB 0.17 dB

Function

Function Result

Beamforming NSS 2 802.11ax (20MHz) 802.11ax (40MHz) Ref Level 127.00 dBµV Offset 10.00 dB • RBW 10 MHz Att 30 dB • SWT 50 ms • VBW 10 MHz SGL 91Pk Clrw 104.55 dBµV 8.3333 ms 0.72 dB 9.5652 ms 0.21 dB 11.1594 ms 102.07 dBµV 14.7826 ms D3[1] M1[1] 120 dBu 120 dBuV M1[1] D2[1] 110 dBu\ 110 dBu\ 100 d**5**µV You dely 90 dBµ 80 dBµ\ 70 dBµ\ 60 dBµ\ 40 dΒμV 5.0 ms/ CF 6.115 GHz 691 pts 691 pts 5.0 ms/ Type | Ref | Trc | Function Type | Ref | Trc | **Function Result** Function **Function Result** Date: 1.APR.2023 07:47:34 Date: 2.APR.2023 09:25:31 802.11ax (80MHz) 802.11ax (160MHz)

 Ref Level
 117.00 dBμV
 Offset
 10.00 dB • RBW
 10 MHz

 Att
 20 dB • SWT
 50 ms • VBW
 10 MHz

Ref Level 107.00 dBµ∀ Offse Att 10 dB ● SWT Offset 10.00 dB ■ RBW 10 MHz SWT 50 ms ■ VBW 10 MHz SGL 1Pk Clrw 90.46 dBµV 7.4638 ms 1.24 dB 96.35 dBµV 9.4203 ms 1.84 dB 10.9420 ms M1[1] M1[1] 100 dBµ√ 110 dBµ√ D2[1] D2[1] 100 dBuY 90 dBu 30 dBµV o dbµv 60 dBµV 10 dBµV CF 6.145 GHz 20 dBµV CF 6.185 GHz 5.0 ms/ 691 pt 691 pts 5.0 ms/

X-value 9.4203 ms 10.942 ms 11.2319 ms

Date: 2.APR.2023 08:55:30

Y-value 96.35 dBμV 1.84 dB -0.36 dB

Function

Function Result