

Test Report

Report No. : MTi250310006-0104E1

Date of issue : 2025-03-20

Applicant : Zhuhai Quin Technology Co., Ltd.

Product: Portable Printer

Model(s) : M08D, M08FD, T08FD, M08ED

FCC ID : 2ASRB-M08D

Shenzhen Microtest Co., Ltd.

Report No.: MTi250310006-0104E1

Table of contents

1	Gene	ral Description	
APS)	1.1	Description of the EUT Description of test modes	4
(ATT)	1.2	Description of test modes	4
	1.3	Environmental Conditions	6
	1.4	Description of support units	6
	1.5	Measurement uncertainty	6
2	Sumn	nary of Test Result	7
3	Test F	acilities and accreditations	8
	3.1	Test laboratory	8
4 5	List o Evalu	f test equipmentation Results (Evaluation)	9 11
	5.1	Antenna requirement	11
6	Radio	Spectrum Matter Test Results (RF)	12
	6.1	Conducted Emission at AC power line	
	6.2	20dB Bandwidth	
	6.3	Maximum Conducted Output Power	17
	6.4	Channel Separation	19
	6.5	Number of Hopping Frequencies	21
	6.6	Dwell Time	
	6.7	RF conducted spurious emissions and band edge measurement	25
	6.8	Band edge emissions (Radiated)	27
	6.9	Radiated emissions (below 1GHz)	30
	6.10	Radiated emissions (above 1GHz)	34
Ph	otoarai	nhs of the test setup	38
Ph	otogra	ohs of the test setupohs of the EUT	39
Ap	pendix	A: 20dB Emission Bandwidth	40
		B: Maximum conducted output power	
		C: Carrier frequency separation	
		D: Time of occupancy	
Ap	pendix	E: Number of hopping channels	55
Aμ	pendix	F: Band edge measurements	57 60
-	-		
	oi Cre		

TEST REPORT

Report No.: MTi250310006-0104E1

Test Result Certific	cation		
Applicant	Zhuhai Qui	in Technology Co., Ltd.	
Applicant Address		3-029(CENTRALIZED OFFICE OAD, XIANGZHOU DISTRICT,	AREA), 1F, BUILDING 1, NO. 18 ZHUHAI CITY, CHINA
Manufacturer	Zhuhai Qui	in Technology Co., Ltd.	
Manufacturer Address		3-029(CENTRALIZED OFFICE OAD, XIANGZHOU DISTRICT,	AREA), 1F, BUILDING 1, NO. 18 ZHUHAI CITY, CHINA
Product description	n		Micro
Product name	Portable P	rinter	
Trademark	N/A		
Model name	M08D	St	
Series Model(s)	M08FD, T0	08FD, M08ED	
Standards	47 CFR Pa	art 15.247	
Test Method	ANSI C63. KDB 55807	10-2013 74 D01 15.247 Meas Guidance	v05r02
Testing Informatio	n		iiCi Ole
Date of test	2025-03-17	7 to 2025-03-18	
Test result	Pass		
Prepared by:		Letter Lan	letter.lan.
Reviewed I	by:	David Lee	Dowid. Lee Lewis lion
Approved I	by:	Lewis Lian	lewis lion
<u> </u>			· Mr.

Report No.: MTi250303001-0107E1

General Description

Description of the EUT 1.1

1 General Descri	ption
1.1 Description of the	EUT
Product name:	Portable Printer
Model name:	M08D
Series Model(s):	M08FD, T08FD, M08ED
Model difference:	All the models are the same circuit and module, except the model name and color.
Electrical rating:	Input: 5V- 2A Battery: 11.1VDC 1200mAh
Accessories:	Cable: USB-A to Type-C cable 0.8m
Hardware version:	Q566_A_241213
Software version:	V2.0.3.C
Test sample(s) number:	MTi250310006-01-E001(AC Conducted test) MTi250310006-01-R001(RF Conducted test) MTi250310006-01-R002(Radiated test)
RF specification	*e5t
Bluetooth version:	V5.1
Operating frequency range:	2402MHz to 2480MHz
Channel number:	79
Modulation type:	GFSK, π/4 DQPSK
Antenna(s) type:	FPC
Antenna(s) gain:	2.33dBi

Description of test modes

No.	Emission test modes
Mode1	TX-GFSK
Mode2	TX-π/4DQPSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Q/MTI-QP-12-FE038

Ver./Rev.: A1

Page 4 of 67

Report No.: MTi250303001-0107E1

7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Microtes

Operation Band: 2400-2483.5 MHz

Bandwidth	Lowest Channel	Middle Channel	Highest Channel
	(LCH)	(MCH)	(HCH)
(MHz)	(MHz)	(MHz)	(MHz)
1	2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.202

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	10	10	10
π/4-DQPSK	10	10	10
			anniciotest

Report No.: MTi250303001-0107E1

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C	
Humidity:	20% RH ~ 75% RH	
Atmospheric pressure:	98 kPa ~ 101 kPa	

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
MI CHARGE(33W)	MDY-11-EX	SA623116200029J	MI			
Support cable list						
Description	Length (m)	From	То			
Plic,	1	-cV	/			

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Microlest

TEST REPORT

Report No.: MTi250303001-0107E1

Microtest

Microtest

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
3	20dB Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
9	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

Microlest

TEST REPORT

Report No.: MTi250303001-0107E1

Microtest

Microtest

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

Report No.: MTi250303001-0107E1

4 List of test equipment

4	List of test equipm	ICIIL				- CO
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
	- CŽ	Conducted Emiss	ion at AC power	line	(AB)	
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2025-03- 13	2026-03- 12
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03- 21	2025-03- 20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2025-03- 18	2026-03- 17
		Maximum Condu Channel Number of Hop	andwidth icted Output Pov Separation ping Frequencie Il Time			
		nissions in non-res	tricted frequency	/ bands		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03- 20	2025-03- 19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2024-03- 21	2025-03- 20
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03- 20
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2024-03- 21	2025-03- 20
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2024-03- 21	2025-03- 20
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2024-03- 21	2025-03- 20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2024-03- 21	2025-03- 20
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2024-03- 20	2025-03- 19
9	DC Power Supply	Agilent	E3632A	MY400276 95	2024-03- 21	2025-03- 20
	Er	Band edge emi	ssions (Radiated			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06- 17	2025-06- 16
3	Amplifier	Agilent	8449B	3008A0112 0	2024-03- 20	2025-03- 19
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2024-03- 21	2025-03- 20
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03- 20
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06- 17	2025-06- 16
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03- 21	2025-03- 20
, Ń	C ^C Er	missions in frequen		1GHz)		-
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06- 10

Tel: 0755-88850135-1439

TEST REPORT

Report No.: MTi250303001-0107E1

Microlest

Microlest

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2025-03- 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2024-03- 20	2025-03- 19

Report No.: MTi250303001-0107E1

Microtest

Microtest

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible
Test Requirem	party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of
	this section.

5.1.1 Conclusion:

Microtest

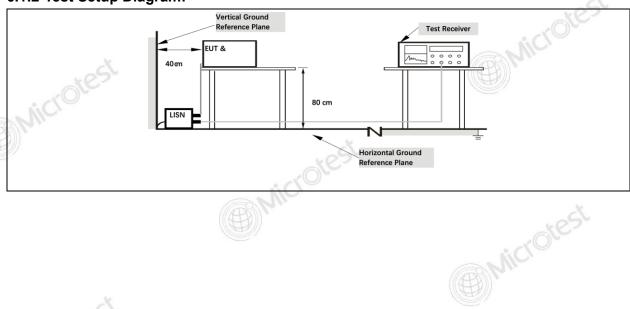
Microtest

The antenna of the EUT is permanently attached.

The EUT complies with the requirement of FCC PART 15.203.

Report No.: MTi250303001-0107E1

6 Radio Spectrum Matter Test Results (RF)

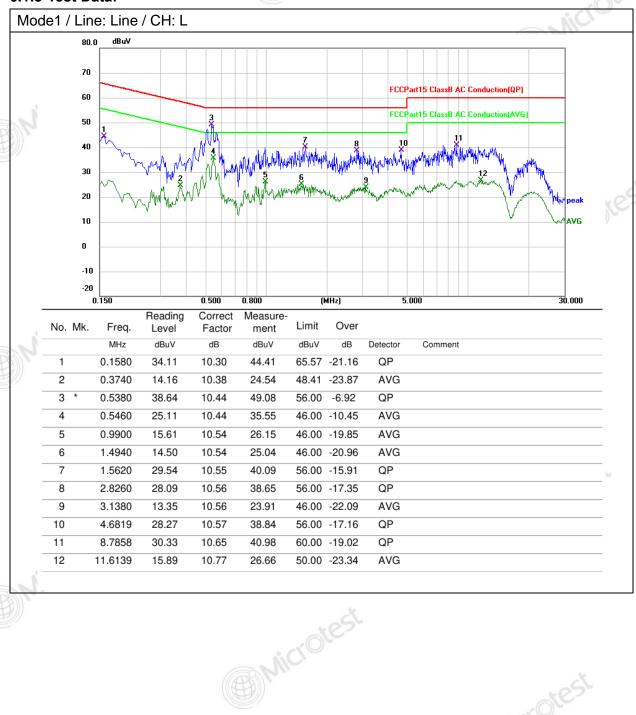

6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)					
	The state of the s	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of	f the frequency.	3))) *				
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.3 °C Humidity: 63 % Atmospheric Pressure: 100 kPa							
Pre test mode: Mode1, Mode2							
Final test mode	e:			re-test mode recorded in	were tested, only the dat the report	a of the worst	

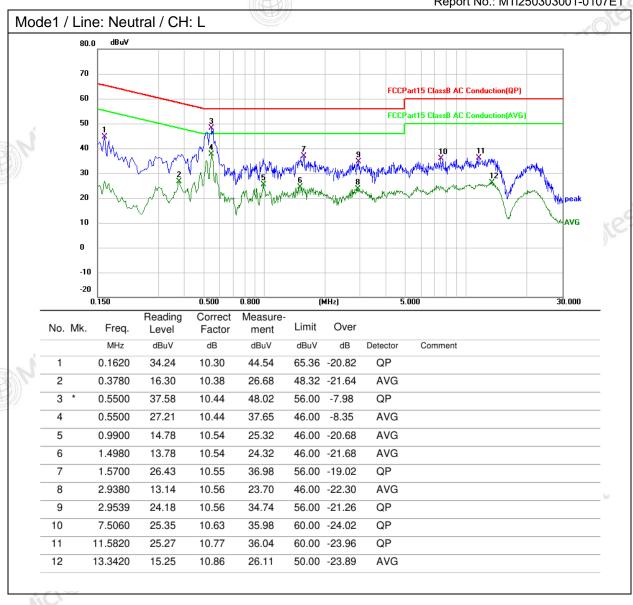
6.1.2 Test Setup Diagram:



Report No.: MTi250303001-0107E1

Microtest

6.1.3 Test Data:



Microlest

TEST REPORT

Report No.: MTi250303001-0107E1

Microtest

Mhiciotest

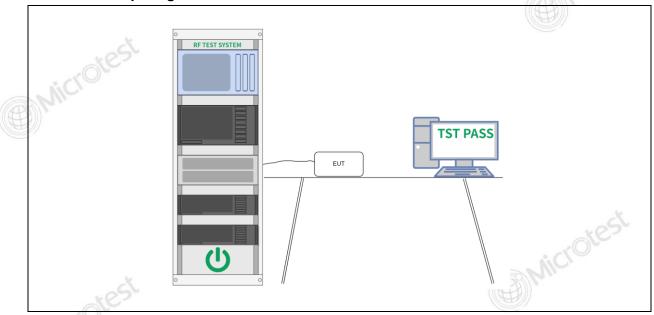
Report No.: MTi250303001-0107E1

6.2 20dB Bandwidth

6.2 20dB Band	lwidth	
Test Requiremen	nt: 47 CFR 15.247(a)(1)	AIC!
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operal alternative provisions to the general emission limits, as 15.217 through 15.257 and in subpart E of this part, m to ensure that the 20 dB bandwidth of the emission, or bandwidth may otherwise be specified in the specific runder which the equipment operates, is contained with band designated in the rule section under which the ecoperated.	s contained in §§ ust be designed whatever ule section in the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandw measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02	ridth
Procedure:	a) The spectrum analyzer center frequency is set to the channel center frequency. The span range for the EMI spectrum analyzer shall be between two times and five OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be 1% to 5% of the OBW and video bandwidth (VBW) sha approximately three times RBW, unless otherwise speciapplicable requirement. c) Set the reference level of the instrument as required signal from exceeding the maximum input mixer level for operation. In general, the peak of the spectral envelope than [10 log (OBW/RBW)] below the reference level. So is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust specified tolerances. e) The dynamic range of the instrument at the selected more than 10 dB below the target "-xx dB down" requires than 10 dB below the target "-xx dB d	receiver or etimes the etimes the etimes the etimes the etimes in the range of all be cified by the etified by the etimes the for linear etimes etime
Microtest	if the requirement calls for measuring the -20 dB OBM noise floor at the selected RBW shall be at least 30 dB reference value. f) Set detection mode to peak and trace mode to max I g) Determine the reference value: Set the EUT to transunmodulated carrier or modulated signal, as applicable trace to stabilize. Set the spectrum analyzer marker to level of the displayed trace (this is the reference value) h) Determine the "-xx dB down amplitude" using [(refexx]. Alternatively, this calculation may be made by usin delta function of the instrument. i) If the reference value is determined by an unmodulation the EUT modulation ON, and either clear the exist a new trace on the spectrum analyzer and allow the new trace.	hold. smit an e. Allow the the highest). erence value) – eg the marker- ted carrier, then ting trace or start
Tel: 0755.88850135.1430	stabilize. Otherwise, the trace from step g) shall be use j) Place two markers, one at the lowest frequency and highest frequency of the envelope of the spectral display each marker is at or slightly below the "-xx dB down ar determined in step h). If a marker is below this "-xx dB amplitude" value, then it shall be as close as possible to The occupied bandwidth is the frequency difference be markers. Alternatively, set a marker at the lowest frequency envelope of the spectral display, such that the marker is below the "-xx dB down amplitude" determined in step	ed for step j). the other at the ay, such that mplitude" down to this value. etween the two lency of the is at or slightly

Report No.: MTi250303001-0107E1

Microtest


marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.1 °	,C	Humidity:	59 %	Atmospheric Pressure:	101 kPa		
Pre test mode: Mod			le1, Mode2	Pall		46,		
Final test mode: M			le1, Mode2			: 40		

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Microtest

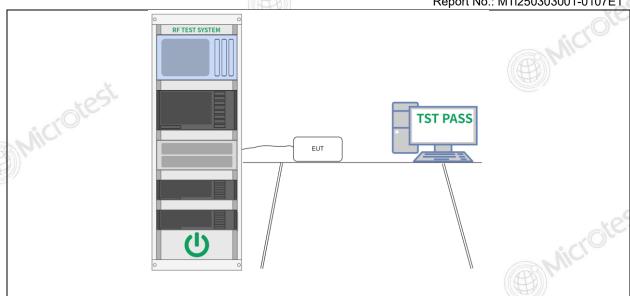
Please Refer to Appendix for Details.

Report No.: MTi250303001-0107E1

6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.3.1 E.U.T. Operation:


Operating Environment:								
Temperature: 23.1 °C Humidity: 59 % Atmospheric Pressure: 101 kPa								
Pre test mode:	Mod	e1, Mode2	105					
Final test mode	э:	Mod	e1, Mode2	. KO				

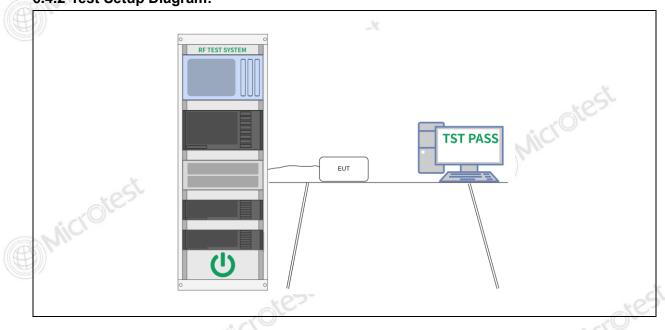
6.3.2 Test Setup Diagram:

Report No.: MTi250303001-0107E1

6.3.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi250303001-0107E1


6.4 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

•						
Operating Env	ironmei	nt:				ich
Temperature:	23.1 °	С	Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mo		Mod	le1, Mode2			•
Final test mode: Mod		Mod	le1, Mode2			

6.4.2 Test Setup Diagram:

Report No.: MTi250303001-0107E1

Microlest

6.4.3 Test Data:

Microtest

Microlest

Please Refer to Appendix for Details.

Microtest Microtest

Mhicrotest

Report No.: MTi250303001-0107E1

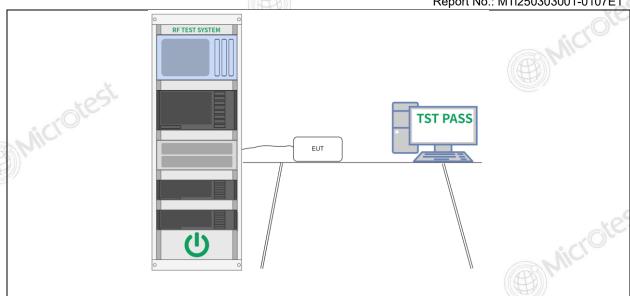
Microtes

6.5 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.5.1 E.U.T. Operation:

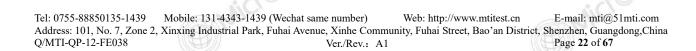
Operating Env	ironme	nt:				
Temperature:	23.1 °	C	Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	le1, Mode2			
Final test mode	e:	Mod	le1, Mode2		X.	


6.5.2 Test Setup Diagram:

Report No.: MTi250303001-0107E1

Microlest

Microtest



6.5.3 Test Data:

Microtest

Microtest

Please Refer to Appendix for Details.

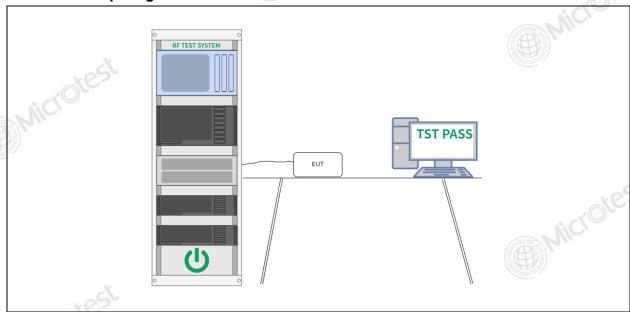
Report No.: MTi250303001-0107E1

6.6 Dwell Time

o.o Dwell fille		×(0)
Test Requirement:	47 CFR 15.247(a)(1)(iii)	- NiCl
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping st 2400-2483.5 MHz band shall use at least 15 channels. time of occupancy on any channel shall not be greater to seconds within a period of 0.4 seconds multiplied by the hopping channels employed. Frequency hopping system or suppress transmissions on a particular hopping frequency that a minimum of 15 channels are used.	The average han 0.4 number of ns may avoid
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	
Procedure:	The EUT shall have its hopping function enabled. Use t spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible be set >> 1 / T, where T is the expected dwell time per cc) Sweep: As necessary to capture the entire dwell time channel; where possible use a video trigger and trigger the transmitted signal starts a little to the right of the state The trigger level might need slight adjustment to prever when the system hops on an adjacent channel; a secon needed with a longer sweep time to show two successing channel. d) Detector function: Peak.	le RBW should channel. e per hopping delay so that irt of the plot. It triggering and plot might be
Microtest	e) Trace: Max hold. Use the marker-delta function to determine the transmit If this value varies with different modes of operation (da modulation format, number of hopping channels, etc.), test for each variation in transmit time. Repeat the measurement using a longer sweep time to number of hops over the period specified in the requirer sweep time shall be equal to, or less than, the period sprequirements. Determine the number of hops over the scalculate the total number of hops in the period specifier requirements, using the following equation: (Number of hops in the period specified in the requirements) in the period specified in the requirements.	determine the ments. The becified in the weep time and d in the ments) =
rotest	requirements / analyzer sweep time) The average time of occupancy is calculated from the treper hop multiplied by the number of hops in the period strequirements. If the number of hops in a specific time valifferent modes of operation (data rate, modulation form hopping channels, etc.), then repeat this test for each values described in the operational of the EUT.	specified in the aries with nat, number of ariation. all be

6.6.1 E.U.T. Operation:

Operating Envi	ironmeı	nt:				
Temperature:	23.1 °	С	Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1, Mode2	51		C
Final test mode	e:	Mod	e1, Mode2			



Report No.: MTi250303001-0107E1

Microtest

Microtest

6.6.2 Test Setup Diagram:

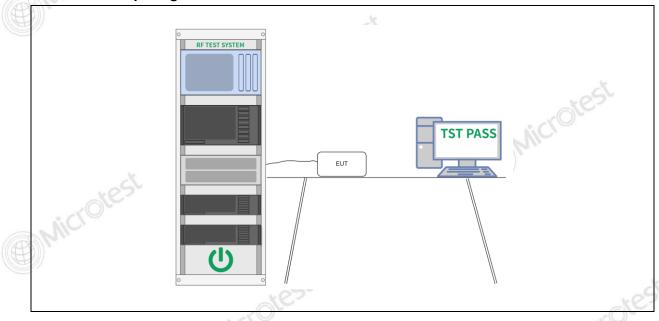
6.6.3 Test Data:

Microtest

Microtest

Please Refer to Appendix for Details.

Report No.: MTi250303001-0107E1


6.7 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d)
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.7.1 E.U.T. Operation:

•						
Operating Env	ironme	nt:				ici
Temperature:	23.1 °	С	Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode:	0	Mod	le1, Mode2			•
Final test mode	e:	Mod	le1, Mode2			

6.7.2 Test Setup Diagram:

Report No.: MTi250303001-0107E1

Microlest

6.7.3 Test Data:

Microtest

Please Refer to Appendix for Details.

Microtest

Mhicrotest

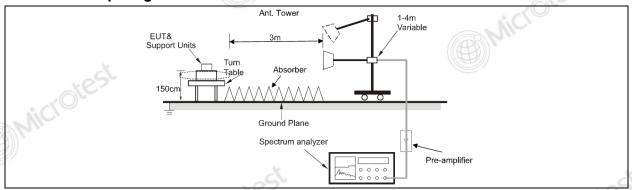
Microtest

Microlest

Report No.: MTi250303001-0107E1

6.8 Band edge emissions (Radiated)

Test Requirement:	in the restricted bands,	7(d), In addition, radiated emis as defined in § 15.205(a), mu ion limits specified in § 15.209	st also comply
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
<i>91</i>	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	intentional radiators op the frequency bands 54 806 MHz. However, op permitted under other s In the emission table al The emission limits sho measurements employ frequency bands 9–90 Radiated emission limit	n paragraph (g), fundamental erating under this section shalf 4-72 MHz, 76-88 MHz, 174-21 eration within these frequency sections of this part, e.g., §§ 1 cove, the tighter limit applies above in the above table are basing a CISPR quasi-peak detect kHz, 110–490 kHz and above is in these three bands are basing an average detector.	Il not be located in 6 MHz or 470- bands is 5.231 and 15.241. at the band edges. sed on ctor except for the 1000 MHz.
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.10 47 Meas Guidance v05r02	rost
Procedure:	ANSI C63.10-2013 sec	tion 6.10.5.2	


6.8.1 E.U.T. Operation:

201					111 August 1 111 1 7	
Operating Envi	ronme	nt:				
Temperature:	18.6 °	,C	Humidity:	47.1 %	Atmospheric Pressure:	98 kPa
Pre test mode:		Mod	le1, Mode2			
Final test mode	e :		of the listed p le (Mode2) is		were tested, only the dat the report	a of the worst
Niete.		•	•	210	•	

Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.8.2 Test Setup Diagram:

Report No.: MTi250303001-0107E1

Microtest

6.8.3 Test Data:

									- P.	11
Mod	e2 / P	olari	zation: Horiz	zontal / CH:	L				MICH	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
A.	1		2310.000	47.51	-4.83	42.68	74.00	-31.32	peak	
	2		2310.000	37.99	-4.83	33.16	54.00	-20.84	AVG	
	3		2390.000	48.03	-4.31	43.72	74.00	-30.28	peak	
	4	*	2390.000	38.39	-4.31	34.08	54.00	-19.92	AVG	
										1000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	48.75	-4.83	43.92	74.00	-30.08	peak
2		2310.000	37.92	-4.83	33.09	54.00	-20.91	AVG
3		2390.000	49.24	-4.31	44.93	74.00	-29.07	peak
4	*	2390.000	38.69	-4.31	34.38	54.00	-19.62	AVG

TEST REPORT

Report No.: MTi250303001-0107E1

Mod	e2 / P	olari	zation: Horiz	zontal / CH:	H				- op ((OFF
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
	1		2483.500	48.36	-4.21	44.15	74.00	-29.85	peak	_
J	2		2483.500	38.33	-4.21	34.12	54.00	-19.88	AVG	_
	3		2500.000	48.23	-4.10	44.13	74.00	-29.87	peak	_
,	4	*	2500.000	39.18	-4.10	35.08	54.00	-18.92	AVG	_

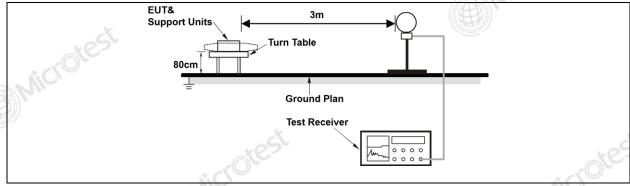
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	51.67	-4.21	47.46	74.00	-26.54	peak
2		2483.500	38.93	-4.21	34.72	54.00	-19.28	AVG
3		2500.000	49.89	-4.10	45.79	74.00	-28.21	peak
4	*	2500.000	40.79	-4.10	36.69	54.00	-17.31	AVG

Report No.: MTi250303001-0107E1

6.9 Radiated emissions (below 1GHz)

0.5 Radiated eiiiis	Sions (below Toriz)		
Test Requirement:	in the restricted bands,	7(d), In addition, radiated em as defined in § 15.205(a), m sion limits specified in § 15.20	nust also comply
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3 110
	Above 960	500	3
Microtest	intentional radiators op the frequency bands 54 806 MHz. However, op permitted under other s In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limi	n paragraph (g), fundamenta erating under this section shad-72 MHz, 76-88 MHz, 174-2 eration within these frequence sections of this part, e.g., §§ bove, the tighter limit applies own in the above table are baing a CISPR quasi-peak detekt, 110–490 kHz and above to the section of the section of the part of the section of	all not be located in 216 MHz or 470- by bands is 15.231 and 15.241. at the band edges. ased on ector except for the e 1000 MHz.
Test Method:	ANSI C63.10-2013 sed KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	rest
Procedure:	ANSI C63.10-2013 sec	tion 6.6.4	· CO
,	•		

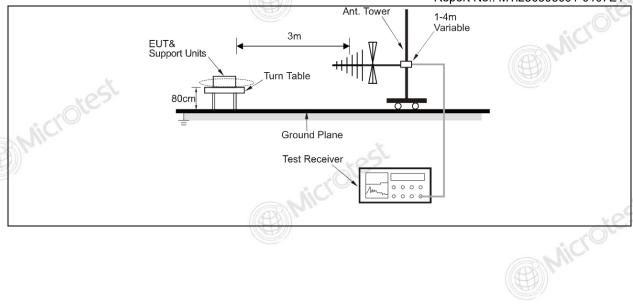
6.9.1 E.U.T. Operation:


	Operating Envi	ronme	nt:				
	Temperature:	18.6 °	С	Humidity:	47.1 %	Atmospheric Pressure:	98 kPa
	Pre test mode:		Mod	e1, Mode2			
P	Final test mode	e:		•	re-test mode recorded in	were tested, only the dat the report	a of the worst

Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


6.9.2 Test Setup Diagram:

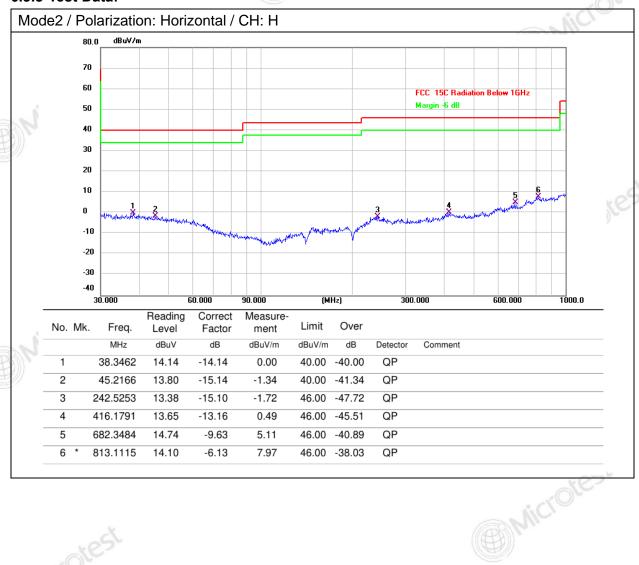
Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Report No.: MTi250303001-0107E1

Mobile: 131-4343-1439 (Wechat same number)

Microtest

Tel: 0755-88850135-1439


Report No.: MTi250303001-0107E1

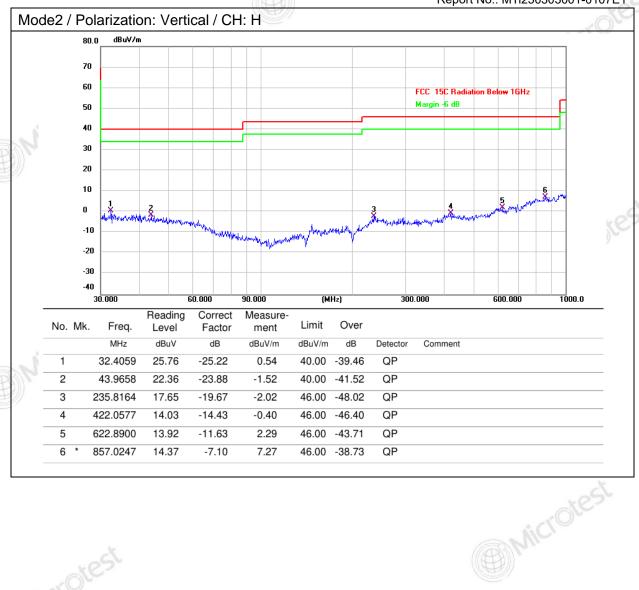
Microtest

6.9.3 Test Data:

Microtest

Microtest

Microfest



Microtest

TEST REPORT

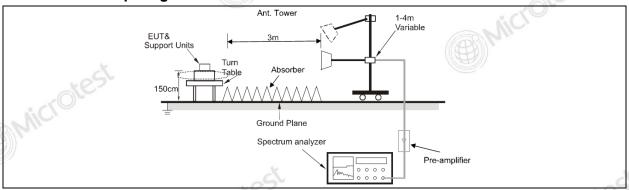
Report No.: MTi250303001-0107E1

Microtest

Report No.: MTi250303001-0107E1

6.10 Radiated emissions (above 1GHz)

	In addition, radiated en	nissions which fall in the rest	ricted hands as
Test Requirement:	defined in § 15.205(a),	must also comply with the rest 209(a)(see § 15.205(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3 1
Microtest	intentional radiators op the frequency bands 54 806 MHz. However, op permitted under other s In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limi	n paragraph (g), fundamental erating under this section shows the section within these frequences ections of this part, e.g., §§ bove, the tighter limit applies own in the above table are basing a CISPR quasi-peak detacked, 110–490 kHz and above the section of	all not be located in 216 MHz or 470- by bands is 15.231 and 15.241, at the band edges, ased on ector except for the e 1000 MHz.
Test Method:	ANSI C63.10-2013 sed KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	tion 6.6.4	atest


6.10.1 E.U.T. Operation:

Operating Envi	ronmer	nt:				11.
Temperature:	18.6 °	С	Humidity:	47.1 %	Atmospheric Pressure:	98 kPa
Pre test mode:		Mod	e1, Mode2			
Final test mode	· .		f the listed p e (Mode2) is		e were tested, only the dat n the report	a of the worst

Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.10.2 Test Setup Diagram:

TEST REPORT

Report No.: MTi250303001-0107E1

Microtest

6.10.3 Test Data:

										_//
Mode	e2 / P	olariz	zation: Horiz	zontal / CH:	L				~ VICI.	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
i	1		4804.000	42.77	0.53	43.30	74.00	-30.70	peak	_
	2		4804.000	38.01	0.53	38.54	54.00	-15.46	AVG	_
-	3		7206.000	42.82	7.90	50.72	74.00	-23.28	peak	_
	4		7206.000	37.39	7.90	45.29	54.00	-8.71	AVG	u06
	5		9608.000	44.34	8.85	53.19	74.00	-20.81	peak	
	6	*	9608.000	39.91	8.85	48.76	54.00	-5.24	AVG	_
										_

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	43.08	0.53	43.61	74.00	-30.39	peak
2	2	4804.000	39.61	0.53	40.14	54.00	-13.86	AVG
3	}	7206.000	43.08	7.90	50.98	74.00	-23.02	peak
	ļ.	7206.000	37.33	7.90	45.23	54.00	-8.77	AVG
5	j	9608.000	44.66	8.85	53.51	74.00	-20.49	peak
- 6	*	9608.000	40.47	8.85	49.32	54.00	-4.68	AVG

TEST REPORT

Report No.: MTi250303001-0107E1

Mod	e2 / Polar	ization: Horiz	zontal / CH:	M				-4	Ole
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1	4882.000	44.23	0.57	44.80	74.00	-29.20	peak	
S	2	4882.000	39.58	0.57	40.15	54.00	-13.85	AVG	_
	3	7323.000	43.59	7.57	51.16	74.00	-22.84	peak	
160	4	7323.000	37.66	7.57	45.23	54.00	-8.77	AVG	
	5	9764.000	44.32	9.33	53.65	74.00	-20.35	peak	re.
	6 *	9764.000	38.94	9.33	48.27	54.00	-5.73	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	47.91	0.57	48.48	74.00	-25.52	peak
2		4882.000	42.39	0.57	42.96	54.00	-11.04	AVG
3		7323.000	44.58	7.57	52.15	74.00	-21.85	peak
4		7323.000	39.55	7.57	47.12	54.00	-6.88	AVG
5		9764.000	45.02	9.33	54.35	74.00	-19.65	peak
6	*	9764.000	38.90	9.33	48.23	54.00	-5.77	AVG

TEST REPORT

Report No.: MTi250303001-0107E1

Mod	e2 / Pol	ariza	ation: Horiz	zontal / CH:	Ħ /				- 154	Office
	No. N	Лk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1	-	4960.000	43.44	0.66	44.10	74.00	-29.90	peak	
N	2	-	4960.000	37.55	0.66	38.21	54.00	-15.79	AVG	_
	3		7440.000	43.80	7.94	51.74	74.00	-22.26	peak	_
	4		7440.000	39.18	7.94	47.12	54.00	-6.88	AVG	_
	5	,	9920.000	44.63	9.69	54.32	74.00	-19.68	peak	xe.
	6 *	' (9920.000	39.54	9.69	49.23	54.00	-4.77	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	45.50	0.66	46.16	74.00	-27.84	peak
2		4960.000	39.53	0.66	40.19	54.00	-13.81	AVG
3		7440.000	45.09	7.94	53.03	74.00	-20.97	peak
4		7440.000	39.29	7.94	47.23	54.00	-6.77	AVG
5		9920.000	44.51	9.69	54.20	74.00	-19.80	peak
6	*	9920.000	38.47	9.69	48.16	54.00	-5.84	AVG

TEST REPORT

Report No.: MTi250303001-0107E1

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Report No.: MTi250303001-0107E1

Photographs of the EUT

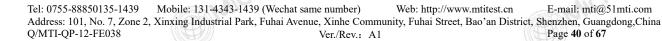
Refer to Appendix - EUT Photos

Ver./Rev.: A1

TEST REPORT

Report No.: MTi250303001-0107E1

Microtest


Microtest

Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	1.014
DH5	Ant1	2441	1.005
465		2480	1.053
*(O)		2402	1.296
2DH5	Ant1	2441	1.323
		2480	1.374
		hicrotest.	

Report No.: MTi250303001-0107E1

Microtest

Test Graphs

Microlest

Report No.: MTi250303001-0107E1

Microfest

Microfest

TEST REPORT

Report No.: MTi250303001-0107E1

Microlest

Microtest

Report No.: MTi250303001-0107E1

Microtest

Microtest

Appendix B: Maximum conducted output power

Microtest

Microtest

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
-1(O)		2402	-3.73	≤20.97	PASS
DH5	Ant1	2441	-3.05	≤20.97	PASS
1//		2480	-1.43	≤20.97	PASS
		2402	-3.03	≤20.97	PASS
2DH5	Ant1	2441	-2.39	≤20.97	PASS
		2480	-0.80	≤20.97	PASS
					Microte

Bhicrotest

Report No.: MTi250303001-0107E1

Microtest

Test Graphs

Microfest

