

Report No. : EED32O81844305

Page 1 of 17

TEST REPORT

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result

- : Tablet 8"-XR
- N/A
- : 7X-CC-C9K-X
- : N/A
- EED32O818443035
- : 2AVZO-CCU
- : Nov. 01, 2023
- : 47 CFR Part 15 Subpart E
- PASS

Prepared for: 75F, Inc. 1650 W 82nd St, Suite 200 Bloomington, Minnesota 55431, United States

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

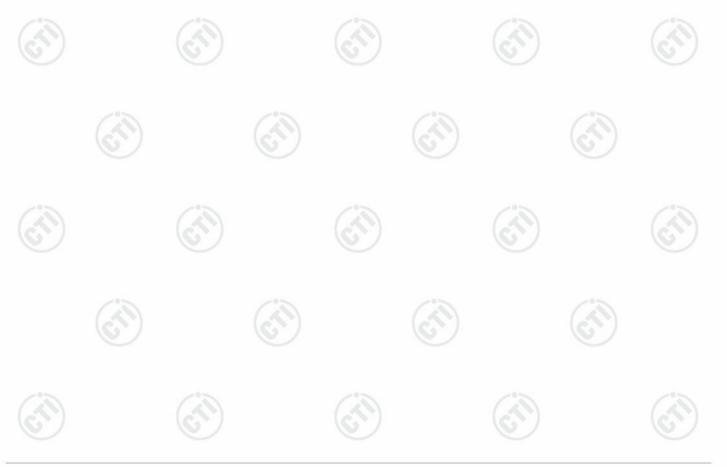
1 Test Summary

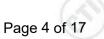
Test Item	Clause in FCC rules	Result
DFS Detection Threshold	15.407/KDB 905462 5.2	PASS
U-NII Detection Bandwidth	15.407/KDB 905462 7.8.1	N/A
Channel Availability Check Time	15.407/KDB 905462 7.8.2	N/A
Channel Move Time	15.407/KDB 905462 7.8.3	PASS
Channel Closing Transmission Time	15.407/KDB 905462 7.8.3	PASS
Non-Occupancy Period	15.407/KDB 905462 7.8.3	PASS
Statistical Performance Check	15.407/KDB 905462 7.8.4	N/A

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

N/A: In this whole report not application





2 Content

1 TEST SUMMARY				
2 CONTENT				3
3 GENERAL INFORMATION				4
3.1 CLIENT INFORMATION 3.2 GENERAL DESCRIPTION OF 3.3 DESCRIPTION OF SUPPORT 3.4 TEST LOCATION 3.5 APPLIED STANDARDS	EUT UNITS			
4 EQUIPMENT LIST				7
5 DFS TECHNICAL REQUIREM				
5.3.2 Long Pulse Radar Te	DLDS Test Waveforms est Waveforms			8 9 9 11
6 TEST REQUIREMENT TEST				
7 TEST CASE RESULTS	<u> </u>			
7.1 DFS DETECTION THRESHO 7.2 IN-SERVICE MONITORING F OCCUPANCY PERIOD	OR CHANNEL MOVE T	IME, CHANNEL CLOSING	TRANSMISSION TIME AND NO	N - 14
8 DFS TEST SETUP	<u> </u>	\odot	<u> </u>	16
9 PHOTOGRAPHS OF EUT CO	ONSTRUCTIONAL D	DETAILS		

General Information 3

3.1 Client Information

Applicant:	75F, Inc.
Address of Applicant:	1650 W 82nd St, Suite 200 Bloomington, Minnesota 55431, United States
Manufacturer:	Estone Technology LTD
Address of Manufacturer:	2F,Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.
Factory:	Estone Technology LTD
Address of Factory:	2F,Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.

3.2 General Description of EUT

Product Name:	Tablet 8"-XF	R			S	
Model No. (EUT):	7X-CC-C9K-	-X				
Trade Mark:	N/A	10-		-0-		
Type of Modulation:	IEEE 802.11	a: OFDM (BPS) n(HT20/HT40): ac(VHT20/VHT 6QAM)	OFDM (BPS	SK, QPSK, 1	16QAM, 64QAI	
Operating Frequency	U-NII-1 & U- U-NII-3:5745	NII-2A: 5180-53 5-5825MHz	320MHz			
Operating Temperature:	0℃ to +50℃	1	67		67	
Sample Type:	Portable pro	duction				
Test Power Grade:	Default (Pow selected)	ver level is built-	in set paran	neters and c	annot be chan	ged and
Test Software of EUT:	RF Test (ma	nufacturer decla	are)			
Antenna Type:	PCB Antenn	a 🔍		C		S
Antenna Gain:	U-NII-1: 2.5	52dBi				
	U-NII-2A: 2	.45dBi				
	U-NII-3: 2.3	31dBi				
Function		2x2 MIMO 🗌 3x	x3 MIMO	4x4MIMO	(\mathcal{O})	
Operating Mode		thout radar dete th radar detectio				-
	USB port:	DC 5.0V				
Power Supply:	Battery:	DC 3.85V,3	896mAh	0		C.
Test voltage:	DC 3.85V	I				
Sample Received Date:	Nov. 21, 202	22				

Operation Frequency each of channel

802.11a/802.11n/802.11ac(20MHz) Frequency/Channel Operations:

Ś	U-NII-1	U-NII-2A		(cr)	U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	52	5260	149	5745
40	5200	56	5280	153	5765
44	5220	60	5300	157	5785
48	5240	64	5320	161	5805
- /	- 6	-13		165	5825
- 6	9 -	6	2 -	G	-
-	-	-	-	-	-
-	-	-	-	-	

802.11n/802.11ac(40MHz) Frequency/Channel Operations:

U-NII-1		l	J-NII-2A	U-NII-3		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)	
38	5190	54	5270	151	5755	
46	5230	62	5310	159	5795	
-	-	-	-	-	-	
A -	- (2)	-		-		
	(G)		(GT)		67	

802.11ac(80MHz) Frequency/Channel Operations:

U-NII-1		U-NII-2A		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	58	5290	155	5775
-	_	-	-	-	_

3.3 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

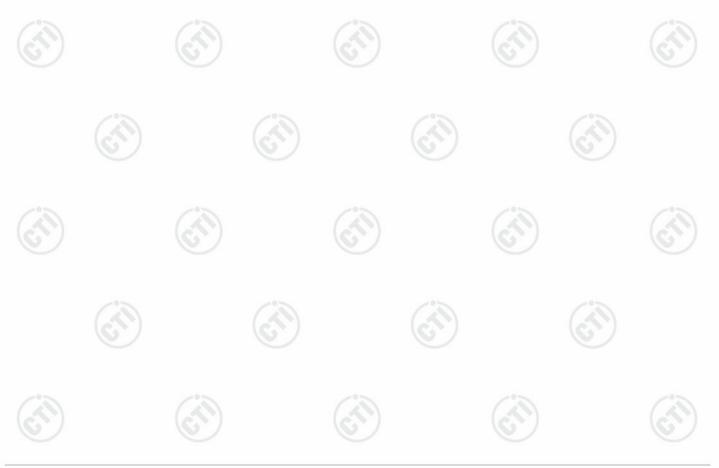
Description	Manufacturer	Model No.	Certification	Supplied by
ROG Rapture Tri-band Gaming Router	ASUSTek	GT-AXE11000	FCC	СТІ
Netbook	ASUSTek	1	FCC&CE	СТІ

3.4 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 3368385


No tests were sub-contracted.

FCC Designation No.: CN1164

3.5 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC CFR47 Part 15E Unlicensed National Information Infrastructure Devices FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 FCC KDB 905462 D03 Client Without DFS New Rules v01r02.

4 Equipment List

RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI					
Automatic test software	MWRF-test	MTS 8310	2.0.0.0		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5 DFS Technical Requirements and Radar Test Waveforms 5.1 DFS Overview

Table 1 Applicability of DFS Requirements Prior to Use of a Channel

		Operational Mo	de
Requirement	Master	Client without Radar Detection	Client with Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2 Applicability of DFS requirements during normal operation

(G [*])	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client without Radar Detection		
DFS Detection Threshold	Yes	Not require		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the lin
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check should include several frequencies within th radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.1 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

5.2 DFS Detection Thresholds

Table 3 DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value(See Notes 1, 2 and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm
Note 1: This is the level at the input of the re	eceiver assuming a 0 dBi receive antenna

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Parameter	Value
Non- occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60milliseconds over remaining 10 second period. See Notes 1 and 2
U-NII Detection Bandwidth	Minimum 100% of the UNII99% transmission power bandwidth See Note 3

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

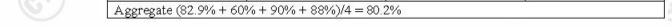
5.3 Radar Test Waveforms

5.3.1 Short Pulse Radar Test Waveforms

Table 5 – Short Pulse Radar Test Waveforms

3 	Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
1	Туре	(µsec)	(µsec)		Percentage of Successful Detection	Number of Trials
97	0	1	1428	18	See Note 1	See Note 1
	1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \\ \\ \begin{pmatrix} 19 \cdot 10^6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	60%	30
	2	1-5	150-230	23-29	60%	30
	3	6-10	200-500	16-18	60%	30
	4	11-20	200-500	12-16	60%	30
	Appreciate	(Radar Types 1-	4)	5.	80%	120

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.


For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

would be Roundup $\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\}$ = Round up $\{17, 2\} = 18$.

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

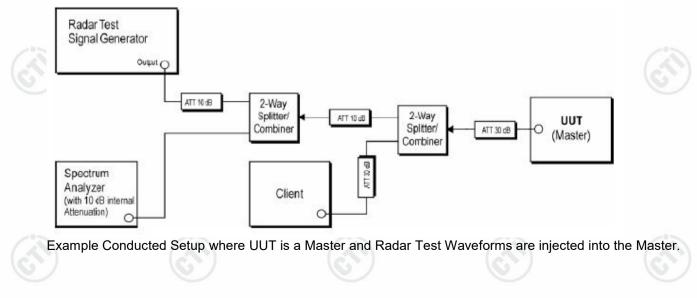
Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection
1	35	29	82.9%
2	30	18	60%
3	30	27	90%
4	50	44	88%

5.3.2 Long Pulse Radar Test Waveforms

Table 6 – Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

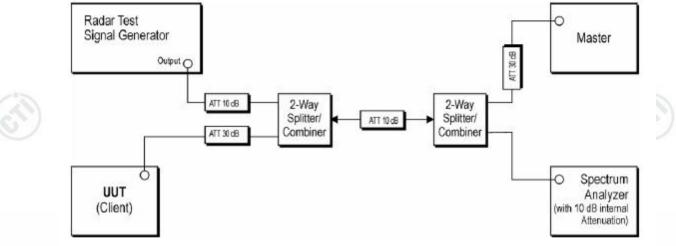
The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

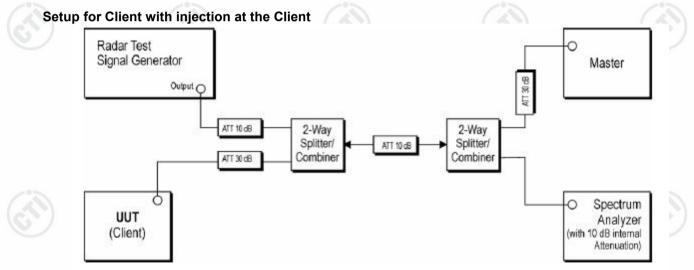

Table 7 - Frequency Hopping Radar Test Waveform

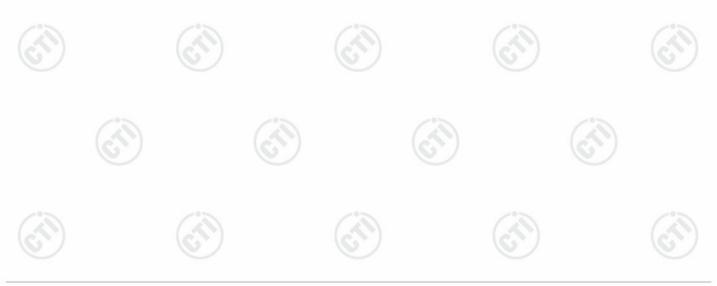
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

6 Test Requirement Test setup


Setup for Master with injection at the Master




Setup for Client with injection at the Master

Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

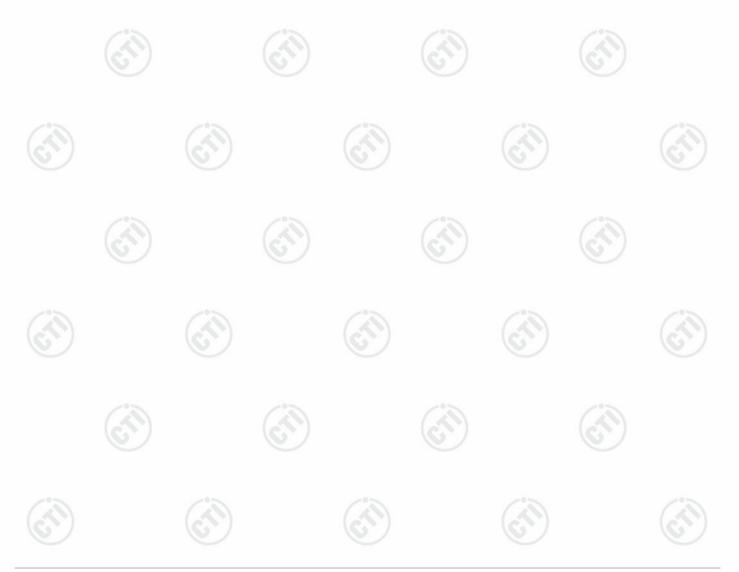
Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client.

7 Test Case Results

7.1 DFS Detection Thresholds

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa


Methods of Measurement

Client with injection at the Master.

For a detection threshold level of -64dBm, the required signal strength at EUT antenna location is -64dBm, the tested level is lower than required level hence it provides margin to the limit.

Calibration Result

Please refer to the report of EED32O81844304 Appendix 5G WIFI DFS.

7.2 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

These tests define how the following DFS parameters are verified during In-Service Monitoring;

- Channel Closing Transmission Time
- Channel Move Time
- Non-Occupancy Period

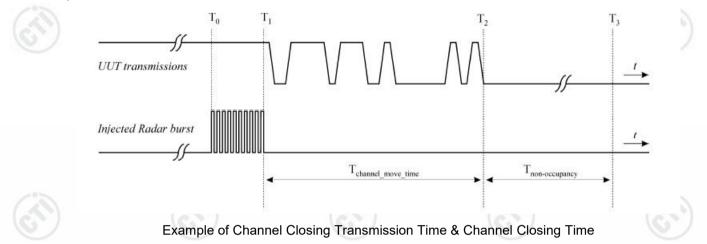
The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

1. One frequency will be chosen from the Operating Channels of the EUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.

2. In case the EUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the EUT (Client device) to Associate with the Master Device. In case the EUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the EUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.

3. Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

4. At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.


5. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.

6. When operating as a Master Device, monitor the EUT for more than 30 minutes following instant T2 to verify that the EUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.

7. In case the EUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps 1 to 6.

 Limit

 Channel Move Time
 ≤10s

 Channel Closing Transmission Time
 ≤200ms + 60ms (over remaining 10s period)

 Non-Occupancy Period
 ≥30min

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2:The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Test Result:

Please refer to the report of EED32O81844304 Appendix 5G WIFI DFS.

