

FCC Radio Test Report FCC ID: 2A5LO-ZLTP90

This report concerns: Original Grant

Project No.	:	2410C237
Equipment	÷	4G Wireless Router
Brand Name		TOZED KANGWEI
Test Model	:	ZLT P90
Series Model	:	ZLT P90Y(Y,Y can be A-J), Telsey P90
Applicant	:	Tozed Kangwei Tech Co., Ltd
Address	:	Room 1301, No. 37, Jinlong, Nansha Street, Xiangjiang Financial Business
		Center, Nansha District, Guangzhou,China
Manufacturer	:	Tozed Kangwei Tech Co., Ltd
Address	:	Room 1301, No. 37, Jinlong, Nansha Street, Xiangjiang Financial Business
		Center, Nansha District, Guangzhou,China
Factory	:	Tozed Kangwei Tech Co., Ltd
Address	:	Room 1301, No. 37, Jinlong, Nansha Street, Xiangjiang Financial Business
		Center, Nansha District, Guangzhou, China
Date of Receipt	:	Oct. 30, 2024
Date of Test	:	Nov. 01, 2024 ~ Nov. 26, 2024
Issued Date	:	Nov. 29, 2024
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG20241030390 for radiated, DG20241030387
-		for conducted.
Standard(s)	:	47 CFR FCC Part 22 Subpart H 47 CFR FCC Part 2

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by: Edward Li Treen Gen Approved by: Approved by : Treey Chen Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1. APPLICABLE STANDARDS	6
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
2.3 TEST ENVIRONMENT CONDITIONS	8
3. GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	11
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATIONOFSYSTEMTESTED	13
2.4 DESCRIPTION OF SUPPORT UNITS	13
4. TEST RESULT	14
4.1 OUTPUT POWER MEASUREMENT	14
4.1.1 LIMIT	14
4.1.2 TEST PROCEDURE	14
4.1.3 TEST SETUP LAYOUT	14
4.1.4 TEST DEVIATION	14
4.1.5 TEST RESULTS	14
4.2 OCCUPIED BANDWIDTH MEASUREMENT	15
4.2.1 TEST PROCEDURE	15
4.2.2 TEST SETUP LAYOUT	15
4.2.3 TEST DEVIATION	15
4.2.4 TEST RESULTS	15
4.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	16
4.3.1 LIMIT	16
4.3.2 TEST PROCEDURES	16
4.3.3 TEST SETUP LAYOUT	16
4.3.4 TEST DEVIATION 4.3.5 TEST RESULTS	16 16
4.4 RADIATED SPURIOUS EMISSIONS MEASUREMENT	17
4.4.1 LIMIT 4.4.2 TEST PROCEDURES	17 17
4.4.2 TEST PROCEDURES 4.4.3 TEST SETUP LAYOUT	17
4.4.4 TEST DEVIATION	18
4.4.5 TEST RESULTS (9KHZ TO 30MHZ)	19
4.4.6 TEST RESULTS (30MHZ TO 1000MHZ)	19
4.4.7 TEST RESULTS (ABOVE 1000MHZ)	19

Table of Contents	Page
4.5 BAND EDGE MEASUREMENT 4.5.1 LIMIT	20 20
4.5.2 TEST PROCEDURES	20
	20
4.5.4 TEST DEVIATION 4.5.5 TEST RESULTS	20 20
4.6 PEAK TO AVERAGE RATIO MEASUREMENT	21
4.6.1 LIMIT	21
4.6.2 TEST PROCEDURES	21
4.6.3 TEST SETUP LAYOUT	21
	21
4.6.5 TEST RESULTS	21
4.7 FREQUENCY STABILITY MEASUREMENT 4.7.1 LIMIT	22 22
4.7.2 TEST PROCEDURES	22
4.7.3 TEST SETUP LAYOUT	22
4.7.4 TEST DEVIATION	22
4.7.5 TEST RESULTS	22
4. LIST OF MEASUREMENT EQUIPMENTS	23
5. EUT TEST PHOTO	25
APPENDIX A - OUTPUT POWER	28
APPENDIX B - OCCUPIED BANDWIDTH	35
APPENDIX C - CONDUCTED SPURIOUS EMISSIONS	41
APPENDIX D - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ)	44
APPENDIX E - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1000MHZ)	46
APPENDIX F - RADIATED SPURIOUS EMISSIONS (ABOVE 1000MHZ)	49
APPENDIX G - BAND EDGE	52
APPENDIX H - PEAK TO AVERAGE RATIO	58
APPENDIX I - FREQUENCY STABILITY	64

REPORT ISSUED HISTORY

REPORT ISSUED HISTORY							
Report No.	Version	Description	Issued Date	Note			
BTL-FCCP-1-2410C237	R00	Original Report.	Nov. 29, 2024	Valid			
	· · ·						

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.26-2015

The following reference test guidance is not within the scope of accreditation of A2LA: FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 22 Subpart H & Part 2						
Standard(s) Section	Judgment	Remark				
2.1046	Output Power PASS					
22.913(a)(5)	Effective Radiated Power	PASS				
2.1049	Occupied Bandwidth	PASS				
2.1051 22.917(a)	Conducted Spurious Emissions PASS					
2.1053 22.917(a)	Radiated Spurious Emissions	PASS				
22.917(a)	Band Edge Measurements	PASS				
22.913(d)	Peak To Average Ratio	PASS				
2.1055 22.355	Frequency Stability	PASS				

Note:

(1) "N/A" denotes test is not applicable in this test report.

2.1 TEST FACILITY

For radiated spurious emissions(9 kHz to 30 MHz) item:

The test facilities used to collect the test data in this report is at the location of 1-2/F, 4/F, Building A, 1-2/F, Building B, 3/F, Building C, No.3, Jinshagang 1st Road, Dalang Town, Dongguan City, Guangdong People's Republic of China.

For other items:

The test facilities used to collect the test data in this report is at the location of Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China.

BTL's Registration Number for FCC: 747969

BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	<i>U</i> ,(dB)
SSL-CB01 (3m)		30MHz ~ 200MHz	V	4.70
	CISPR	30MHz ~ 200MHz		3.56
		200MHz ~ 1,000MHz	V	4.92
		200MHz ~ 1,000MHz	Н	4.54

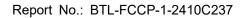
Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
SSL-CB01		1GHz ~ 6GHz	4.56
(3m)	CISPR	6GHz ~ 18GHz	5.14

B. Other Measurement:

Parameter	Uncertainty
Spectrum Bandwidth	±1.74 dB
Maximum Output Power	±0.87 dB
Frequency Stability	±53.10Hz
Conducted Spurious Emissions	2.71 dB
Temperature	±0.48 °C
Humidity	±1.37 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS


	_				
Test Item	Temperature	Humidity	Test Voltage	Tested By	Test Date
Output Power & ERP	23.3-24.1°C	36-47%	DC 24V	Gavin Ge	Nov. 02, 2024 ~ Nov. 26, 2024
Occupied Bandwidth	23.3-24.1°C	36-47%	DC 24V	Gavin Ge	Nov. 02, 2024 ~ Nov. 26, 2024
Conducted Spurious Emissions	23.3-24.1°C	36-47%	DC 24V	Gavin Ge	Nov. 02, 2024 ~ Nov. 26, 2024
Radiated Spurious Emissions (9 kHz to 30 MHz)	26°C	47%	AC 120V/60Hz	Vance Lv	Nov. 19, 2024
Radiated Spurious Emissions (30 MHz to 1000 MHz)	20°C	50%	AC 120V/60Hz	Young Zou	Nov. 22, 2024
Radiated Spurious Emissions (Above 1000 MHz)	20°C	50%	AC 120V/60Hz	Young Zou	Nov. 22, 2024
Band Edge	23.3-24.1°C	36-47%	DC 24V	Gavin Ge	Nov. 02, 2024 ~ Nov. 26, 2024
Peak to Average Ratio	23.3-24.1°C	36-47%	DC 24V	Gavin Ge	Nov. 02, 2024 ~ Nov. 26, 2024
Frequency Stability	Normal & Extreme	36-47%	Normal & Extreme	Gavin Ge	Nov. 02, 2024 ~ Nov. 26, 2024

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

4G Wireless Router						
TOZED KANGWEI						
ZLT P90						
ZLT P90Y(Y,Y can b	e A-J), Telsey P	90				
			ell color a	and silk	screen	
TZ7.823.386A						
V1.0						
DC Voltage supplied	d from PoE ada	oter.				
e						
I/P: 100-240V ~ 50/	60Hz 0.8A					
O/P: 24V == 1.0A						
Radiated 868553060003943						
Conducted 8	6855306000364	46				
	UL: QPSK,16QAM					
	DL: QPSK,16QAM,64QAM					
LTE		UL: QPSK,16QAM				
WCDMA Band V		QPSK	22.	10	dBm	
HSDPA Band V		QPSK	21.	04	dBm	
HSUPA Band V		QPSK	20.	97	dBm	
	Channel				100414	
LTE	Bandwidth	- •		16QAM		
	(MHz)	(abm)		(dBm)		
	1.4	23.31			22.35	
Dand 5	3	23.36		22.56		
C DIRG	5	23.43		22.72		
	10	23.27		22.49		
	ZLT P90 ZLT P90Y(Y,Y can b There is no difference change. TZ7.823.386A V1.0 DC Voltage supplied Model: GS-P240100 I/P: 100-240V ~ 50/6 O/P: 24V === 1.0A +4.5pins, -7.8p Radiated 8 Conducted 8 WCDMA/HSDPA/HS LTE WCDMA Band V HSDPA Band V	TOZED KANGWEI ZLT P90 ZLT P90Y(Y,Y can be A-J), Telsey P There is no difference except mode change. TZ7.823.386A V1.0 DC Voltage supplied from PoE adag Model: GS-P240100E954 I/P: 100-240V ~ 50/60Hz 0.8A O/P: 24V == 1.0A +4.5pins, -7.8pins Radiated 86855306000394 Conducted 86855306000364 WCDMA/HSDPA/HSUPA LTE WCDMA Band V HSUPA Band V 1.4 Band 5 3 5 5	TOZED KANGWEI ZLT P90 ZLT P90Y(Y,Y can be A-J), Telsey P90 There is no difference except model difference, she change. TZ7.823.386A V1.0 DC Voltage supplied from PoE adapter. Model: GS-P240100E954 I/P: 100-240V ~ 50/60Hz 0.8A O/P: 24V === 1.0A +4.5pins, -7.8pins Radiated 868553060003943 Conducted 868553060003646 WCDMA/HSDPA/HSUPA UL: QPSK,16 DL: QPSK,16 DL: QPSK,16 UL: QPSK,16 DL: QPSK,16 WCDMA Band V QPSK HSUPA Band V QPSK LTE Channel Bandwidth (MHz) QPSK Band 5 3 23.36	TOZED KANGWEI ZLT P90 ZLT P90Y(Y,Y can be A-J), Telsey P90 There is no difference except model difference, shell color a change. TZ7.823.386A V1.0 DC Voltage supplied from PoE adapter. Model: GS-P240100E954 I/P: 100-240V ~ 50/60Hz 0.8A O/P: 24V === 1.0A +4.5pins, -7.8pins Radiated 868553060003943 Conducted 868553060003943 Conducted 868553060003646 WCDMA/HSDPA/HSUPA UL: QPSK,16QAM DL: QPSK,16QAM,64 DL: QPSK,16QAM LTE UL: QPSK, 16QAM,64 WCDMA Band V QPSK 22. HSDPA Band V QPSK 20. LTE Channel Bandwidth (dBm) QPSK LTE 1.4 23.31 Band 5 5 23.43	TOZED KANGWEI ZLT P90 ZLT P90Y(Y,Y can be A-J), Telsey P90 There is no difference except model difference, shell color and silk change. TZ7.823.386A V1.0 DC Voltage supplied from PoE adapter. Model: GS-P240100E954 I/P: 100-240V ~ 50/60Hz 0.8A O/P: 24V == 1.0A +4.5pins, -7.8pins Radiated 868553060003943 Conducted 868553060003943 Conducted 868553060003646 WCDMA/HSDPA/HSUPA UL: QPSK,16QAM DL: QPSK,16QAM DL: QPSK,16QAM LTE UL: QPSK, 16QAM,64QAM WCDMA Band V QPSK QPSK 21.04 HSUPA Band V QPSK LTE Channel Band 5 3 3 23.36 5 23.43	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

WCDMA Band V						
Test Frequency ID	UARFCN	Frequency of Uplink (MHz)	UARFCN	Frequency of Downlink (MHz)		
Low Range	4132	826.4	4357	871.4		
Mid Range	4182	836.4	4407	881.4		
High Range	4233	846.6	4458	891.6		

	LTE Band 5(UL: 824-849MHz,DL: 869-894MHz)							
Test Frequency ID	Bandwidth (MHz)	N _{UL}	Frequency of Uplink (MHz)	N _{DL}	Frequency of Downlink (MHz)			
	1.4	20407	824.7	2407	869.7			
Low Dongo	3	20415	825.5	2415	870.5			
Low Range	5	20425	826.5	2425	871.5			
	10	20450	829	2450	874			
Mid Range	1.4/3/5/10	20525	836.5	2525	881.5			
	1.4	20643	848.3	2643	893.3			
Llinh Denne	3	20635	847.5	2635	892.5			
High Range	5	20625	846.5	2625	891.5			
	10	20600	844	2600	889			

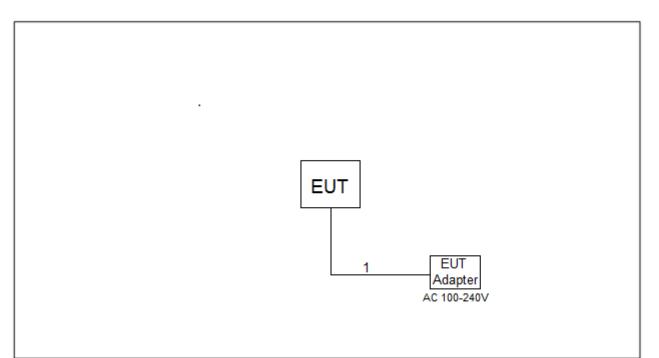
3. Table for Filed Antenna:

Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
Shenzhen Be-Comfortable	N19-0728-			4.66	WCDMA Band V
Technology Co. Ltd	R0A	PCB	N/A	4.66	LTE Band 5

Note: The antenna gain is provided by the manufacturer.

3.2 DESCRIPTION OF TEST MODES

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.


WCDMA BAND V MODE							
Test Item	Available Channel	Tested Channel	Mode				
Output Power & ERP	4132 to 4233	4132, 4182, 4233	WCDMA, HSDPA, HSUPA				
Occupied Bandwidth	4132 to 4233	4132, 4182, 4233	WCDMA				
Conducted Spurious Emissions	4132 to 4233	4182	WCDMA				
Radiated Spurious Emissions	4132 to 4233	4182	WCDMA				
Band Edge	4132 to 4233	4132, 4233	WCDMA				
Peak To Average Ratio	4132 to 4233	4132, 4182, 4233	WCDMA				
Frequency Stability	4132 to 4233	4182	WCDMA				

		LTE BAND	5 MODE		
Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK, 16QAM	1RB/3RB/6RB
Output Power	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM	1RB/8RB/15RB
& ERP	20425 to 20625	20425, 20525, 20625	5MHz	QPSK, 16QAM	1RB/12RB/25RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM	1RB/25RB/50RB
	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK, 16QAM	6RB
Occupied	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM	15RB
Bandwidth	20425 to 20625	20425, 20525, 20625	5MHz	QPSK, 16QAM	25RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM	50RB
Conducted	20407 to 20643	20525	1.4MHz	QPSK	1RB
Spurious	20425 to 20625	20525	5MHz	QPSK	1RB
Emissions	20450 to 20600	20525	10MHz	QPSK	1RB
Radiated	20407 to 20643	20525	1.4MHz	QPSK	1RB
Spurious	20425 to 20625	20525	5MHz	QPSK	1RB
Emissions	20450 to 20600	20525	10MHz	QPSK	1RB
	20407 to 20643	20407, 20643	1.4MHz	QPSK	1RB/6RB
Band Edge	20415 to 20635	20415, 20635	3MHz	QPSK	1RB/15RB
Danu Euge	20425 to 20625	20425, 20625	5MHz	QPSK	1RB/25RB
	20450 to 20600	20450, 20600	10MHz	QPSK	1RB/50RB
	20407 to 20643	20407, 20525, 20643		QPSK, 16QAM	1RB
Peak To	20415 to 20635	20415, 20525, 20635		QPSK, 16QAM	1RB
Average Ratio	20425 to 20625	20425, 20525, 20625		QPSK, 16QAM	1RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM	1RB
Frequency Stability	20450 to 20600	20525	10MHz	QPSK	50RB

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATIONOFSYSTEMTESTED

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	RJ45 Cable	NO	NO	1.5m

4. TEST RESULT

4.1 OUTPUT POWER MEASUREMENT

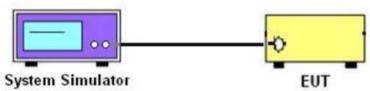
4.1.1 LIMIT

Mobile / Portable station are limited to 7 watts e.r.p.

4.1.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5 or ANSI C63.26-2015 Section 5.2.

EIRP / ERP:

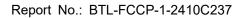

EIRP = Output Power + Antenan gain ERP = EIPR - 2.15dBi

Output Power:

The EUT was set up for the maximum power with GSM, GPRS, EDGE, WCDMA and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 TEST SETUP LAYOUT

Output Power Measurement

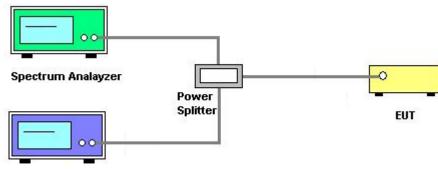


4.1.4 TEST DEVIATION

No deviation

4.1.5 TEST RESULTS

Please refer to the APPENDIX A.

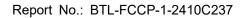

4.2 OCCUPIED BANDWIDTH MEASUREMENT

4.2.1 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 4 or ANSI C63.26-2015 Section 5.4.

- The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth and 26dB bandwidth.
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 3. RBW=(1% ~ 5%)*EBW VBW≥3* RBW
- 4. Set spectrum analyzer with Peak detector.

4.2.2 TEST SETUP LAYOUT


Communication simulator

4.2.3 TEST DEVIATION

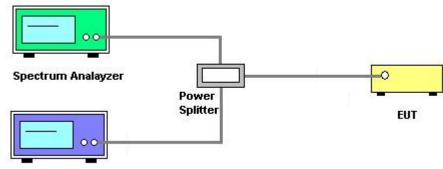
No deviation

4.2.4 TEST RESULTS

Please refer to the APPENDIX B.

4.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

4.3.1 LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

4.3.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6 or ANSI C63.26-2015 Section 5.7.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured. Set RBW>=1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- ^{3.} Set spectrum analyzer with Peak or RMS detector.
- 4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

4.3.3 TEST SETUP LAYOUT

Communication simulator

4.3.4 TEST DEVIATION

No deviation

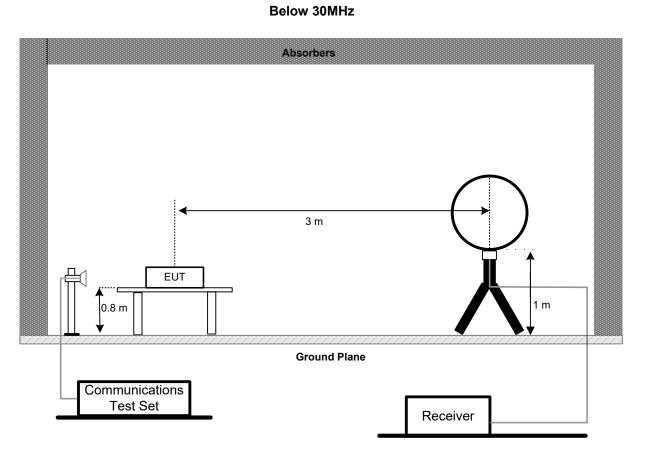
4.3.5 TEST RESULTS

Please refer to the APPENDIX C.

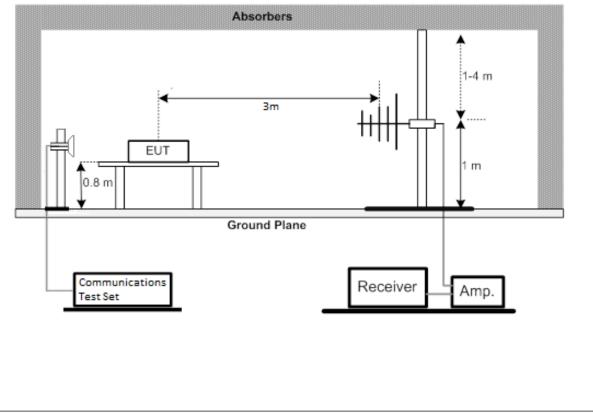
4.4 RADIATED SPURIOUS EMISSIONS MEASUREMENT

4.4.1 LIMIT

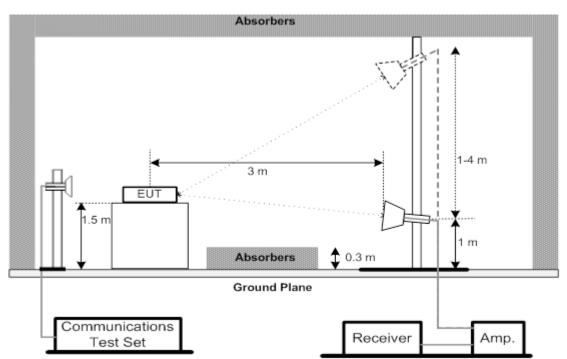
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.


4.4.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.2 or ANSI C63.26-2015 Section 5.5.


- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 4. Start the test, rotate the table 360° to find the worst Angle, maintain the worst Angle, raise the antenna to 1-4m to find the worst height, maintain the worst height, then rotate the table to determine the final worst Angle, grab the spectrum diagram.
- EUT shall be placed in accordance with X,Y,Z as required by Figure 5 in ANSI C63.26. Repeat Step 5 above to find the worst placement. Test all bands according to the worst placement.
- 6. Then EIRP is then converted to field strength as follows in Equation
- 7. E (dBuV/m) = EIRP (dBm) 20log(D) + 104.8; where D is the measurement distance (in the far field region) in m.The emission limit equal to 82.26dBuV/m.

4.4.3 TEST SETUP LAYOUT



30MHz to 1000MHz

Above 1GHz

4.4.4 TEST DEVIATION

No deviation

4.4.5 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the APPENDIX D.

4.4.6 TEST RESULTS (30MHZ TO 1000MHZ)

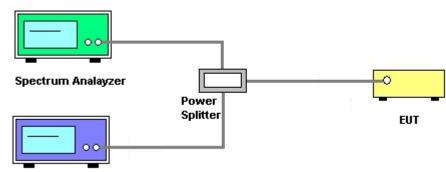
Please refer to the APPENDIX E.

4.4.7 TEST RESULTS (ABOVE 1000MHZ)

Please refer to the APPENDIX F.

4.5 BAND EDGE MEASUREMENT

4.5.1 LIMIT

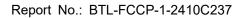

A Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.5.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6 or ANSI C63.26-2015 Section 5.7.

- 1. All measurements were done at low and high operational frequency range.
- 2. Record the max trace plot into the test report.

4.5.3 TEST SETUP LAYOUT


Communication simulator

4.5.4 TEST DEVIATION

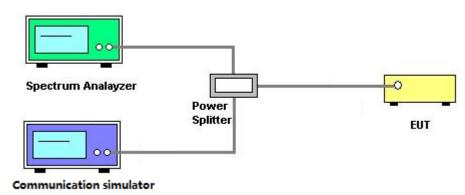
No deviation

4.5.5 TEST RESULTS

Please refer to the APPENDIX G.

4.6 PEAK TO AVERAGE RATIO MEASUREMENT

4.6.1 LIMIT

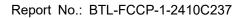

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.6.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 5.7 or ANSI C63.26-2015 Section 5.2.6.

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

4.6.3 TEST SETUP LAYOUT



4.6.4 TEST DEVIATION

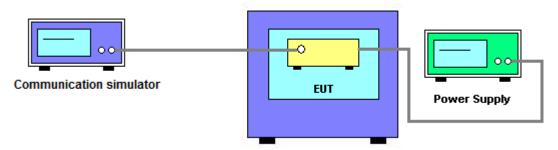
No deviation

4.6.5 TEST RESULTS

Please refer to the APPENDIX H.

4.7 FREQUENCY STABILITY MEASUREMENT

4.7.1 LIMIT


 ± 1.5 ppm is for base and fixed station. ± 2.5 ppm is for mobile station.

4.7.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 9 or ANSI C63.26-2015 Section 5.6.

- 1. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- 2. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- 3. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
- 4. The frequency error was recorded frequency error from the communication simulator.

4.7.3 TEST SETUP LAYOUT

4.7.4 TEST DEVIATION

No deviation

4.7.5 TEST RESULTS

Please refer to the APPENDIX I.

4. LIST OF MEASUREMENT EQUIPMENTS

	Radiated Emissions - 9 kHz to 30 MHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60 B-034	Mar. 30, 2025		
2	MXE EMI Receiver	Keysight	N9038A	MY56400091	Dec. 22, 2024		
3	Cable	N/A	RW4950-3.8A-N MSM-1.5	N/A	Nov. 12, 2025		
4	Cable	N/A	LMR400-NMNM -8M	N/A	Nov. 12, 2025		
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
6	966 Chamber room	ETS	9*6*6	N/A	May 16, 2025		
7	wideband radio communication tester	R&S	CMW500	152372	Dec. 22, 2024		

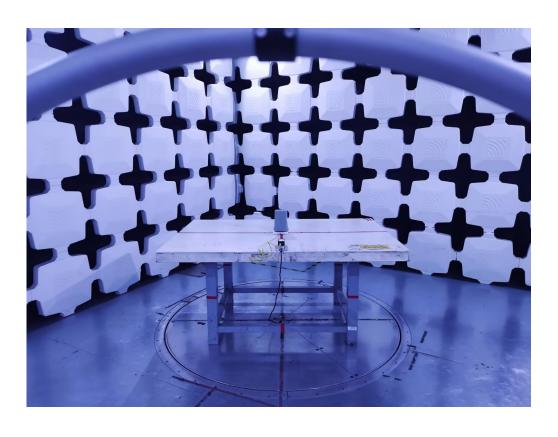
		Radiated E	Emissions - 30 MHz to	o 1 GHz	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	01269	May 18, 2025
2	Attenuator	EMCI	EMCI-N-6-06	AN-N0697	May 18, 2025
3	MXE EMI Receiver	Keysight	N9038A	MY59050118	Jun. 28, 2025
4	Preamplifier	EMC INSTRUMENT	EMC001330	980825	Jan. 19, 2025
5	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-2500	N/A	Jun. 06, 2025
6	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-7000	N/A	Jun. 06, 2025
7	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-3000	N/A	Jun. 06, 2025
8	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
9	Wideband Radio Communication Tester	R&S	CWM 500	165848	Jan. 19, 2025
10	966 Chamber room	Tai He	9*6*6(NSA&VSWR)	N/A	Jun. 06, 2025

	Radiated Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	MXE EMI Receiver	Keysight	N9038A	MY59050118	Jun. 28, 2025			
2	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
3	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980739	Jan. 19, 2025			
4	Cable	EMC INSTRUMENT	EMC104-SM-SM-1 0000	N/A	Jun. 06, 2025			
5	Cable	EMC INSTRUMENT	EMC104-SM-SM-3 000	N/A	Jun. 06, 2025			
6	Cable	EMC INSTRUMENT	EMC104-SM-SM-8 00	N/A	Jun. 06, 2025			
7	Double Ridged Broadband Horn Antenna	RF SPIN	DRH18-E	210106A18E	Jul. 17, 2025			
8	Band Reject Filter	COM-MW	ZHPF6-C3000-180 00-174	7213126	Jun. 28, 2025			
9	Band Reject Filter	COM-MW	ZHPF6-M1000-150 00-533	7213127	Jun. 28, 2025			
10	Attenuator	Talent Microwave	ATT-18G2W-10	N/A	N/A			
11	966 Chamber room	Tai He	9*6*6(NSA&VSWR)	N/A	Jun. 06, 2025			
12	Wideband Radio Communication Tester	R&S	CWM 500	165848	Jan. 19, 2025			

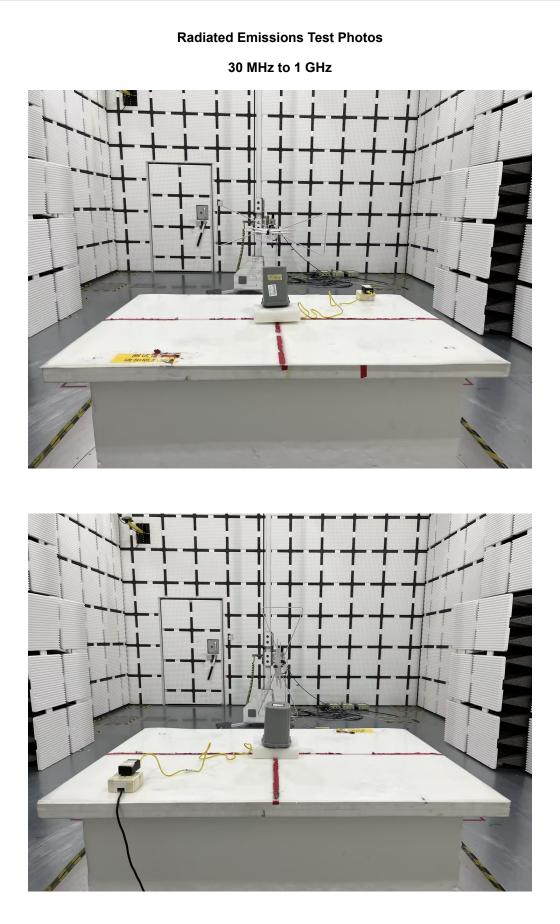
	Conducted Measurement For TR06							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Wideband Radio Communication Tester	R&S	CWM 500	165578	Jan. 19, 2025			
2	Signal Analyzer	R&S	FSV 40	100948	Jun. 28, 2025			
3	MXA Signal Analyzer	Agilent Technologies	N9020A	MY49100060	Jun. 28, 2025			
4	MXA Signal Analyzer	Agilent Technologies	N9020B	MY49100060	Oct. 29, 2025			
5	Temperature Chamber	ESPEC	SU-242	93018786	Jun. 28, 2025			
6	DC Source metter	Iteck	IT6154	00610412676820100 1	Jun. 28, 2025			
7	Measurement Software	BTL	BTL-Mobile Test20231204(12 46884249)	N/A	N/A			

	Conducted Measurement For TR02						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	8960 SERIES 10 Wireless Communications Test Set	Agilent Technologies	E5515E	MY54491001	Jun. 28, 2025		
2	RF Interface	KEYSIGHT	N1960-80103	MY45490268	N/A		
3	Measurement Software	Keysight	GS-8800(SW Ver:DVT.3.4.1.0.0)	N/A	N/A		

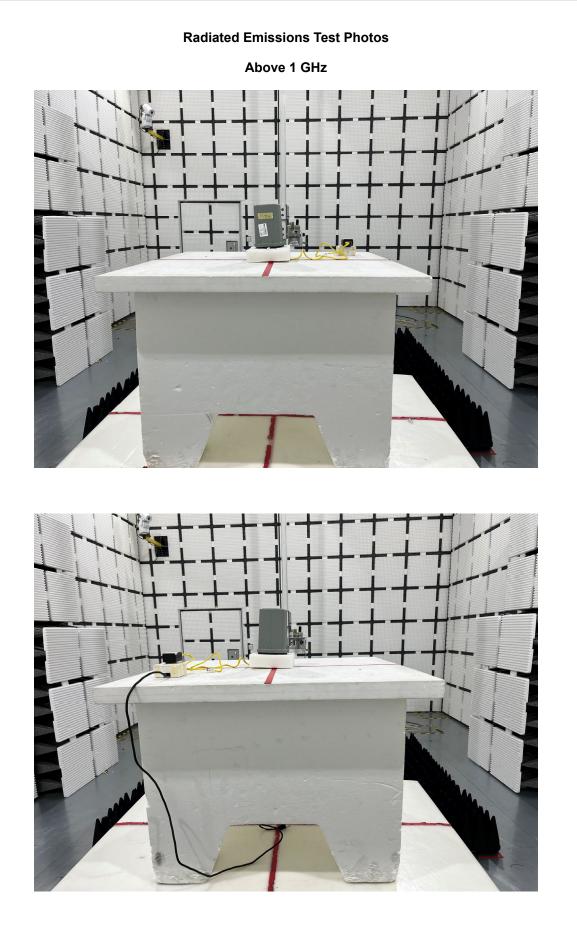
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.



5. EUT TEST PHOTO


Radiated Emissions Test Photos

9 kHz to 30 MHz



APPENDIX A - OUTPUT POWER

	Band		WCDMA Band V	
Modulation	Tx Channel	4132CH	4182CH	4233CH
	Frequency	826.4MHz	836.4MHz	846.6MHz
	RMC 12.2K	19.52	19.59	19.24
	RMC 64K	19.54	19.57	19.23
	RMC 144K	19.55	19.58	19.24
	RMC 384K	19.53	19.58	19.26
	HSDPA Subtest-1	18.5	18.53	18.17
	HSDPA Subtest-2	18.5	18.49	18.04
QPSK	HSDPA Subtest-3	17.94	17.99	17.54
	HSDPA Subtest-4	17.97	18.04	17.53
	HSUPA Subtest-1	18.4	18.46	17.99
	HSUPA Subtest-2	16.39	16.44	16
	HSUPA Subtest-3	17.45	17.43	16.93
	HSUPA Subtest-4	16.45	16.49	16
	HSUPA Subtest-5	18.31	18.38	18

Output Power (dBm)

		RB	RB	Low CH	Mid CH	High CH
LTE Band / BW	Modulation	Size	Offset	20407CH	20525CH	20643CH
		Size	Oliset	824.7MHz	836.5MHz	848.3MHz
		1	0	20.63	20.68	19.43
		1	2	20.59	20.80	19.38
		1	5	20.46	20.76	19.22
	QPSK	3	0	20.60	20.65	19.33
		3	1	20.59	20.68	19.34
		3	2	20.49	20.60	19.23
5 / 1.4MHz		6	0	19.90	19.83	19.29
571.4IVINZ		1	0	19.63	19.69	18.85
		1	2	19.69	19.70	18.82
		1	5	19.58	19.66	18.66
	16QAM	3	0	19.76	19.59	18.65
		3	1	19.84	19.66	18.66
		3	2	19.74	19.59	18.53
		6	0	18.84	18.80	18.35

LTE Band / BW	Modulation	RB	RB	Low CH 20415CH	Mid CH 20525CH	High CH 20635CH
LIE Dallu / DW	wouldtion	Size	Offset	825.5MHz	836.5MHz	847.5MHz
		1	0	20.72	20.79	19.63
		1	7	20.48	20.85	19.50
		1	14	20.31	20.85	19.25
	QPSK	8	0	19.80	19.86	19.57
		8	4	19.93	19.82	19.52
		8	7	19.75	19.76	19.40
5 / 3MHz		15	0	19.77	19.74	19.50
		1	0	19.59	20.05	18.81
		1	7	19.52	20.04	18.66
	16QAM	1	14	19.30	19.93	18.43
		8	0	18.83	18.81	18.62
		8	4	18.86	18.82	18.65
		8	7	18.81	18.73	18.57
		15	0	18.74	18.71	18.50

		RB	RB	Low CH	Mid CH	High CH
LTE Band / BW	Modulation	Size	Offset	20425CH	20525CH	20625CH
		Size	Oliset	826.5MHz	836.5MHz	846.5MHz
		1	0	20.92	20.78	19.96
		1	13	20.41	20.82	19.61
		1	24	20.37	20.77	19.45
	QPSK	12	0	19.80	19.83	19.65
		12	6	19.89	19.79	19.62
		12	11	19.71	19.76	19.56
5 / 5MHz		25	0	19.87	19.72	19.63
57 SIVIEZ		1	0	19.87	20.21	19.12
		1	13	19.61	20.19	18.78
	16QAM	1	24	19.58	20.06	18.68
		12	0	18.80	18.91	18.68
		12	6	18.84	18.89	18.66
		12	11	18.80	18.81	18.61
1		25	0	18.75	18.74	18.52

		RB	RB	Low CH	Mid CH	High CH
LTE Band / BW	Modulation	Size	Offset	20450CH	20525CH	20600CH
		Size	Oliset	829.0MHz	836.5MHz	844.0MHz
		1	0	20.56	20.36	20.40
		1	25	20.02	20.76	19.48
		1	49	20.23	19.81	19.00
	QPSK	25	0	19.85	19.86	19.67
		25	13	19.85	19.74	19.66
		25	25	19.81	19.70	19.37
5 / 10MHz		50	0	19.83	19.73	19.72
		1	0	19.60	19.76	19.86
		1	25	19.06	19.98	19.13
		1	49	19.24	19.22	18.63
	16QAM	25	0	18.78	18.79	18.57
		25	13	18.86	18.75	18.56
		25	25	18.82	18.66	18.61
		50	0	18.82	18.71	18.50

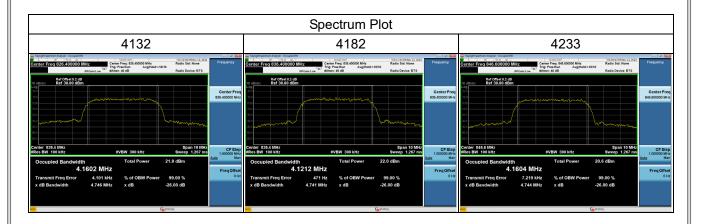
)				
	Band	WCDMA Band V					
Modulation	Tx Channel	4132CH	4182CH	4233CH			
	Frequency	826.4MHz	836.4MHz	846.6MHz			
	RMC 12.2K	22.03	22.10	21.75			
	RMC 64K	22.05	22.08	21.74			
	RMC 144K	22.06	22.09	21.75			
	RMC 384K	22.04	22.09	21.77			
	HSDPA Subtest-1	21.01	21.04	20.68			
	HSDPA Subtest-2	21.01	21.00	20.55			
QPSK	HSDPA Subtest-3	20.45	20.50	20.05			
	HSDPA Subtest-4	20.48	20.55	20.04			
	HSUPA Subtest-1	20.91	20.97	20.50			
	HSUPA Subtest-2	18.90	18.95	18.51			
	HSUPA Subtest-3	19.96	19.94	19.44			
	HSUPA Subtest-4	18.96	19.00	18.51			
	HSUPA Subtest-5	20.82	20.89	20.51			

ERP (dBm)

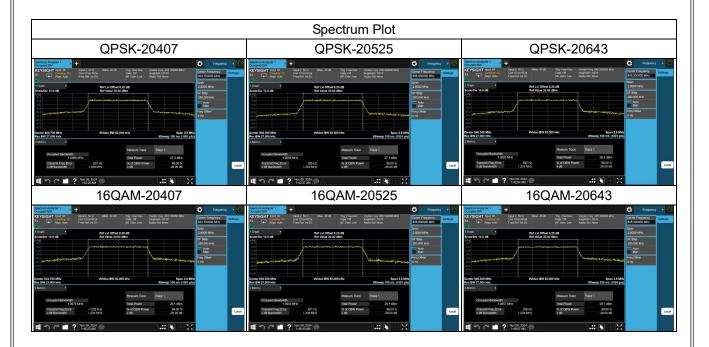
		RB	RB	Low CH	Mid CH	High CH
LTE Band / BW	Modulation	Size	Offset	20407CH	20525CH	20643CH
		Size	Oliset	824.7MHz	836.5MHz	848.3MHz
		1	0	23.14	23.19	21.94
		1	2	23.10	23.31	21.89
		1	5	22.97	23.27	21.73
	QPSK	3	0	23.11	23.16	21.84
		3	1	23.10	23.19	21.85
		3	2	23.00	23.11	21.74
5 / 1.4MHz		6	0	22.41	22.34	21.80
57 1.4IVINZ		1	0	22.14	22.20	21.36
		1	2	22.20	22.21	21.33
		1	5	22.09	22.17	21.17
	16QAM	3	0	22.27	22.10	21.16
		3	1	22.35	22.17	21.17
		3	2	22.25	22.10	21.04
		6	0	21.35	21.31	20.86

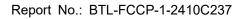
LTE Band / BW	Modulation	RB	RB	Low CH 20415CH	Mid CH 20525CH	High CH 20635CH
LIL Dand / DW	wouldtion	Size	Offset	825.5MHz	836.5MHz	847.5MHz
		1	0	23.23	23.30	22.14
		1	7	22.99	23.36	22.01
		1	14	22.82	23.36	21.76
	QPSK	8	0	22.31	22.37	22.08
		8	4	22.44	22.33	22.03
		8	7	22.26	22.27	21.91
5 / 3MHz		15	0	22.28	22.25	22.01
		1	0	22.10	22.56	21.32
		1	7	22.03	22.55	21.17
	16QAM	1	14	21.81	22.44	20.94
		8	0	21.34	21.32	21.13
		8	4	21.37	21.33	21.16
		8	7	21.32	21.24	21.08
		15	0	21.25	21.22	21.01

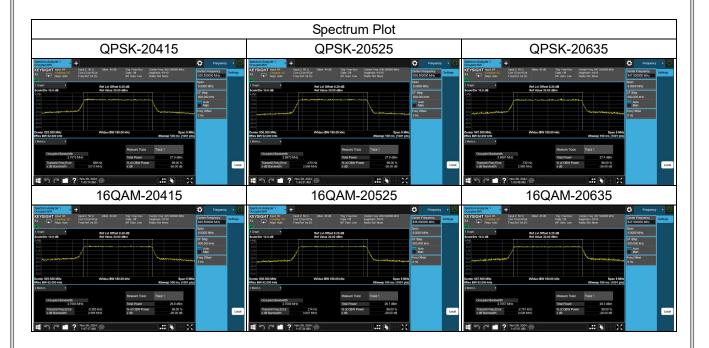
		RB	RB	Low CH	Mid CH	High CH
LTE Band / BW	Modulation	Size	Offset	20425CH	20525CH	20625CH
		Size	Oliset	826.5MHz	836.5MHz	846.5MHz
		1	0	23.43	23.29	22.47
		1	13	22.92	23.33	22.12
		1	24	22.88	23.28	21.96
	QPSK	12	0	22.31	22.34	22.16
		12	6	22.40	22.30	22.13
		12	11	22.22	22.27	22.07
5 / 5MHz		25	0	22.38	22.23	22.14
		1	0	22.38	22.72	21.63
		1	13	22.12	22.70	21.29
	16QAM	1	24	22.09	22.57	21.19
		12	0	21.31	21.42	21.19
		12	6	21.35	21.40	21.17
		12	11	21.31	21.32	21.12
		25	0	21.26	21.25	21.03

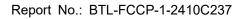

	Medulation	RB	RB	Low CH	Mid CH	High CH
LTE Band / BW	Modulation	Size	Offset	20450CH 829.0MHz	20525CH 836.5MHz	20600CH 844.0MHz
		1	0	23.07	22.87	22.91
		1	25	22.53	23.27	21.99
		1	49	22.74	22.32	21.51
	QPSK	25	0	22.36	22.37	22.18
		25	13	22.36	22.25	22.17
		25	25	22.32	22.21	21.88
5 / 10MHz		50	0	22.34	22.24	22.23
		1	0	22.11	22.27	22.37
		1	25	21.57	22.49	21.64
	16QAM	1	49	21.75	21.73	21.14
		25	0	21.29	21.30	21.08
		25	13	21.37	21.26	21.07
		25	25	21.33	21.17	21.12
		50	0	21.33	21.22	21.01

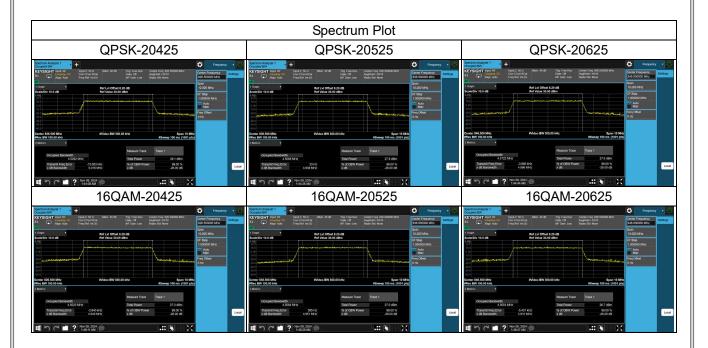
APPENDIX B - OCCUPIED BANDWIDTH

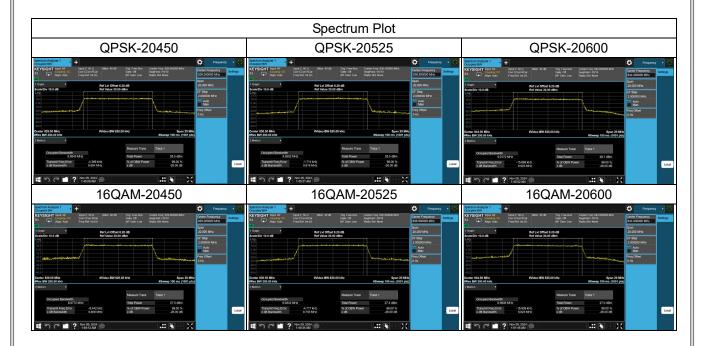



	WCDMA Band V_WCDMA							
Channel	nel Frequency (MHz)	99% Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)					
	(1011 12)	QPSK	QPSK					
4132	826.4	4.1602	4.746					
4182	836.4	4.1212	4.741					
4233	846.6	4.1604	4.744					


LTE Band 5_1.4MHz								
Channel	Frequency (MHz)	99% Occupie (Mł			3andwidth /IHz)			
	(11112)	QPSK	16QAM	QPSK	16QAM			
20407	824.7	1.0860	1.0878	1.288	1.234			
20525	836.5	1.0858	1.0904	1.234	1.238			
20643	848.3	1.0983	1.0857	1.233	1.234			

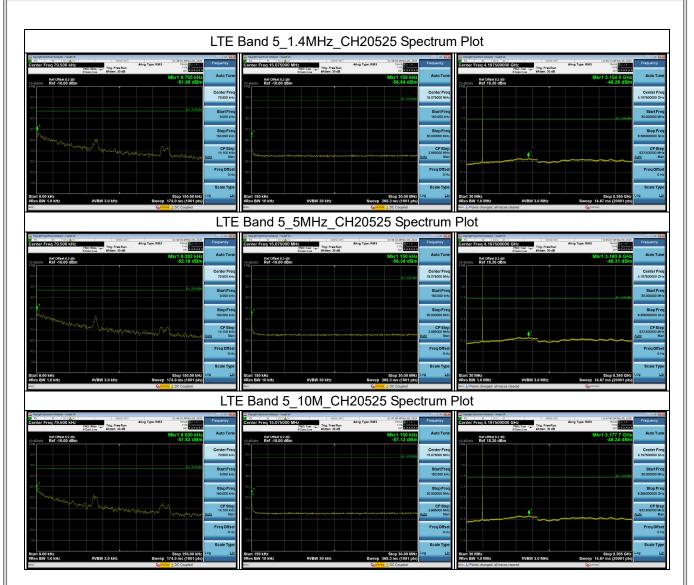



LTE Band 5_3MHz								
Channel	Frequency (MHz)	99% Occupie (Mł			Bandwidth 1Hz)			
	(11112)	QPSK	QPSK 16QAM		16QAM			
20415	825.5	2.7013	2.7063	3.013	2.995			
20525	836.5	2.6973	2.7006	2.996	3.007			
20635	847.5	2.6997	2.7057	2.985	3.026			

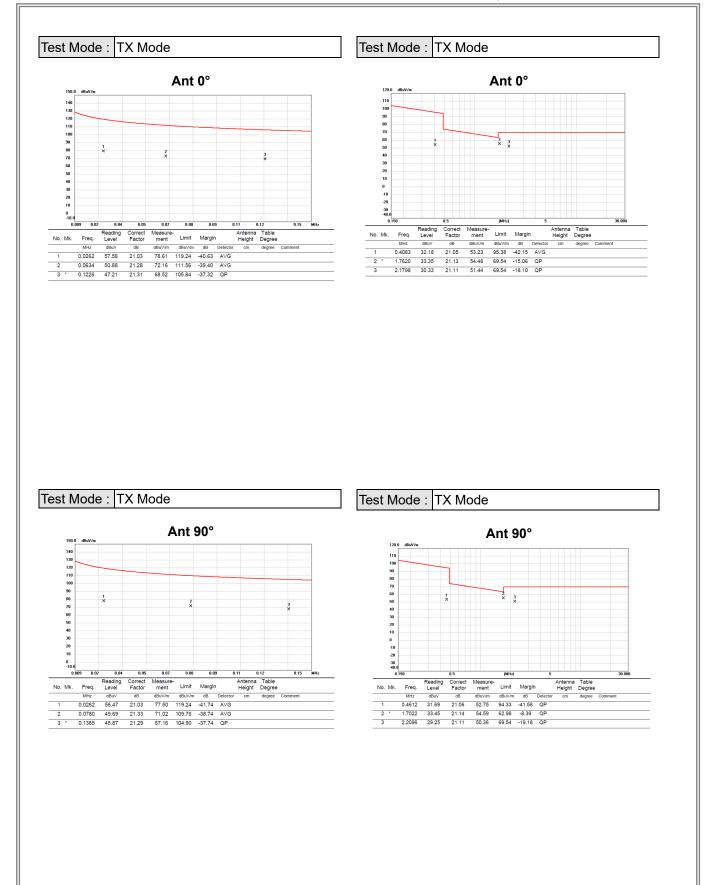


LTE Band 5_5MHz									
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)		26dB Bandwidth (MHz)					
		QPSK	16QAM	QPSK	16QAM				
20425	826.5	4.5292	4.5023	5.016	4.949				
20525	836.5	4.5068	4.5084	4.938	4.951				
20625	846.5	4.5122	4.5054	4.966	4.910				

LTE Band 5_10MHz								
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)		26dB Bandwidth (MHz)				
		QPSK	16QAM	QPSK	16QAM			
20450	829.0	8.9945	8.9772	9.884	9.809			
20525	836.5	8.9502	8.9442	9.819	9.735			
20600	844.0	9.0172	8.9906	9.923	9.823			



APPENDIX C - CONDUCTED SPURIOUS EMISSIONS


ssight Spectrum Analyzer - Swept SA L W Son Acc SDR5E3NT rt Freq 9.000 kHz	6Avp Type: RMS 178402 0024	Frequency Start Freq 150.000 kHz	SINCENT BAY TYPE RM BAY TYPE RM STORE RATE FROM THE REAL STORE RATE RATE RATE RATE RATE RATE RATE RA	Start Free 30 000000 MHz	#Avg Type: RMS TRACE TRACE TRACE TRACE
PND: Wide Trig: Free Run IFGain1.ow #Atten: 20 dB	AvgHold: 100/100 TVPE	PNO: F IFGain:	Low #Atten: 20 dB Det Attented	PN0: Fast Trig: Free R IFGainLow #Atten: 30 d	IB DET ARIANNER
Ref Offset 8.2 dB B/div Ref 0.00 dBm	Mkr1 9.423 kHz -63.550 dBm	Auto Tune 10 dB/div Ref 0ffset 8.2 dB Ref 0.00 dBm	Mkr1 1.911 MHz Auto Tu -64.819 dBm	Ref Offset 8.2 dB	Mkr1 1.671 062 GHz Auto T -47.078 dBm
		Center Freq 79.500 kHz	Center Fri 15 07500 M		Center 1
		21.00 KH2	15.05800 M	5m	50180000
		Start Freq 9.000 kHz	51-22/0 000 Start Fri 150.000 k		Start 30.00000
					8(1-4) 00.000
		Stop Freq 150.000 kHz	Stop Fro 30.00000 M		Stop 10.0000000
		CF Step	CFSt		CF
	Auto .	14.100 kHz Man	2.985000 M Auto		997.00000 Auto
March 1					
Marine Mari	m	Freq Offset	Freq Offs		FreqC

APPENDIX D - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ)

APPENDIX E - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1000MHZ)