

FCC REPORT

Applicant:	PAX Technology Limited
Address of Applicant:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong
Equipment Under Test (E	EUT)
Product Name:	Countertop Payment Terminal
Model No.:	A80
Trade mark:	PAX
FCC ID:	V5PA80SMBW
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	21 Oct., 2021
Date of Test:	22 Oct., to 01 Dec., 2021
Date of report issued:	13 Dec., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Dec., 2021	Original
01	13 Dec., 2021	Update manufacturer address.

Tested by:

Reviewed by:

Mike.ou

Date:

13 Dec., 2021

Test Engineer

Winner Thang

13 Dec., 2021 Date:

Project Engineer

Project No.: JYTSZE2110074

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	-
5 GENERAL INFORMATION	6
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T	
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	_
5.5 MEASUREMENT UNCERTAINTY	
5.6 LABORATORY FACILITY	
5.7 LABORATORY LOCATION	
5.8 TEST INSTRUMENTS LIST	9
6 TEST RESULTS AND MEASUREMENT DATA	10
6.1 ANTENNA REQUIREMENT:	
6.2 CONDUCTED EMISSION	
6.3 CONDUCTED OUTPUT POWER	14
6.4 OCCUPY BANDWIDTH	
6.5 POWER SPECTRAL DENSITY	
6.6 BAND EDGE	
6.6.1 Conducted Emission Method	
6.6.2 Radiated Emission Method	
6.7 Spurious Emission	
6.7.1 Conducted Emission Method	
6.7.2 Radiated Emission Method	
7 TEST SETUP PHOTO	44
8 EUT CONSTRUCTIONAL DETAILS	45
TEST DATA	46
APPENDIX A – BLE-1M PHY	46
MAXIMUM CONDUCTED OUTPUT POWER	46
	-
-6 DB BANDWIDTH	
99% OCCUPIED CHANNEL BANDWIDTH	
MAXIMUM POWER SPECTRAL DENSITY LEVEL	-
BAND EDGE	54
CONDUCTED RF SPURIOUS EMISSION	56
APPENDIX A – BLE-2M PHY	59
MAXIMUM CONDUCTED OUTPUT POWER	59
-26 DB BANDWIDTH	
99% OCCUPIED CHANNEL BANDWIDTH	
MAXIMUM POWER SPECTRAL DENSITY LEVEL	
BAND EDGE	
CONDUCTED RF SPURIOUS EMISSION	

APPENDIX A – BLE-CODED PHY,S=2	
MAXIMUM CONDUCTED OUTPUT POWER	72
-6 DB BANDWIDTH	74
99% OCCUPIED CHANNEL BANDWIDTH	75
MAXIMUM POWER SPECTRAL DENSITY LEVEL	78
BAND EDGE	80
CONDUCTED RF SPURIOUS EMISSION	
APPENDIX A – BLE-CODED PHY,S=8	85
MAXIMUM CONDUCTED OUTPUT POWER	85
-6 DB BANDWIDTH	
99% OCCUPIED CHANNEL BANDWIDTH	89
MAXIMUM POWER SPECTRAL DENSITY LEVEL	91
BAND EDGE	93
CONDUCTED RF SPURIOUS EMISSION	95

4 Test Summary

-	Test Items	Section in CFR 47	Test Data	Result
Anter	nna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Lir	ne Conducted Emission	15.207	See Section 6.2	Pass
Conducted	Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
	nission Bandwidth ccupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power	Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge		15 047 (d)	Appendix A - BLE	Pass
Radiated Band Edge		15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission		15.205 & 15.209	Appendix A - BLE	Pass
Radiated	Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass
 N/A: Not A The cable the custom 	insertion loss used by "RF Ou		ard. ction measurement items is 0.5dE	t (provided by
Test Method:	KDB 558074 D01 15.247	Meas Guidance v05r02		

5 General Information

5.1 Client Information

Applicant:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong
Manufacturer:	PAX Technology Limited
Address:	401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City, Guangdong Province, P.R.C

5.2 General Description of E.U.T.

Product Name:	Countertop Payment Terminal
Model No.:	A80
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.5 dBi
AC adapter:	Adapter 1: Model No.: G024A090100ZZUD Input: AC100-240V, 50/60Hz 0.8A Max Output: DC 9.0V, 1.0A Adapter 2: Model No.: ADS-18SG-09-2 09009G Input: AC100-240V, 50/60Hz 0.6A Max Output: DC 9.0V, 1.0A Adapter 3: Model No.: SW-0396A Input: AC100-240V, 50/60Hz 0.5A Max Output: DC 9.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	There are two kinds of EUT, one with modem, the other without. Choose to test the EUT with modem.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022
EMI Test Software	est Software Tonscend TS+ Version:3.0.0.1				

Conducted Emission:						
Test Equipment	Manufacturer Model No.		Serial No.	Cal. Date	Cal. Due date	
				(mm-dd-yy)	(mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
Stanuaru requirement.	FUC Fail 15 C Section 15.205/24/(b

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

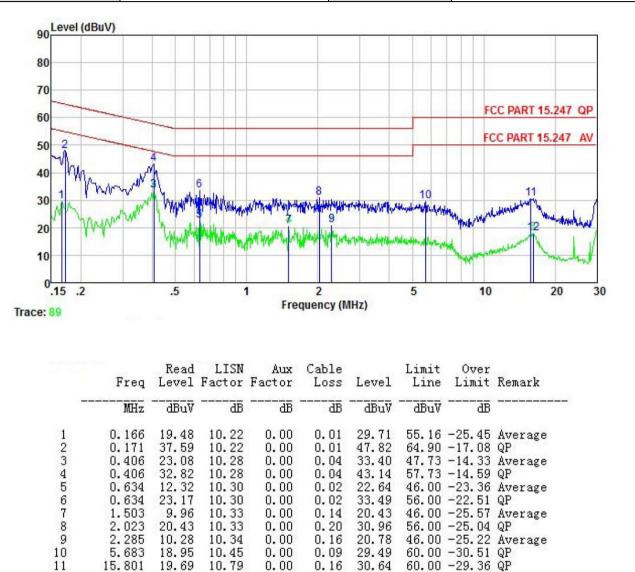
15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.5dBi.

6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling implementation The peripheral devices and LISN that provides a 5000 termination. (Please refer photographs). Both sides of A.C. line and interference. In order to fi positions of equipment and according to ANSI C63.10 	on network (L.I.S.N.), wh pedance for the measuri re also connected to the hm/50uH coupling impect to the block diagram of e checked for maximum nd the maximum emission and all of the interface cab	nich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	Plane	
	LISN 40cm 40cm Equipment E.U.T Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization New	EMI Receiver	– AC power
Testlere i	Test table height=0.8m		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass(pre-scan adapter 1, ad worse case mode, only reflect		found adapter 2 was

Measurement Data:

Adapter 2:

Product name:	Countertop Payment Terminal	Product model:	A80
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Notes:

12

16.140

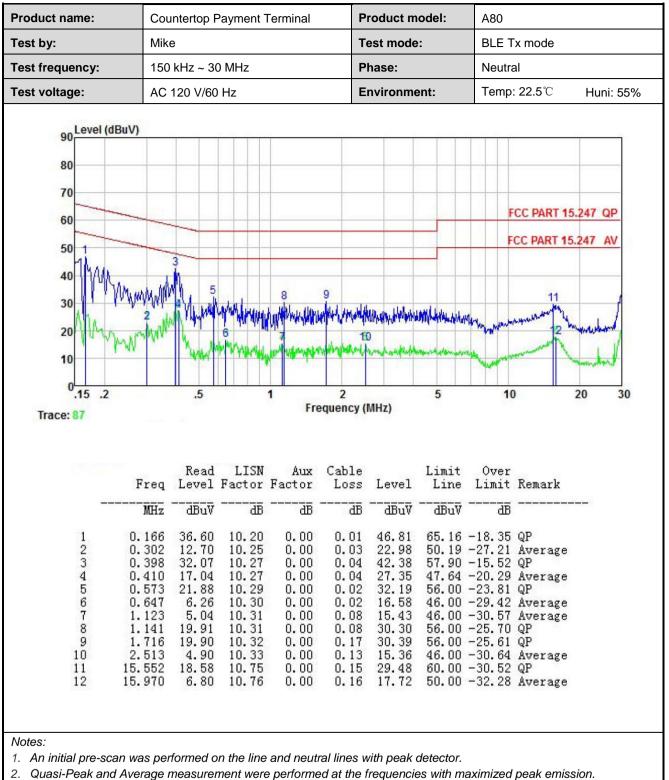
1. An initial pre-scan was performed on the line and neutral lines with peak detector.

10.81

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

0.00

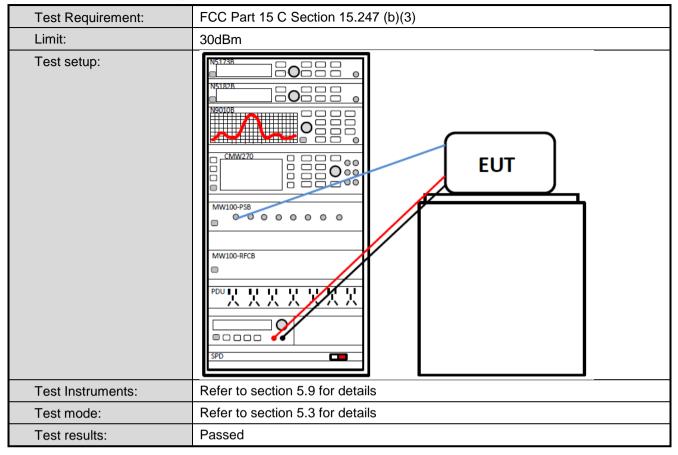
0.16


18.07

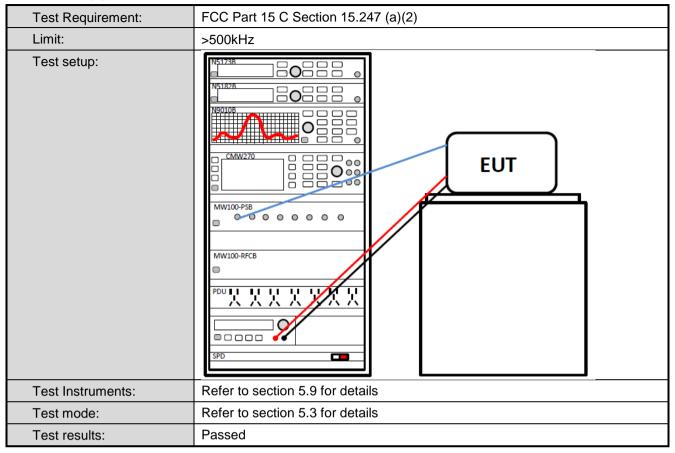
50.00 -31.93 Average

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

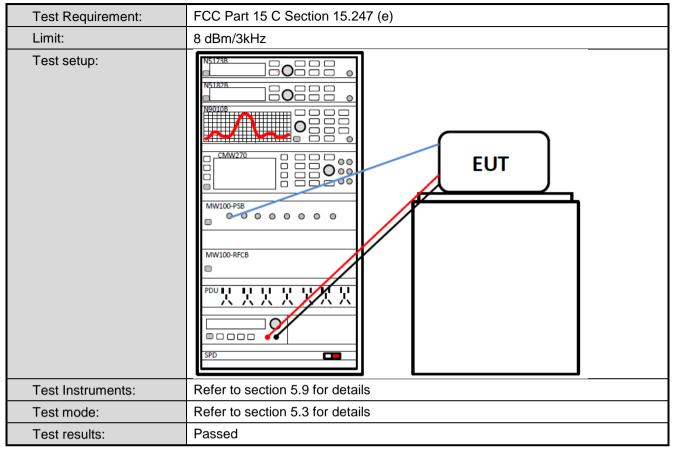
7.10



3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



6.4 Occupy Bandwidth

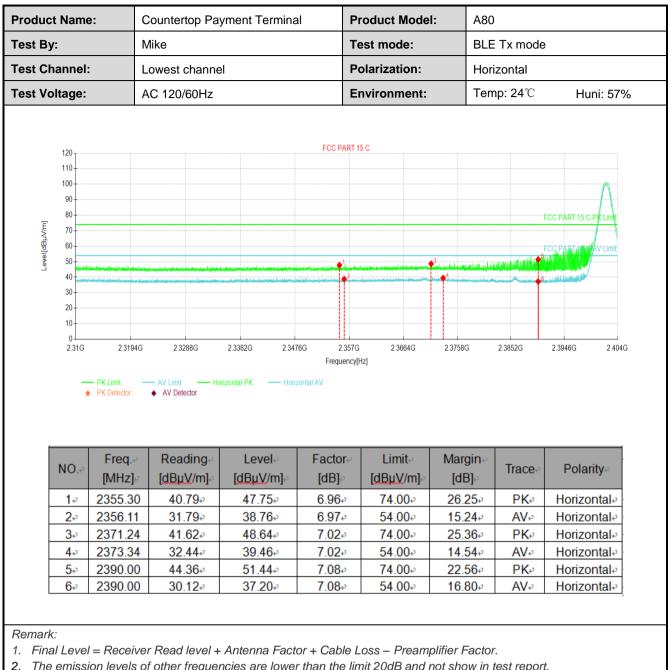
6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

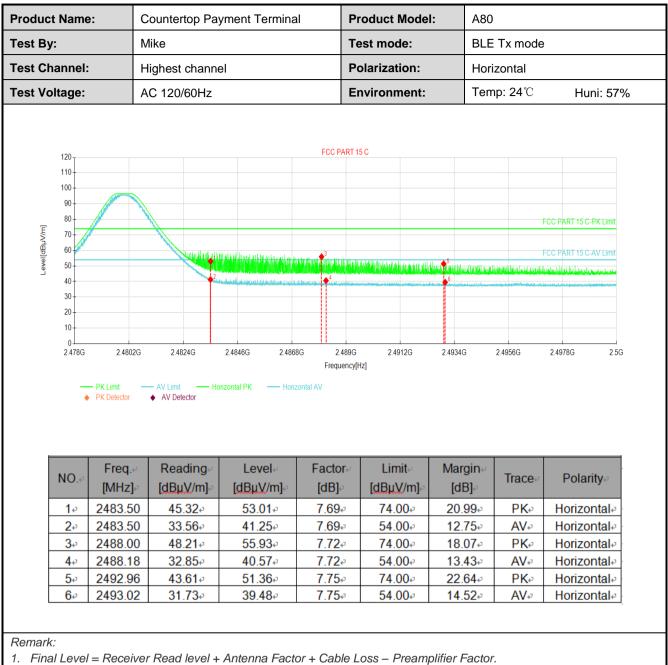
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.6.2 Radiated Emission Method

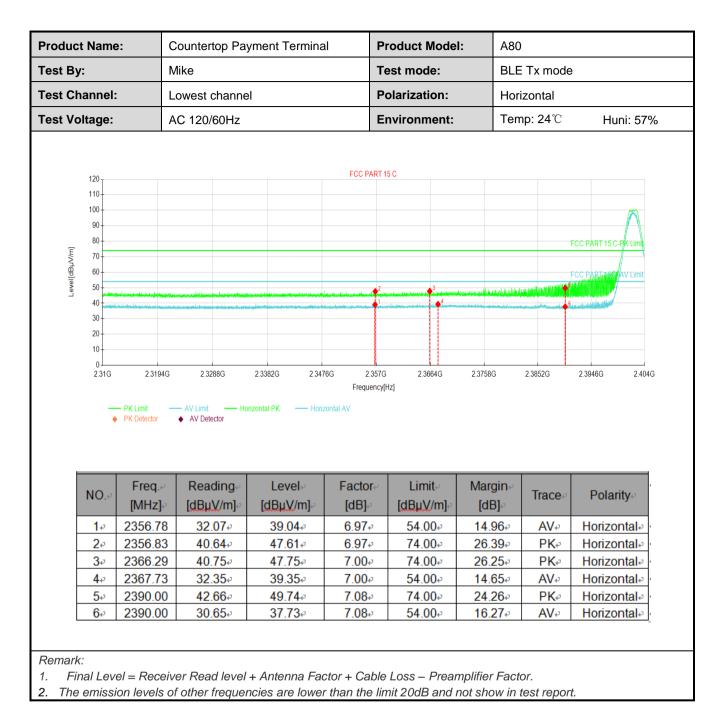

Test Requirement:	FCC Part 15 C	Section 15	.205 and 1	15.209			
Test Frequency Range:	2310 MHz to 2	2390 MHz ar	nd 2483.5N	MHz to 25	500 N	/Hz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	R	BW	VI	BW	Remark
l · · · · ·	Above 1GHz	Peak		ЛНz		ЛНz	Peak Value
		RMS		/Hz		ЛНz	Average Value
Limit:	Frequen	су	Limit (dBu	<u>IV/m @3r</u> I.00	n)	Δν	Remark erage Value
	Above 10	GHz –		1.00 1.00			Peak Value
Test Procedure:	 the groun to determ The EUT antenna, tower. The anter the groun Both horiz make the For each case and meters ar to find the The test-r Specified If the emist the limit s of the EU have 10 c 	d at a 3 met ine the posit was set 3 m which was n and height is d to determi zontal and ve measureme suspected e then the and the rota ta maximum r eceiver syst Bandwidth v ssion level o pecified, the T would be n B margin we	er camber ion of the leters away nounted or a varied fro ne the mai ertical pola ent. mission, th reading. em was se with Maxim f the EUT n testing of reported. Could be re-	The tab highest ra y from the n the top or one m ximum va arizations he EUT w tuned to urned fror et to Peal num Hold in peak r could be s Otherwise -tested or	le wa adiati e inte of a v eter t alue c of th was a heigh m 0 d k Det Mode stopp e the one by	as rotate ion. erference variable to four n of the fie e anten rranged hts from legrees ect Fun de. was 10 ed and emissio one us	-height antenna neters above eld strength. na are set to to its worst 1 meter to 4 to 360 degrees
Test setup:		LEUT urntable) Gr Test Receiv	3m	orn Artenna Arr Pre- Angular Control	Iter	wer	
Test Instruments:	Refer to section	on 5.9 for det	tails				
Test mode:	Refer to section	on 5.3 for det	tails				
Test results:	Passed						

PHY: 1MHz

	lame	· .	Countertop P	Payment Termin	nal	Product Mo	odel:	A80	
st By:			Mike			Test mode:	:	BLE Tx	mode
st Chan	nnel:		Lowest chan	nel		Polarizatio	n:	Vertical	
st Volta	ige:		AC 120/60Hz	2		Environme	nt:	Temp: 2	24℃ Huni: 579
11 10 5 5 7 7 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	20 10 00 90 80 70 60 50 40				FCC PART 1	5 C			FCC PART 15 C-PK Limit FCC PART 15 C-PK Limit
2	30 20 10 0 2.31G	2.3194G – PK Limit – PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G 2.404G
2	20	– PK Limit –	— AV Limit — Ve		Frequency[2.3758G Margin⊮ [dB]₽	2.3852G	2.3946G 2.404G Polarity.⇒
N	20 10 0 2.31G	PK Limit PK Detector	AV Limit Ve AV Detector	ertical PK — Vertical Level	Frequency[AV Factor	Hz] Limit⊷	Margin∉		4
N	20 10 0 2.31G	Freq.e [MHz]	AV Limit Ve ◆ AV Detector Ve Reading Ve [dBµV/m] Ve	ertical PK — Vertical Level∉ [dBµV/m]₽	Frequency[AV Factor- [dB]-2	Hz] Limit⊮ [dBµV/m]⊮	Margin.⊎ [dB]-∂	Trace₽	Polarity₀
N	20 10 0 2.31G 0 	- PK Limit • PK Detector Freq	AV Limit Ve AV Detector Ve	ertical PK — Vertical Level⊷ [dBµV/m]₽ 39.31₽	Frequency AV Factor [dB] 6.98* ³	Limit.⊷ [dBµV/m]⊷ 54.00⊷	Margin.∉ [dB]⊴ 14.69⊷	Trace.∂ AV.€	Polarity Vertical -
N	20 10 0 2.31G 0 	- PKLimit PK Detector [MHz].⇒ 2360.13 2361.44	AV Limit → Ve AV Detector → Ve (dBµV/m) 32.33+ ³ 40.11+ ³	ertical PK — Vertical Level [dBµV/m] 39.31 47.09 Ф	Frequency[AV Factor [dB] 6.98 6.98 6.98	Limit⊮ [dBµV/m]⊮ 54.00⊷ 74.00⊷	Margin.⊌ [dB]⊍ 14.69₽ 26.91₽	Trace.∞ AV.₀ PK.₀	Polarity₀ Vertical₀ Vertical₀
N	20 10 0 2.31G 0.0 1.0 2.4 2.0 3.0	Freq.# [MHz]# 2360.13 2361.44 2374.71	AV Limit Ve AV Detector Ve (dBµV/m) 32.33+2 40.11+3 33.00+3	ertical PK — Vertical Level ↔ [dBµV/m].→ 39.31.↔ 47.09.↔ 40.03.↔	Frequency AV Factor [dB] 6.98 6.98 7.03 7.03	Limit [dBµV/m] 54.00 74.00 54.00	Margin.↓ [dB].↓ 14.69.↓ 26.91.↓ 13.97.↓	Trace.₀ AV.₀ PK.₀ AV.₀	Polarity₀ Vertical₀ Vertical₀ Vertical₀

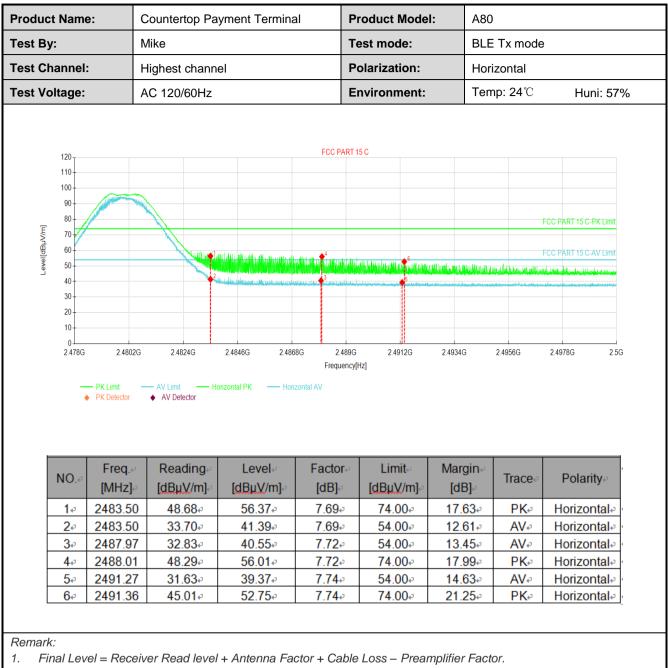


	lame:		Countertop F	Payment Termir	nal	Product Mo	odel:	A80		
Test By:			Mike			Test mode:	:	BLE Tx r	mode	
Test Chan	nnel:		Highest char	nnel		Polarizatio	n:	Vertical		
Fest Volta	age:		AC 120/60H	Z		Environme	nt:	Temp: 2	4℃ Huni: 5	57%
11 10 [20 10 00 90 80 70 60 50				FCC PART 1		Wifeen Marca Add. Jan. 40. 100		FCC PART 15 C-PK Limit FCC PART 15 C-AV Limit	
2		2.4802G PK Limit — PK Detector	2.4824G — AV Limit — V AV Detector	2.4846G 2.486i Vertical PK — Vertical	Frequency[H	2.4912G tz]	2.4934G	2.4956G	2.4978G 2.50	3
	30 20 10 0 2.478G	PK Limit —	— AV Limit — V		Frequency[H		24934G Margin.√ [dB].∞	2.4956G	2.4978G 2.50 Polarity <i>₽</i>	3
	30 20 10 0 2.478G	PK Limit	- AV Limit V ◆ AV Detector V Reading-	Vertical PK Vertical Level+J	Frequency[H AV Factore	lz] Limit≓	Margin∉		Polarity <i>⇔</i> Vertical <i>⊷</i>	3
	30 20 10 0 2.478G 2.478G	PK Limit PK Detector Freq.* [MHz]-2	AV Limit V AV Detector V Reading J [dBµV/m] J	lertical PK — Vertical Level₊ [dBµV/m].∂	Frequency() AV Factor	Limit⊮ [dBµV/m]≁	Margin.∉ [dB]₽	Trace⇔	Polarity⇔	3
	30 20 10 0 2.478G → P 10.2 1 ← 2 2.47 Z	Freq.4 [MHz]2 2483.50	- AV Limit	Level↔ [dBµV/m]↔ 47.77↔	Frequency[F AV Factor [dB],0 7.69,0	Limit⊷ [dBµV/m]⊷ 74.00⊷	Margin.∉ [dB].₂ 26.23₊₃	Trace.₀ PK.₀	Polarity <i>⇔</i> Vertical <i>⊷</i>	3
N	30 20 10 0 2.478G 10	Freq.+ [MHz]= 2483.50 2483.50	- AV Limit V ♦ AV Detector Reading	Level [dBµV/m] 47.77+3 39.37+3 39.37+3	Frequency[F AV Factor.e ¹ [dB]. ² 7.69.e ² 7.69.e ²	Limit [dBµV/m]- 74.00 54.00	Margin.∉ [dB].₂ 26.23.∉ 14.63.€	Trace.⇒ PK.⇒ AV.⇒	Polarity Vertical Vertical	3
	30 20 10 0 2.478G IO	Freq.** [MHz]-* 2483.50 2483.50 2487.94	- AV Limit v ♦ AV Detector v (dBµV/m)= 40.08+3 31.68+3 44.36+3	Level-J [dBµV/m],J 47.77+J 39.37+J 52.08+J	Frequency[F AV Factor,e [dB],e 7.69,e 7.69,e 7.72,e	Limit [dBµV/m] 74.00 54.00 74.00	Margin.∉ [dB]. ² 26.23.¢ 14.63.¢ 21.92.¢	Trace.∞ PK.↔ AV.↔ PK.↔	Polarity⊮ Vertical⊮ Vertical⊮ Vertical⊮	3

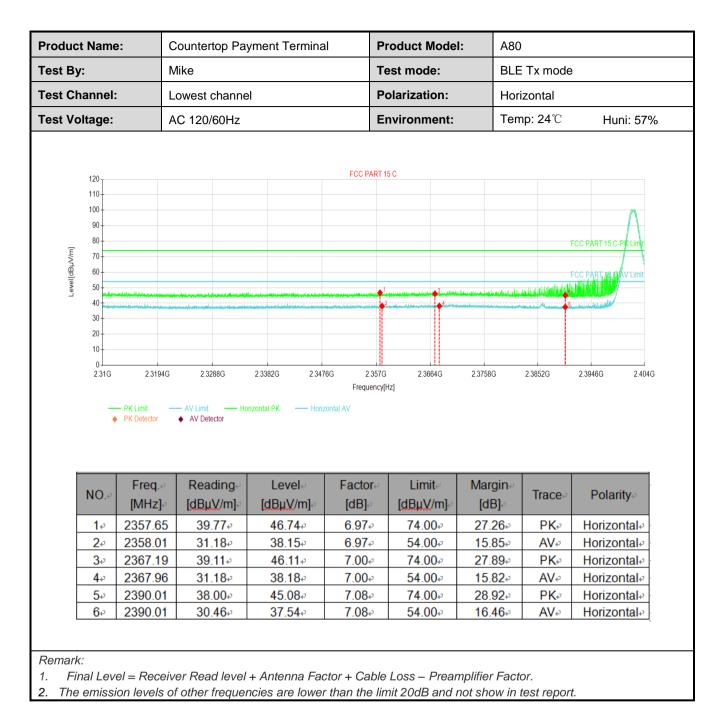


PHY: 2MHz

	Name	-	Countertop P	ayment Termir	nal	Product Mc	odel:	A80		
est By:			Mike			Test mode:		BLE Tx	mode	
est Cha	nnel:		Lowest chan	nel		Polarizatio	n:	Vertical		
est Volta	age:		AC 120/60Hz	2		Environme	nt:	Temp: 2	24℃ Hun	i: 57%
1 [ɯ//ᠠ	120 110 90 80 70 60 50 40				FCC PART 1	5 C			FCC PART 15 C-PK LI FCC PART 15 C-PK LI FCC PART 15 C-AV LI AND THE	
	30 20 10 0 2.31G	2.3194G – PK Limit – PK Detector	2 3288G — AV Limit — Ve ♦ AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[ł		2.3758G	2.3852G	2.3946G	2.404G
٩	20 10 0 2.31G	– PK Limit –	— AV Limit — Ve		Frequency[ł		2.3758G Margin⊮ [dB]-2	2.3852G	23946G Polarity	
1	20 10 0 2.31G	- PK Limit PK Detector Freq.+4	AV Limit Ve AV Detector Ve	ertical PK — Vertical	Frequency[I AV Factore	lz] Limit⊬	Margin∉			1
1	20 10 0 2.31G	PK Limit PK Detector Freq [MHz]	AV Limit Ve ◆ AV Detector Ve Reading v [dBµV/m] v	ertical PK — Vertical Level₊ [dBµV/m]₊₂	Frequency[I AV Factor [dB]	tz] Limit⊮ [dΒμV/m]⊮	Margin.⊍ [dB]-∂	Trace₽	Polarity₀	3
1	20 10 0 2.31G	- PK Limit • PK Detector Freq [MHz] 2371.38	AV Limit Ve AV Detector Ve	Level⊷ [dBµV/m]⊷ 39.08⊷	Frequency[! AV Factor.e ¹ [dB]. ² 7.02. ²	Limit [dBµV/m] 54.00	Margin.∉ [dB]₂ 14.92€	Trace.	Polarity Vertical₊	y y y y y y y y y y y y y y y y y y y
1	20 10 0 2.31G • NO= 1+= 2+=	PK Limit - PK Detector - [MHZ].₂ - 2371.38 - 2372.87 -	AV Limit → Ve AV Detector ← Ve (dBµV/m] 32.06+ ³ 41.16+ ³	Level [dBµV/m].₂ 39.08+² 48.18+³	Frequency[I AV Factor.e ² [dB].e ² 7.02.e ³ 7.02.e ³	Limite [dBµV/m]e 54.00e 74.00e	Margin.⊮ [dB]-∘ 14.92.⊮ 25.82.4	Trace- AV+ PK+	Polarity- Vertical₊ Vertical₊	y y y y y y y y
И 	20 10 0 2.31G NO2 1+2 2+2 3+2	PK Limit PK Delector [MHZ]. ² 2371.38 2372.87 2379.54	AV Limit Ve	Evel. [dBµV/m]. 39.08+ 48.18+ 38.75+	Frequency[AV Factor [dB] 7.02 7.02 7.02 7.04	Limit [dBµV/m] 54.00+ 74.00+ 54.00+	Margin.√ [dB]- 14.92↓ 25.82↓ 15.25↓	Trace∞ AV⊷ PK⊷ AV⊷	Polarity Vertical₊ Vertical₊ Vertical₊	y 4 y 4 y 4 y 4 y 4 y 4

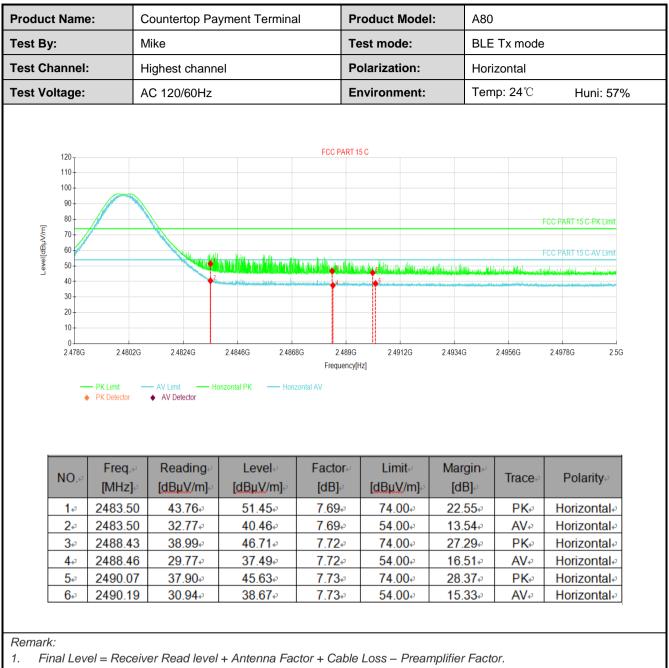


	Name		Countertop F	Payment Termir	nal	Product Mo	odel:	A80		
Test By:			Mike			Test mode:	:	BLE Tx r	mode	
Fest Cha	nnel:		Highest char	nnel		Polarizatio	n:	Vertical		
Fest Volt	age:		AC 120/60Hz	Z		Environme	nt:	Temp: 2	4℃ Huni:	57%
	120 110 90 80 70 60 50				FCC PART 1				FCC PART 15 C-PK Limit	
Le	40 30 20 10 0 2.478G	2.4802G - PK Limit PK Detector	2.4824G AV Limit V AV Detector	24846G 2486i ertical PK — Vertical	Frequency[ł	2.4912G	2.4934G	2.4956G	2 4978G 2 5	G
	30 20 10 0	– PK Limit –	— AV Limit — V	24846G 24860	Frequency[ł	2.4912G				5G
	30 20 10 0 2.478G	- PK Limit PK Detector -	AV Limit V AV Detector	24846G 2486 ertical PK — Vertical	Frequency[I AV Factore	2.4912G tz]	2.4934G Margine	2.4956G	2.4978G 2.5	5G
	30 20 10 0 2.478G	Freq.* ² [MHz]- ²	AV Limit V AV Detector V Reading [dBµV/m]	24846G 2486 ertical PK — Vertical	Frequency[I AV Factore [dB]	2.4912G iz]	2.4934G Margin e [dB]-2	2.4956G	24978G 25	5G
	30 20 10 0 2.478G	Freq.** [MHz].* 2483.50	AV Limit	24846G 2486 ertical PK — Vertical [dBµV/m].₀ 54.07+3	Frequency[i AV Factor [dB] 7.69	2.4912G tz] Limit⊷ [dBµV/m]⊷ 74.00↔	2.4934G 2.4934G Margin.⊷ [dB].₀ 19.93⊷	2.4956G Trace₽ PK₽	24978G 2: Polarity- Vertical-	5G
	30 20 10 0 2.478G	- PK Limit PK Detector Freq.≁ [MHZ].∞ 2483.50 2483.50	AV Limit → V AV Detector → V Reading → [dBµV/m]→ 46.38↔ 32.17↔	Level-J [dBµV/m]= 54.07+3 39.86+3	Frequency[! AV Factor.e ¹ [dB]. ² 7.69.e ³ 7.69.e ³	2.4912G tz] Limit [dBµV/m] 74.00 54.00	2.4934G 2.4934G Margin.⊷ [dB].∘ 19.93.⊷ 14.14.∘	2.4956G Trace.∘ PK.• AV.•	24978G 25 Polarity Vertical Vertical	5G
	30 20 10 0 2.478G	PK Limit PK Detector [MHz]- ² 2483.50 2483.50 2486.45	AV Limit V AV Detector V AV Detector V [dBµV/m] 46.38 32.17 44.95 44.95 4	Level	Frequency[! AV [dB],0 7.69,0 7.69,0 7.71,0	2.4912G tz] Limit [dBµV/m] 74.00 54.00 74.00 74.00	2.4934G Margin.e/ [dB].e 19.93+e 14.14+e 21.34+e	24956G Trace→ PK+ ³ AV+ ³ PK+ ³	2 4978G 25 Polarity- Vertical- Vertical- Vertical-	5G

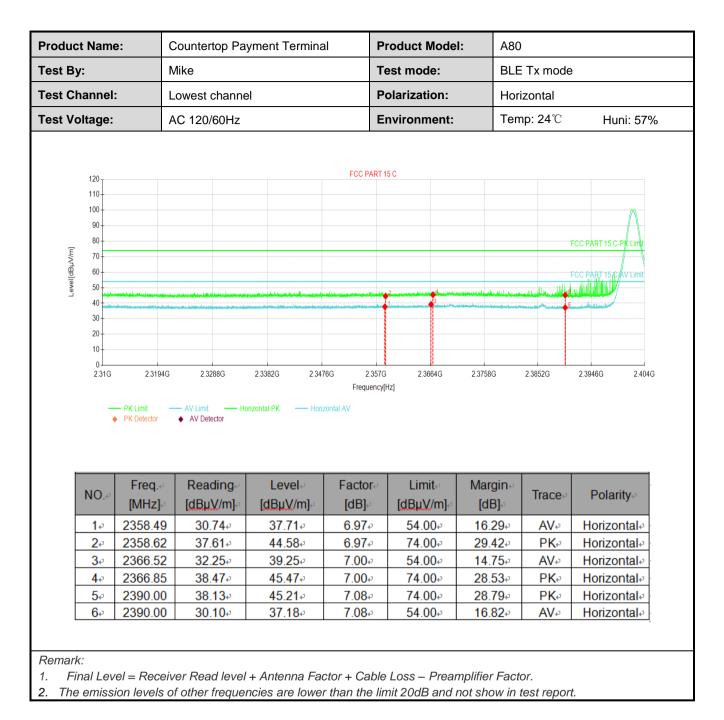


Coded PHY, S=2

	lame):	Countertop P	ayment Termir	nal	Product Mo	del:	A80	
est By:			Mike			Test mode:		BLE Tx	mode
est Char	nnel:		Lowest chann	nel		Polarizatio	n:	Vertical	
est Volta	age:		AC 120/60Hz	1		Environme	nt:	Temp: 2	24℃ Huni: 57%
1 1(5	20 10 00 90 80				FCC PART 1	5 C			FCC PART 15 C-PK LIMIT
Level[dBµ\	70 60 50 40 30 20	در میلیدین مراجع	peljeen (19. m. kas sample 3. of 3. min	ay ng ngangangan na sayat na ng king na sayat ng king ng kang ng kang ng kang ng king ng king ng king ng king n	ka sherda a waxa ka ku	e fan with de procession of the second se	Ananon and an an and		FCC PART 15 C. V Limit
	10 0 2.31G	2.3194G - PK Limit - PK Detector	2 3288G AV Limit Ve AV Detector	2.3382G 2.347 rtical PK — Vertical	Frequency[H		2.3758G	2.3852G	2.3946G 2.404G
	0	– PK Limit –	— AV Limit — Ve		Frequency[H		2.3758G Margin.∉ [dB].₂	2.3852G	2.3946G 2.404G
Ν	0 2.31G	PK Limit PK Detector	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency[H AV Factor+/	lz] Limit⊬	Margin∉		
N	0 2.31G	PK Limit PK Delector Freq2 [MHz].2	AV Limit Ve ♦ AV Detector Reading Ve [dBµV/m] Ve	rtical PK — Vertical Level↔ [dBµV/m].₂	Frequency[F AV Factor- [dB]-	tz] Limit⊮ [dΒμV/m]⊮	Margin.∉ [dB]₽	Trace	Polarity₀
N	0 2.31G • • •	PK Limit PK Detector Freq [MHz] 2356.14	AV Limit Ve AV Detector Ve	trical PK — Vertical Level [dBµV/m].₂ 44.95.₂	Frequency(F AV Factor [dB] 6.97+	Limit⊮ [dBµV/m]⊮ 74.00⊷	Margin.∉ [dB].₀ 29.05₊₀	Trace∍ PK₂	Polarity Vertical -
N	0 2.31G 10 1 2	PK Limit PK Detector [MHZ]. ² 2356.14 2356.48	AV Limit → Ve AV Detector ← Ve (dBµV/m] 37.98+ 30.06+	Level [dBµV/m] 44.95↔ 37.03↔	Frequency(F AV Factor [dB] 6.97+ 6.97+ 6.97+	Limite [dBµV/m]e 74.00e 54.00e	Margin.∉ [dB]₂ 29.05₊ 16.97₊	Trace PK AV	Polarity₀ Vertical₀ Vertical₀
N	0 2.31G • 10.~ 1.~ 2.~ 3.~	PK Limit PK Delector [MHZ]. ² 2356.14 2356.48 2367.12	AV Limit Ve	rtical PK — Vertical Level↔ [dBµV/m]↔ 44.95↔ 37.03↔ 45.37↔	Frequency(F AV Factor	Limit [dBµV/m] 74.00 54.00 74.00	Margin.∉ [dB].∮ 29.05.¢ 16.97.¢ 28.63.¢	Trace PK₂ AV₂ PK₂	Polarity₀ Vertical₀ Vertical₀ Vertical₀



	e:	Countertop F	Payment Termir	nal	Product Mo	del:	A80	
Fest By:		Mike			Test mode:		BLE Tx r	mode
Fest Channe	l:	Highest chan	inel		Polarization	า:	Vertical	
Fest Voltage	:	AC 120/60Hz	2		Environme	nt:	Temp: 24	4℃ Huni: 57
120 110 100 90 80 70 60 50				FCC PART 1	5 C			CC PART 15 C-PK Limit
50 40 30 20 10 2.4780	S 2.4802G PK Limit - PK Detector	2.4824G	2.4846G 2.486 ertical PK — Vertical	3G 2.489G Frequency[t	2.4912G	2.4934G		CC PART 15 C-AV Limit
40 30 20 10	PK Limit - ◆ PK Detector -	2.4824G	2.4846G 2.4860	3G 2.489G Frequency[t	2.4912G			
	PK Limit → PK Detector → Freq. 42	2.4824G AV Limit Ve AV Detector	2.4846G 2.4866 ertical PK — Vertical	a 3G 2.489G Frequency[F AV	2.4912G Iz]	2.4934G Margin⊮	2 4956G	2.4978G 2.5G
40 30 20 10 0 2.4780	PK Limit → PK Detector Freq ² [MHz]. ²	2.4824G 	24846G 2486 ertical PK — Vertical [dBµV/m].∂	3G 2.489G Frequency(H AV	2.4912G [dBµV/m]~	2.4934G Margin.∉ [dB].₂	2.4956G	2.4978G 25G
40 30 20 10 0 2.4780 NO*	PK Limit PK Detector Freq [MHz].□ 2483.50	2.48246 	2.4846G 2.486 ertical PK Vertical [dBµV/m]↔ 46.56+3	4	2.4912G 2.4912G [z]	2.4934G 2.4934G Margin₊ [dB]₊ 27.44₊₀	2.4956G Trace↔ PK↔	2.4978G 2.5G
40 30 20 10 0 2.4780 NO6 1.6 ² 2.4 ²	 PK Limit PK Detector PK Detector Freq [MHz] 2483.50 2483.50 	2.4824G AV LimitV AV Detector Reading [dBµV/m]→ 38.87+→ 31.68+→	2.4846G 2.4866 ertical PK → Vertical [dBµV/m] 46.56+3 39.37+3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.4912G 2.4912G Iz] Limit [dBµV/m] 74.00 54.00	2.4934G 2.4934G Margin.e [dB].₂ 27.44.e 14.63.e	2.4956G Trace PK+ ³ AV+ ³	24978G 25G
40 30 20 10 0 2.4780 NO.* 1+ ² 2+ ³ 3+ ²	 PK Limit PK Detector PK Detector Freq [MHz]₀ 2483.50 2483.50 2487.93 	2.48246 AV Limit AV Detector Ve AV Detector Ve AV Detector Ve 38.87.4 ³ 31.68.4 ³ 37.84.4 ³	24846G 2486 ertical PK — Vertical [dBµV/m]₊ ² 46.56+ ² 39.37₊ ³ 45.56+ ³	AV Factor.e/ [dB].e 7.69.e 7.72.e	2.4912G 2.4912G IZ] Limit [dBµV/m] 74.00 54.00 74.00 74.00	2.4934G Margin 4 [dB].9 27.4449 14.6349 28.4449	2 4956G PKe ³ AVe ³ PKe ³	24978G 25G



Coded PHY, S=8

	Product Name:		Countertop Payment Terminal			Product Mc	odel:	A80			
est By:		Mike			Test mode:	:	BLE Tx mode				
est Ch	est Channel: est Voltage:		Lowest channel			Polarizatio	n:	Vertical			
Test Vo			AC 120/60Hz	2	Environme	nt:	Temp: 24°C Huni: 57%				
	120				FCC PART 1	5 C					
	110										
	100									~	
	90									\bigwedge	
Ę	80 70								FCC PART 15 C-P	KLimit	
Level[dBµV/m]	60								FCC PART 15 C	VTimit	
_evel[50	electroichi dahayadha araa ayaa	an da tanin katika terraka ta dakata ti da ta ta		kan 1 mart om ikkelste kom	3 and a second state of the second state	elitablediation and the	ale and the second second			
Ū.	40		alipenderary management at all alter have been in hill provides		ald held and an an all the second second	an and a log risk to rate out a star little way of	****	8	5		
	30										
	20										
		2.3194G	2.3288G	2.3382G 2.347			2.3758G	2.3852G	2.3946G	2.404G	
	20 10 0	2.3194G PK Limit PK Detector		2 3382G 2 347 ertical PK — Vertical	Frequency[ł		2.3758G	2.3852G	2.3946G	2.404G	
I	20 10 2.31G	— PK Limit —	— AV Limit —— Ve		Frequency[ł		2.3758G Margin.e				
	20 10 0	PK Limit -	AV Limit → Ve AV Detector	ertical PK — Vertical	Frequency[ł	1z]		2.3852G	2.3946G		
	20 10 2.31G	PK Limit - PK Detector -	AV Limit Ve ◆ AV Detector	ertical PK — Vertical	Frequency[I AV Factor	lz] Limit⊷	Margin			y ⇔	
-	20 10 2.316	PK Limit PK Detector Freq.₄ [MHZ]- ² 2349.73 2350.22	AV Limit Ve ♦ AV Detector Reading V [dBµV/m] 0 38.34 0 30.60 0	ertical PK — Vertical Level₊ [dBµV/m]₊₂	Frequency[I AV Factor [dB]	tz] Limit⊮ [dΒμV/m]⊮	Margin⊮ [dB]⊮ 28.72∗ 16.45∗	Trace PKe AVe	Polarit Vertica Vertica	y	
	20 10 0 2.316	PK Limit PK Detector [MHz]. ² 2349.73 2350.22 2358.56	AV Limit Ve	Eevele [dBµV/m]. 45.28. 37.55. 46.58.	Frequency[AV Factor [dB] 6.94 6.95 6.97	Limit [dBµV/m] 74.00 54.00 74.00	Margin.∉ [dB].∮ 28.72.¢ 16.45.¢ 27.42.¢	Trace PK AV PK	Polarit Vertica Vertica	y≠ ३।≠ ३।≠ ३।≠	
	20 10 0 2.31G NO.4 1+ ³ 2+ ³ 3+ ³ 4+ ³	PK Limit PK Detector [MHz]- 2349.73 2350.22 2358.56 2359.24	AV Limit Ve AV Detector Ve [dBµV/m]e 38.34e 30.60e 39.61e 30.41e	Level- [dBµV/m]. 45.28- 37.55- 46.58- 37.39-	Frequency[! AV Factor [dB] 6.94 6.95 6.97 6.98	Limit. [dBµV/m]. 74.00. 54.00. 54.00.	Margin [dB].₀ 28.72₀ 16.45₀ 27.42₀ 16.61₀	Trace. PK. AV. PK. AV.	Polarit Vertica Vertica Vertica	प्र⊭ बोब बोब बोब बोब बोब	
	20 10 0 2.31G NO.+ ² 1+ ² 2+ ³ 3+ ²	PK Limit PK Detector [MHz]. ² 2349.73 2350.22 2358.56	AV Limit Ve	Eevele [dBµV/m]. 45.28. 37.55. 46.58.	Frequency[AV Factor [dB] 6.94 6.95 6.97	Limit [dBµV/m] 74.00 54.00 74.00	Margin.∉ [dB].∮ 28.72.¢ 16.45.¢ 27.42.¢	Trace PK AV PK	Polarit Vertica Vertica	y≠ ३।२ ३।२ ३।२ ३।२ ३।२ ३।२ ३।२	



	e:	Countertop P	ayment Termir	Product Mc	odel:	A80		
Test By:		Mike		Test mode:		BLE Tx mode Vertical Temp: 24℃ Huni: 57%		
Test Channe	l:	Highest chan	inel	Polarization	n:			
Test Voltage	:	AC 120/60Hz	2	Environme	nt:			
120 110 100 90 80 70 60				FCC PART 1	5 C			FCC PART 15 C-PK Limit
	S 2.4802G PK Limit PK Detector	2.4824G	2.4846G 2.486	8G 2.489G Frequency[i	2.4912G	2.4934G	2.4956G	2.4978G 2.5G
40 30 20 10	PK Limit → PK Detector	2.4824G	2.4846G 2.4860	8G 2.489G Frequency[i	2.4912G	2.4934G Margin.e [dB]-2	2.4956G	
	PK Limit → PK Detector →	2.4824G AV Limit → Ve AV Detector	2.4846G 2.486i ertical PK — Vertical	BG 2.489G Frequency[I AV	2.4912G Iz]	Margin∉		24978G 25G
40 30 20 10 2.4780	PK Limit → PK Detector → Freq ² [MHz]. ²	2.4824G AV Limit Ve ◆ AV Detector	24846G 2486G ertical PK — Vertical Level₊ [dBµV/m]₊	BG 2489G Frequency[! AV Factor,e ² [dB],₽	2.4912G Iz] Limit⊷ [dBµV/m]⊷	Margin.∉ [dB]₽	Trace	2.4978G 2.5G
40 30 20 10 0 24780 NO.4	 PK Limit PK Detector Freq [MHz] 2483.50 	2.4824G AV Limit → Ve AV Detector ← Ve Reading ← [dBµV/m] ← 39.85 ←	24846G 2486 ertical PK — Vertical [dBµV/m].∘ 47.54.∘	BG 2489G Frequency[I AV Factor [dB] 7.69	2.4912G iz] Limit. [dBµV/m]. 74.00.	Margin.∉ [dB].∘ 26.46⊷	Trace.₀ PK.₀	2.4978G 2.5G
40 30 20 10 2.4780 NO 1+ ² 2.4 ²	 PK Limit PK Detector Freq [MHz].₀ 2483.50 2483.50 	2.4824G AV Limit → Ve AV Detector ← Ve AV Detector ← Ve (dBµV/m] 39.85+ ³ 32.08+ ³	2.4846G 2.486 ertical PK Vertical [dBµV/m] 47.54 39.77+-	8G 2.489G Frequency[I AV Factor.e ² [dB].e ² 7.69.e ³ 7.69.e ³	2.4912G 2.4912G Iz] Limit [dBµV/m] 74.00 54.00	Margin.∉ [dB].∘ 26.46⊷ 14.23⊷	Trace. PK. AV.	2.4978G 25G
40 30 20 10 2.4780 NO 1+ ² 2.4 ³ 3. ²	 PK Limit PK Detector PK Detector Freq [MHz] 2483.50 2483.50 2489.49 	24824G 24824G AV Limit → Ve AV Detector (dBµV/m]= 39.85+ 32.08+ 37.89+	2.4846G 2.4860 ertical PK — Vertical [dBµ\V/m].∂ 47.54.∂ 39.77.¢ 45.62.¢	8G 2489G Frequency[AV Factor,√ [dB],⊅ 7.69,⊅ 7.69,₽ 7.73,₽	2.4912G 2.4912G Iz] 74.00₊ ² 54.00₊ ² 74.00₊ ²	Margin.∉ [dB].∮ 26.46¢ 14.23¢ 28.38¢	Trace PK AV PK	24978G 25G

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m or 10m							
Receiver setup:	Frequency De		ctor RBW		VBW		Remark	
	30MHz-1GHz	Quasi-peak		120KHz	300KHz		Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3M			
		RMS		1MHz	3M	Hz	Average Value	
Limit:	Frequency			Limit (dBuV/m @10m)		Remark		
	30MHz-88MHz			30.0			Quasi-peak Value	
	88MHz-216MHz			33.5			Quasi-peak Value	
	216MHz-960MHz			36.0		Quasi-peak Value		
	960MHz-1G		1.500	44.0	2m)	G	Quasi-peak Value	
	Frequency	/	LIM	nit (dBuV/m @	3m)		Remark	
	Above 1GF	lz		<u>54.0</u> 74.0			Average Value Peak Value	
	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber(above 1GHz). The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters(above 1GHz) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						360 degrees to m the interference- top of a variable- four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ses to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi-	
Test setup:		10m <4m 4m 0.8m 1m			S A RF	Antenna To earch intenna Test ceiver —	ower	

Project No.: JYTSZE2110074

	Horn Artienna Tower Horn Artienna Tower Ground Reference Plane Test Receiver Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report. Pre-scan adapter 1, adapter 2 and adapter 3, found adapter 1 was worse case mode, only reflects the worst mode

Measurement Data (worst case):

Below 1GHz:

Гest By:	ame: Countertop Payment Terminal Product Mo		Countertop Payment Terminal			Product Model: A80			
-		Mike			Test mode	:	BLE Tx r	mode	
Test Freque	ncy:	30 MHz ~ 1 G	Hz		Polarizatio	n:	Vertical		
Test Voltage	e:	AC 120/60Hz			Environment:		Temp: 24°C Huni: 57		Huni: 579
120 110 90 80 70 60 50 40 20				FCC PART 1	15 247		FC	C PART 15 247-QI	P Limit
10 - 0 ⊥ 30M	M — QP Limit • QP Detector	— Vertical PK	North Jones Jones Jones in 100M	Frequency					16
0	M — QP Limit • QP Detector		Level.√ [dBµV/m]⊷	Frequency Factor⊷ [dB]₀		Margin.⊬ [dB]₀	Trace	Polarit	
0 30M NO 1+2	M → QP Limit → QP Detector Freq.* [MHz] → 37.7608*	Vertical PK Reading[d BµV/m]₀ 29.03↔	Level.₀ [dBµV/m]₀ 14.32,₀	Factor	Limit. [dBµV/m]. 40.00.	Margin/ [dB]₀ 25.68	Trace. PK.	Vertica	y،ت الح
0 30M NO 1.e 2.e	M QP Limit • QP Detector Freq.e [MHz] 2 37.7608+ 2 56.8717+	Vertical PK Reading[d BµV/m]↔ 29.03↔ 27.98↔	Level.↓ [dBµV/m]↓ 14.32↓ 13.21↓	Factor⊎ [dB]⊍ -14.71¢ -14.77¢	Limit.√ [dBµV/m]∽ 40.00↔ 40.00↔	Margin/ [dB]-/ 25.68/ 26.79/	PK. PK.	Vertica Vertica	y₽ । ₽
0 30M 1.e 2.e 3.e	OP Limit OP Detector OP Detector OP Detector Imit OP Detector Imit OP Detector OP Detector OP Detector OP Detector OP Detector OP Detector	Vertical PK Reading[d BµV/m]₀ 29.03₀² 27.98₊² 37.05₊²	Level. [dBµV/m] 14.32. 13.21. 21.11.	Factor→ [dB]→ -14.71+ -14.77+ -15.94+	Limit- [dBµV/m]- 40.00¢ 40.00¢ 43.50¢	Margin	PK₀ PK₀ PK₀	Vertica Vertica Vertica	у
0 30M 14 24 34 44	QP Limit QP Detector QP Detector (MHz] GP 37.7608+ 56.8717+ 107.995 250.018	Vertical PK Reading[d BµV/m]₀ 29.03₀³ 27.98₅³ 37.05₅³ 30.82₅³	Level. [dBµV/m]= 14.32¢ 13.21¢ 21.11¢ 21.11¢ 17.03¢	Factor+ [dB]- -14.71+ -14.77+ -15.94+ -13.79+	Limit. [dBµV/m]= 40.00e 40.00e 43.50e 46.00e	Margin [dB] 25.68 26.79 22.39 28.97	PK. PK. PK.	Vertica Vertica Vertica Vertica	у
0 30M 1.e 2.e 3.e	 QP Limit QP Detector GP Detector GP Detector 37.7608 37.7608 56.8717 107.995 250.018 555.307 	Vertical PK Reading[d BµV/m]₀ 29.03₀² 27.98₊² 37.05₊²	Level. [dBµV/m] 14.32. 13.21. 21.11.	Factor→ [dB]→ -14.71+ -14.77+ -15.94+	Limit- [dBµV/m]- 40.00¢ 40.00¢ 43.50¢	Margin	PK₀ PK₀ PK₀	Vertica Vertica Vertica	ур Цр Цр Цр Цр Цр (Цр (Цр) (

	e:	Countertop Pa	ayment Term	inal	Product M	odel:	el: A80		
Test By: Test Frequency:		Mike			Test mode	:	BLE Tx	mode	
		30 MHz ~ 1 G	Hz		Polarizatio	n:	Horizontal		
est Voltage:		AC 120/60Hz			Environment:		Temp: 24℃ Huni: 5		: 57%
120 110 100 90 80 70 60 50				FCC PART 1	15247		FC	CC PART 15247-QP Limit	
40 30 20 10 30 0 30M	QP Limit - QP Detector	- Horizontal PK	100M	Frequency	(HZ]			1G	5
40 30 20 10	QP Detector		100M 100M	ې Frequency Factor⊮ [dB]₀	(Hz)	Margin.√ [dB]⊋	Trace→	Polarity.	;].
40 30 20 10 ** 0 30M	 QP Detector Freq.₄² [MHz]₄² 35.4325₄³ 	Horizontal PK Reading[d BµV/m]₀ 28.85₊₃	Level₊ [dBµV/m]₊ 13.89₊	Factor⊮ [dB]∞ -14.96⊷	Limit⊮ [dBµV/m]⊮ 40.00₽	Margin.∉ [dB]₂ 26.11.₽	PK₽	Polarity∉ Horizontal₽	
40 30 20 10 *** 30M	 QP Detector Freq.↓ [MHz]↓ 35.4325↓ 57.6478↓ 	- Horizontal PK Reading[d BµV/m]- 28.85+3 28.42+3	Level [dBμV/m] 13.89₊ 13.59₊	Factor-↓ [dB]↓ -14.96+² -14.83+2	Limit⊮ [dBµV/m]⊮ 40.00¢ 40.00¢	Margin⊮ [dB]∘ 26.11₽ 26.41₽	PK₽ PK₽	Polarity∉ Horizontal∉ Horizontal₽	
40 30 20 10 30M NO.+ 1 2 3	 QP Detector Freq.₄² [MHz]₄² 35.4325₄² 57.6478₄² 120.122 	Horizontal PK	Level [dBµV/m] 13.89 13.59 12.57 €	Factor+ [dB]+ -14.96+ -14.83+ -16.04+	Limit⊮ [dBµV/m]⊮ 40.00¢ 40.00¢ 43.50¢	Margin⊮ [dB]₂ 26.11₽ 26.41₽ 30.93₽	PK.₀ PK.₀ PK.₀	Polarity Horizontal Horizontal Horizontal	
40 30 20 10 	 QP Detector Freq [MHz] 35.4325 57.6478 120.122 250.018 	Horizontal PK	Level↓ [dBµV/m]↓ 13.89↓ 13.59↓ 12.57↓ 18.34↓	Factor↓ [dB]↓ -14.96↓ -14.83↓ -16.04↓ -13.79↓	Limit. [dBµV/m]- 40.00¢ 40.00¢ 43.50¢ 46.00¢	Margin.∉ [dB]∘ 26.11.₽ 26.41.₽ 30.93₽ 27.66₽	PK. PK. PK.	Polarity Horizontal Horizontal Horizontal Horizontal	
40 30 20 10 	 QP Detector Freq.₄² [MHz]₄² 35.4325₄² 57.6478₄² 120.122 	Horizontal PK	Level [dBµV/m] 13.89 13.59 12.57 €	Factor+ [dB]+ -14.96+ -14.83+ -16.04+	Limit⊮ [dBµV/m]⊮ 40.00¢ 40.00¢ 43.50¢	Margin⊮ [dB]₂ 26.11₽ 26.41₽ 30.93₽	PK.₀ PK.₀ PK.₀	Polarity Horizontal Horizontal Horizontal	

Above 1GHz

PHY: 1MHz

		Test ch	annel: Lowest cł	nannel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	56.23	-9.60	46.63	74.00	27.37	Vertical
4804.00	56.15	-9.60	46.55	74.00	27.45	Horizontal
		Dete	ctor: Average Va	alue		1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.47	-9.60	38.87	54.00	15.13	Vertical
4804.00	48.41	-9.60	38.81	54.00	15.19	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	48.31	-9.04	39.27	74.00	34.73	Vertical
4884.00	56.58	-9.04	47.54	74.00	26.46	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	48.70	-9.04	39.66	54.00	14.34	Vertical
4884.00	48.02	-9.04	38.98	54.00	15.02	Horizonta
		Test cha	annel: Highest cl	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	48.08	-8.45	39.63	74.00	34.37	Vertical
4960.00	56.19	-8.45	47.74	74.00	26.26	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	48.37	-8.45	39.92	54.00	14.08	Vertical
+300.00						

1. Final Level =Receiver Read level + Factor.

PHY: 2MHz

			annel: Lowest ch			
	T	Det	tector: Peak Valu	ie		T
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	56.58	-9.60	46.98	74.00	27.02	Vertical
4804.00	55.60	-9.60	46.00	74.00	28.00	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.52	-9.60	38.92	54.00	15.08	Vertical
4804.00	48.07	-9.60	38.47	54.00	15.53	Horizonta
		Tast ch	annel: Middle ch	appal		
			ector: Peak Valu			
Frequency	Read Level	Del	Level	Limit Line	Margin	
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4884.00	56.46	-9.04	47.42	74.00	26.58	Vertical
4884.00	55.15	-9.04	46.11	74.00	27.89	Horizonta
	T	Dete	ctor: Average Va		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	48.58	-9.04	39.54	54.00	14.46	Vertical
4884.00	48.54	-9.04	39.50	54.00	14.50	Horizonta
		Test ch	annel: Highest cl	annel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	56.03	-8.45	47.58	74.00	26.42	Vertical
4960.00	55.63	-8.45	47.18	74.00	26.82	Horizonta
		1 1	ctor: Average Va			
Frequency	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
(MHz)		0.45	40.15	54.00	13.85	Vertical
4960.00	48.60	-8.45	40.15	54.00	10.00	ventioar

Coded PHY, S=2

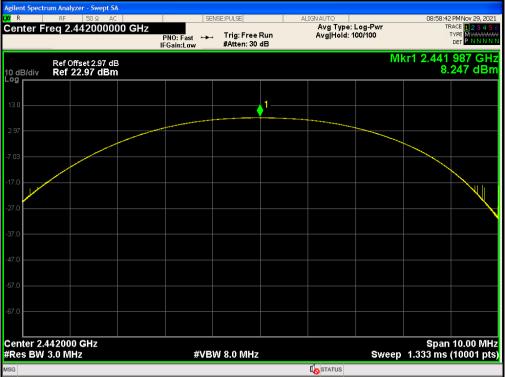
			annel: Lowest ch			
	1	Det	tector: Peak Valu	ie	1	- 1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	56.52	-9.60	46.92	74.00	27.08	Vertical
4804.00	55.88	-9.60	46.28	74.00	27.72	Horizonta
		Dete	ctor: Average Va	lue		•
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	49.04	-9.60	39.44	54.00	14.56	Vertical
4804.00	49.05	-9.60	39.45	54.00	14.55	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	ector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	49.04	-9.60	39.44	54.00	14.56	Vertical
4804.00	49.05	-9.60	39.45	54.00	14.55	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	49.47	-9.04	40.43	54.00	13.57	Vertical
4884.00	48.88	-9.04	39.84	54.00	14.16	Horizonta
			annel: Highest ch ector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
4960.00	56.68	-8.45	48.23	74.00	25.77	Vertical
4960.00	55.62	-8.45	47.17	74.00	26.83	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
	49.47	-8.45	41.02	54.00	12.98	Vertical
4960.00						1

Coded PHY, S=8

			annel: Lowest ch			
		De	tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	57.54	-9.60	47.94	74.00	26.06	Vertical
4804.00	56.26	-9.60	46.66	74.00	27.34	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	49.10	-9.60	39.50	54.00	14.50	Vertical
4804.00	48.89	-9.60	39.29	54.00	14.71	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	49.12	-9.04	40.08	74.00	33.92	Vertical
4884.00	56.22	-9.04	47.18	74.00	26.82	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	48.83	-9.04	39.79	54.00	14.21	Vertical
4884.00	49.03	-9.04	39.99	54.00	14.01	Horizonta
			annel: Highest ch tector: Peak Valu			
Frequency	Read Level		Level	Limit Line	Margin	
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4960.00	57.15	-8.45	48.70	74.00	25.30	Vertical
4960.00	56.03	-8.45	47.58	74.00	26.42	Horizonta
	•	Dete	ctor: Average Va	alue		1
	Read Level	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
Frequency (MHz)	(dBuV)			· · · · ·		
	(dBuV) 49.51	-8.45	41.06	54.00	12.94	Vertical

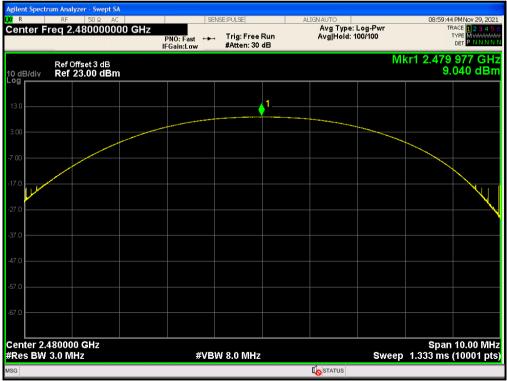
Test Data

Appendix A – BLE-1M PHY


Maximum Conducted Output Power

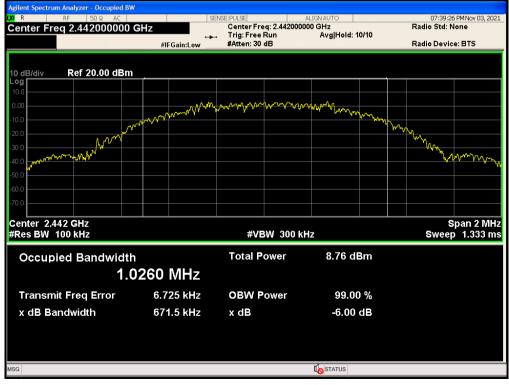
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	8.809	0	8.809	30	Pass
NVNT	BLE	2442	Ant 1	8.247	0	8.247	30	Pass
NVNT	BLE	2480	Ant 1	9.04	0	9.04	30	Pass

Aglient Spectrum Analyzer - Swept SA (M R RF 50 Ω AC SENSE:PULSE ALIGN AUTO Center Freq 2.402000000 GHz PN0: Fast IFGain:Low Ref Offset 2.9 dB	08:56:51 PMNov 29, 2021 TRACE 1 2 3 4 5 TYPE MUNICAR DET PNNNN Akr1 2,401 949 GH2 8,809 dBm
Center Freq 2.402000000 GHz PN0: Fast ++ Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 12345 TYPE MWWWW DET PNNNN 1kr1 2.401 949 GHz
PN0: Fast Trig: Free Run Avg Hold: 100/100 IFGain:Low #Atten: 30 dB	TYPE MWWWW DET PNNNN
Ref Offset 2.9 dB	/lkr1 2.401 949 GHz 8.809 dBm
10 dB/div Ref 22.90 dBm	
12.9	
2.90	
7.10	
-17.1	
-27.1	
-37.1	
47.1	
-57.1	
-67.1	
Center 2.402000 GHz #Res BW 3.0 MHz	Span 10.00 MHz p 1.333 ms (10001 pts
MSG Los STATUS	

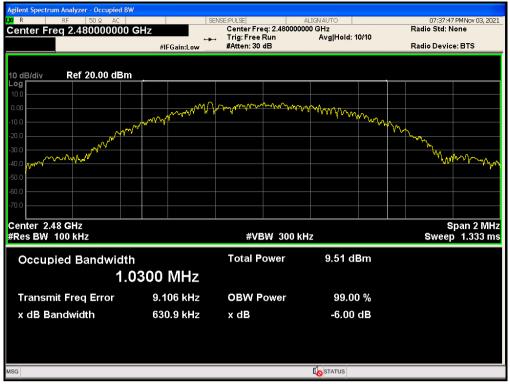

Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

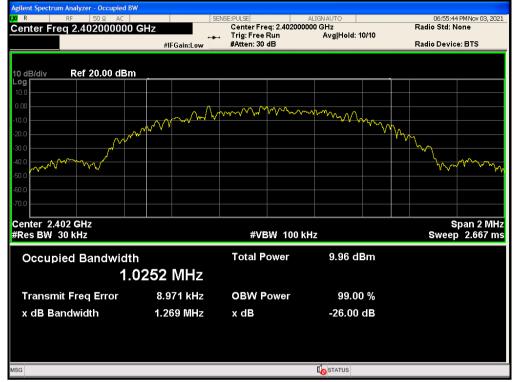

-6 dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	0.6939	0.5	Pass
NVNT	BLE	2442	Ant 1	0.6715	0.5	Pass
NVNT	BLE	2480	Ant 1	0.6309	0.5	Pass


OBW NVNT BLE 2402MHz Ant1

Agilent Spectrum Analyzer - Occupied BW		ENSE:PULSE	ALIGNAUTO	07:41:23 PM Nov 03, 2021
Center Freq 2.40200000		Center Freq: 2.402000	000 GHz	Radio Std: None
	↔ #IFGain:Low	→ Trig: Free Run #Atten: 30 dB	Avg Hold: 10/10	Radio Device: BTS
10 dB/div Ref 20.00 dBm				
10.0 0.00 -10.0	- many many my	May and and any many many many many many many many	www.	M
-30.0 -40.0 mm				- Janhanna M
-50.0 -60.0 -70.0				
Center 2.402 GHz #Res BW 100 kHz		#VBW 300 k	Hz	Span 2 MHz Sweep 1.333 ms
Occupied Bandwidth	432 MHz	Total Power	9.02 dBm	
Transmit Freq Error	8.849 kHz	OBW Power	99.00 %	
x dB Bandwidth	693.9 kHz	x dB	-6.00 dB	
MSG			STATUS	

OBW NVNT BLE 2442MHz Ant1


OBW NVNT BLE 2480MHz Ant1

99% Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant 1	1.0252
NVNT	BLE	2442	Ant 1	1.0455
NVNT	BLE	2480	Ant 1	1.0297

OBW NVNT BLE 2402MHz Ant1

Agilent Spectrum Analyzer - Occupied B	W					
LXIR RF 50 Q AC	SI	ENSE:PULSE	ALIGNAUTO	06:55:18 PM Nov 03, 2021		
Center Freq 2.442000000	GHz	Center Freq: 2.442000	000 GHz	Radio Std: None		
	→		Avg Hold: 10/10			
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS		
10 dB/div Ref 20.00 dBn						
10 dB/div Ref 20.00 dBn	<u> </u>					
10.0						
0.00	٨	A ano Mana	1 m M A m			
-10.0	mmmm	www.	man			
-20.0				\sim		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Υ 'M		
-30.0						
-40.0				han the second of the second o		
-50.0						
-60.0						
-70.0						
Center 2.442 GHz				Span 2 MHz		
#Res BW 30 kHz		#VBW 100 k	(Hz	Sweep 2.667 ms		
		Total Power	8.63 dBm			
Occupied Bandwidt	n	Total Power	0.05 GBM			
1	0455 MHz					
Transmit Freq Error	12.618 kHz	OBW Power	99.00 %			
x dB Bandwidth	1.261 MHz	x dB	-26.00 dB			
MSG			<b>I</b> STATUS			

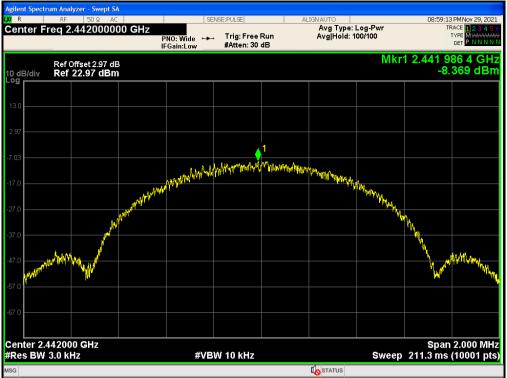
OBW NVNT BLE 2442MHz Ant1





#### OBW NVNT BLE 2480MHz Ant1




### Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-7.733	8	Pass
NVNT	BLE	2402	Total	-7.733	8	Pass
NVNT	BLE	2442	Ant 1	-8.369	8	Pass
NVNT	BLE	2442	Total	-8.369	8	Pass
NVNT	BLE	2480	Ant 1	-7.614	8	Pass
NVNT	BLE	2480	Total	-7.614	8	Pass

#### PSD NVNT BLE 2402MHz Ant1

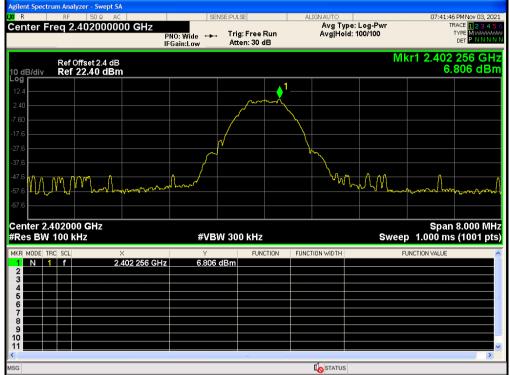




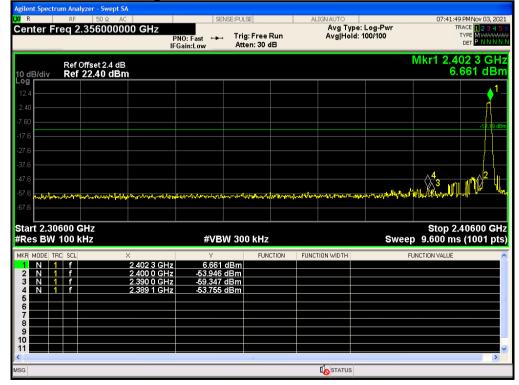


#### PSD NVNT BLE 2442MHz Ant1

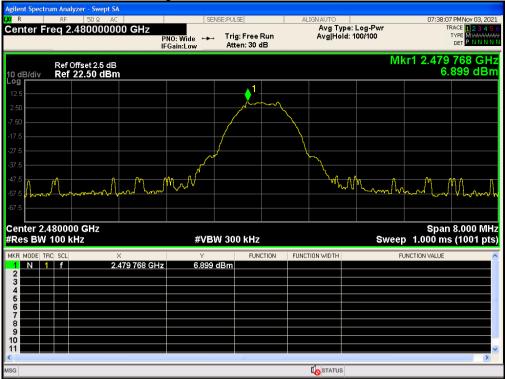
#### PSD NVNT BLE 2480MHz Ant1



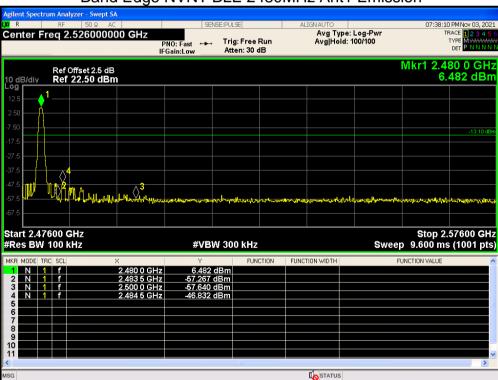




## Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-60.556	-20	Pass
NVNT	BLE	2480	Ant 1	-53.729	-20	Pass


## Band Edge NVNT BLE 2402MHz Ant1 Ref




Band Edge NVNT BLE 2402MHz Ant1 Emission







#### Band Edge NVNT BLE 2480MHz Ant1 Ref



#### Band Edge NVNT BLE 2480MHz Ant1 Emission



### **Conducted RF Spurious Emission**

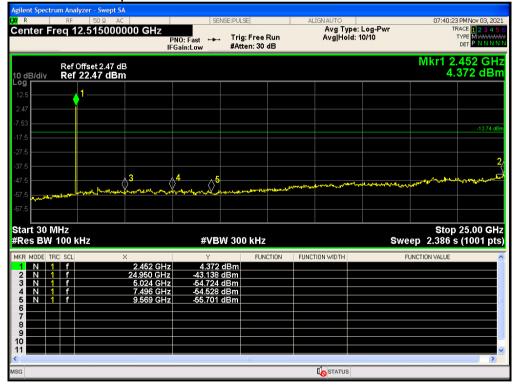
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-51.103	-20	Pass
NVNT	BLE	2442	Ant 1	-49.388	-20	Pass
NVNT	BLE	2480	Ant 1	-51.567	-20	Pass

#### Tx. Spurious NVNT BLE 2402MHz Ant1 Ref



#### Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

XU R	RF	ter - Swept SA 50 Ω AC .51500000	Р	SE NO: Fast ↔ Gain:Low	NSE:PULSE Trig: Fre #Atten: 3		ALIGNAUTO Avg Typ Avg Hold	e: Log-Pwr : 10/10		2 PM Nov 03, 2021 RACE 1 2 3 4 5 1 TYPE MWWWW DET P N N N N
10 dB/div		fset 2.4 dB <b>2.40 dBm</b>							Mkr1 2 6.	.402 GHz 490 dBm
12.4										
2.40										
-17.6										-12.55 dBr
-27.6										2
-47.6			A	5 	washerent	and the second	and a stand and a stand of the	بلمهاجريه مسعري	how and the second second	and when a work
-57.6										
Start 30 M #Res BW		⊥		#VB	W 300 kH	z		Sw	Stop eep 2.386 s	25.00 GHz s (1001 pts
MKR MODE T	RC SCL	×		Y		NCTION	FUNCTION WIDTH		FUNCTION VALUE	2
1 N 1 2 N 1	f		2.402 GHz 4.875 GHz	6.490 -43.659						
3 N 1	f		4.699 GHz	-54.136	dBm					
4 N 1 5 N 1	l f		7.022 GHz 9.544 GHz	-55.133 -54.681						
6										
8										
10 11										
< //SG							<b>I</b> STATUS			

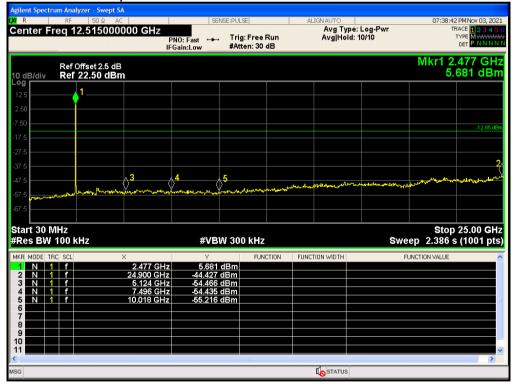

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





## Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

## Tx. Spurious NVNT BLE 2442MHz Ant1 Emission







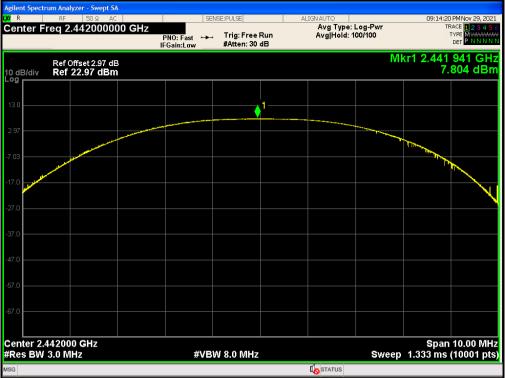

## Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

## Tx. Spurious NVNT BLE 2480MHz Ant1 Emission



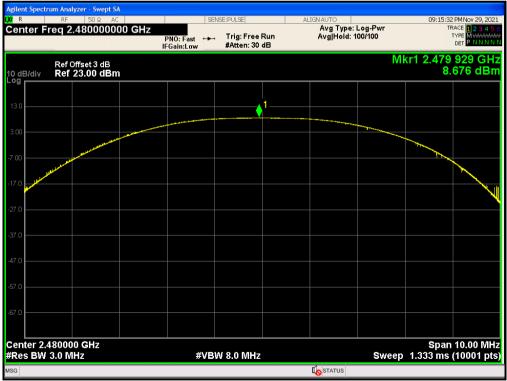


## Appendix A – BLE-2M PHY


## Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	8.474	0	8.474	30	Pass
NVNT	BLE	2442	Ant 1	7.804	0	7.804	30	Pass
NVNT	BLE	2480	Ant 1	8.676	0	8.676	30	Pass

#### Power NVNT BLE 2402MHz Ant1

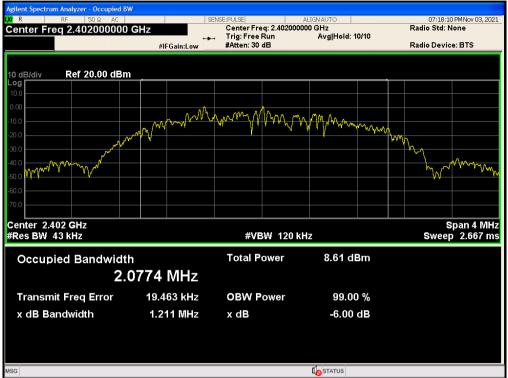

Agilent Spectr	um Analyzer - Swept SA RF 50 Q AC		orth	NSE:PULSE		IGN AUTO		00:12:44	PM Nov 29, 2021
	req 2.40200000	PN	0: Fast ↔→ ain:Low	Trig: Free I #Atten: 30	Run	Avg Type:   Avg Hold: 1	Log-Pwr 00/100	TR	PMIND/29,2021 ACE 123456 TYPE MWAAAAAA DET PNNNNN
10 dB/div Log	Ref Offset 2.9 dB Ref 22.90 dBm						MI	(r1 2.401 8.	941 GHz 474 dBm
12.9					1				
2.90 ———								-	
-7.10	North Contraction								
-17.1									
-37.1									
-47.1									
-57.1									
-67.1									
Center 2.4 #Res BW	02000 GHz 3.0 MHz		#VB۱	W 8.0 MHz			Sweep	Span 1.333 ms	10.00 MHz (10001 pts)
MSG						STATUS			





#### Power NVNT BLE 2442MHz Ant1

#### Power NVNT BLE 2480MHz Ant1



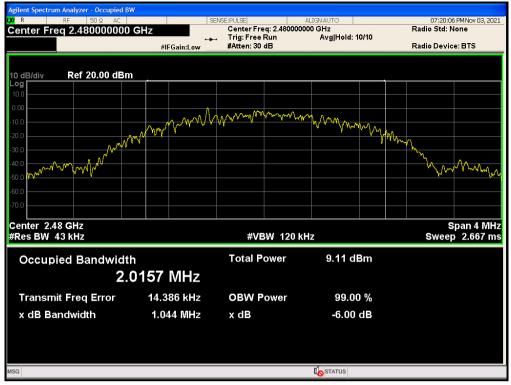



#### -26 dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	1.2112	0.5	Pass
NVNT	BLE	2442	Ant 1	1.3006	0.5	Pass
NVNT	BLE	2480	Ant 1	1.0438	0.5	Pass

#### OBW NVNT BLE 2402MHz Ant1




#### OBW NVNT BLE 2442MHz Ant1

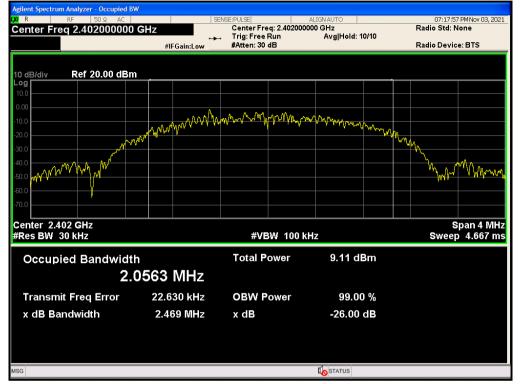


JianYan Testing Group Shenzhen Co., Ltd.

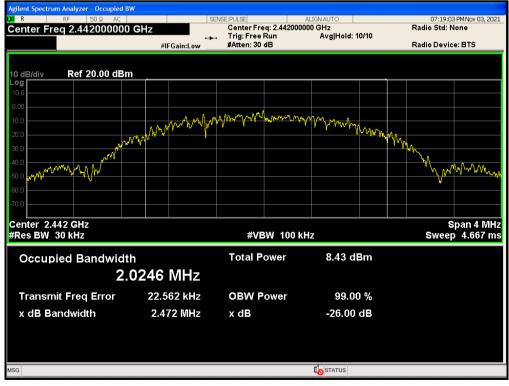
No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366






#### OBW NVNT BLE 2480MHz Ant1




#### 99% Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant 1	2.0563
NVNT	BLE	2442	Ant 1	2.0246
NVNT	BLE	2480	Ant 1	2.0322

#### OBW NVNT BLE 2402MHz Ant1

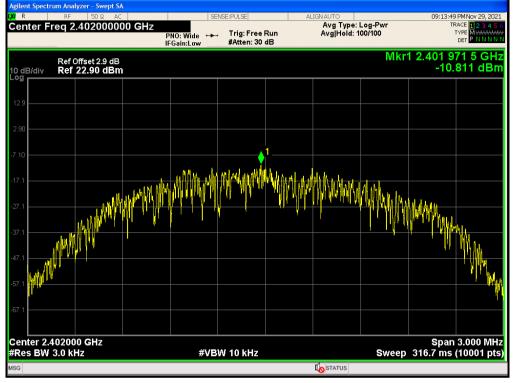


#### OBW NVNT BLE 2442MHz Ant1

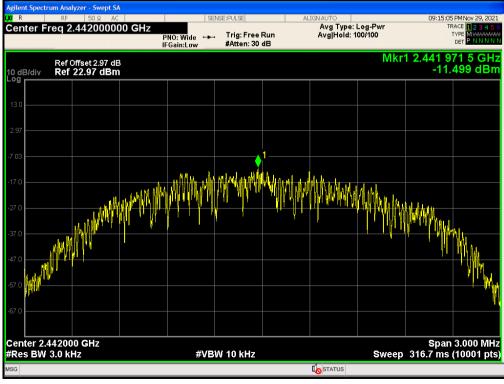




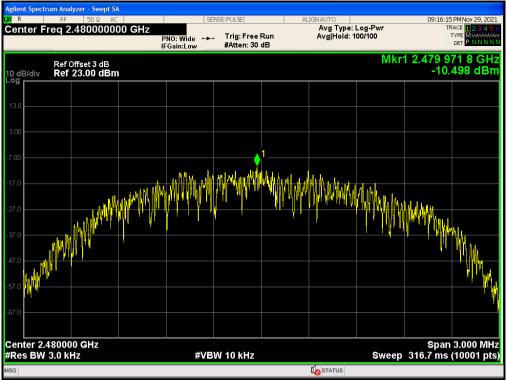



## OBW NVNT BLE 2480MHz Ant1




### Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-10.811	8	Pass
NVNT	BLE	2442	Ant 1	-11.499	8	Pass
NVNT	BLE	2480	Ant 1	-10.498	8	Pass


#### PSD NVNT BLE 2402MHz Ant1

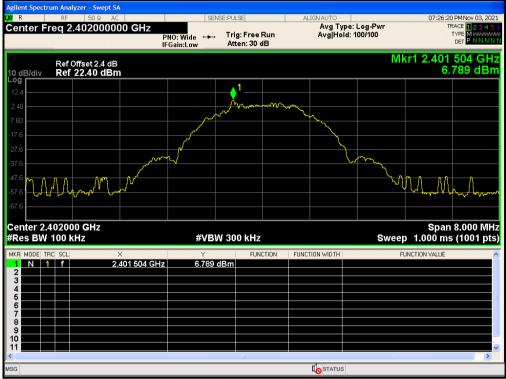


#### PSD NVNT BLE 2442MHz Ant1








### PSD NVNT BLE 2480MHz Ant1






#### Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-58.529	-20	Pass
NVNT	BLE	2480	Ant 1	-53.379	-20	Pass



### Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission





## 07:33:41 PM N TRACE Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Wide ++- Trig: Free Run IFGain:Low Atten: 30 dB Mkr1 2.480 008 GHz 6.739 dBm Ref Offset 2.5 dB Ref 22.50 dBm 0 dB/di 1 Mahm LA.A Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION FUNCTION WIDTH FUNCTION VALU 2.480 008 GHz 6.739 dBm **I** STATUS

#### Band Edge NVNT BLE 2480MHz Ant1 Ref



#VBW 300 kHz

7.<u>388 dBm</u> 9.036 dBm 46.648 dBm

5 7 GHz 2.48

FUNCTION

FUNCTION WIDTH

**I**STATUS

Start 2.47600 GHz #Res BW 100 kHz

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

MKR MODE TRC

Project No.: JYTSZE2110074

Stop 2.57600 GHz Sweep 9.600 ms (1001 pts)

FUNCTION VALUE



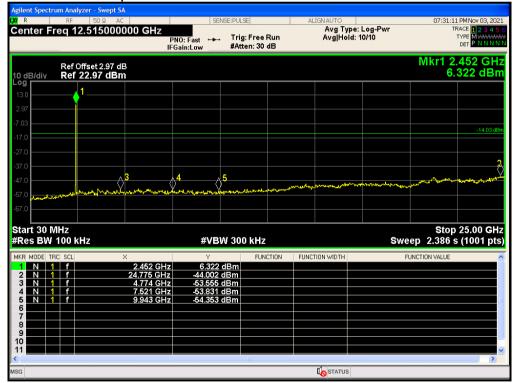
#### Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-50.661	-20	Pass
NVNT	BLE	2442	Ant 1	-49.968	-20	Pass
NVNT	BLE	2480	Ant 1	-50.554	-20	Pass

## 07:31:37 PM Nov 03, 202 R Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 TRACE 🚺 Trig: Free Run #Atten: 30 dB TYP PNO: Wide ↔↔ IFGain:Low DET Mkr1 2.401 508 GHz 7.401 dBm Ref Offset 2.9 dB Ref 22.90 dBm 10 dB/div Center 2.402000 GHz #Res BW 100 kHz Span 3.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz **I**STATUS

### Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

#### Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

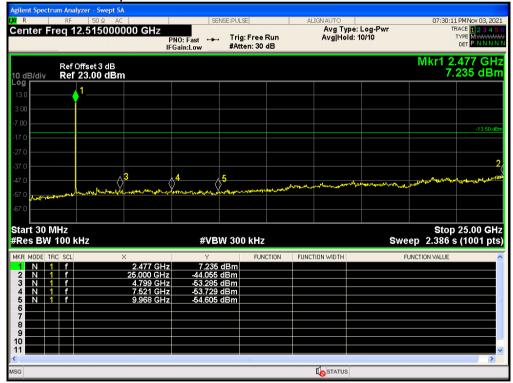

Agilent Spectro R Center Fr	RF	er - Swept SA   50 Ω AC   5150000000 GHz		:PULSE Trig: Free Ru #Atten: 30 dB		IGNAUTO Avg Type: Avg Hold: 1		TI	5 PM Nov 03, 2021 RACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N
10 dB/div		set 2.9 dB 2.90 dBm						Mkr1 2 4.	.402 GHz 935 dBm
Log 12.9 2.90	^1								
-7.10									-12.60 dBn
-27.1									2
-47.1	In the second	3	4 5	www.	hnewind	www.www.	and and and and a state	and a second	and the second
-67.1									
Start 30 N #Res BW		z	#VBW	300 kHz			Swe	Stop ep 2.386 s	25.00 GH: (1001 pts
MKR MODE TR 1 N 1 2 N 1 3 N 1 4 N 1	IC SCL f f f f	× 2.402 GF 24.950 GF 4.824 GF 7.396 GF	Iz -43.260 dB Iz -53.616 dB Iz -54.115 dB	m m m	IN FUNCT	ION WIDTH	FL	UNCTION VALUE	
5 N 1 6 7 8 9	f	9.544 GH	lz -54.356 dB	m					
10									
ISG						STATUS			





## Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

## Tx. Spurious NVNT BLE 2442MHz Ant1 Emission







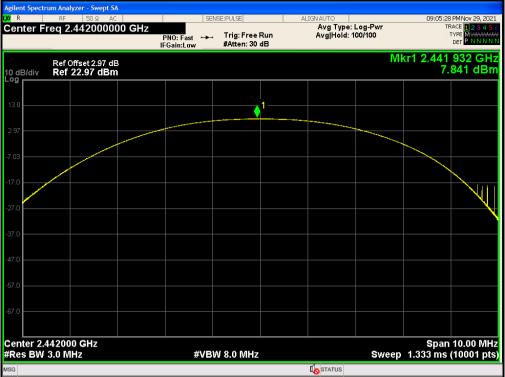

## Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

## Tx. Spurious NVNT BLE 2480MHz Ant1 Emission



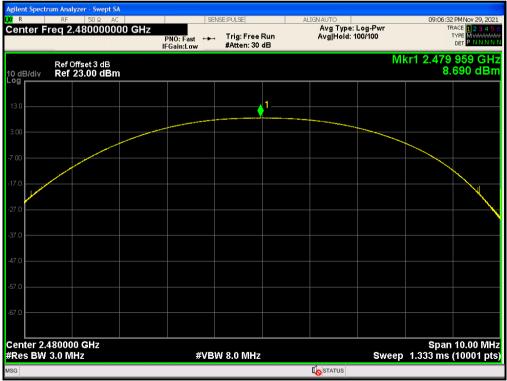


## Appendix A – BLE-Coded PHY,S=2


## Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	8.527	0	8.527	30	Pass
NVNT	BLE	2442	Ant 1	7.841	0	7.841	30	Pass
NVNT	BLE	2480	Ant 1	8.69	0	8.69	30	Pass

#### Power NVNT BLE 2402MHz Ant1


Agilent Spectrum Analyzer - Swept SA           VM         R         RF         50 Q         AC         SENSE:PULSE         ALIGN AUTO         09:04:13 PM Nov 29, 2021									
	req 2.402000000 GHz	PNO:East →→ Tri	g: Free Run tten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	09:04:13 PMNov 29, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN				
10 dB/div Log									
12.9			1						
2.90									
-7.10									
-17.1									
-27.1									
-37.1									
-47.1									
-57.1									
-67.1									
	Center 2.402000 GHz Span 10.00 MHz #Res BW 3.0 MHz #VBW 8.0 MHz Sweep 1.333 ms (10001 pts)								
MSG									



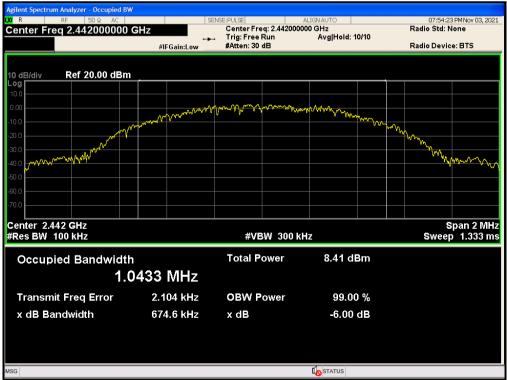


#### Power NVNT BLE 2442MHz Ant1

#### Power NVNT BLE 2480MHz Ant1



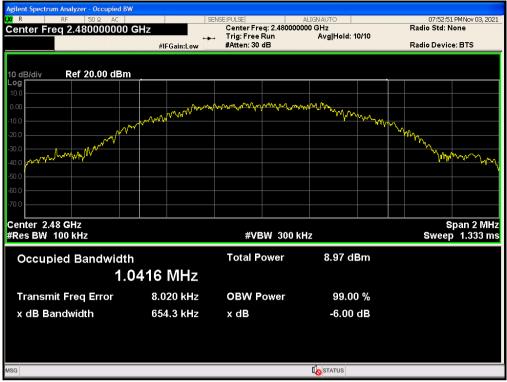



#### -6 dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	0.6833	0.5	Pass
NVNT	BLE	2442	Ant 1	0.6746	0.5	Pass
NVNT	BLE	2480	Ant 1	0.6543	0.5	Pass

#### alyzer - Occupi 07:55:58 PM Nov 03, 202 Radio Std: None R Center Freq: 2.402000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 2.402000000 GHz Avg|Hold: 10/10 #IFGain:Low Radio Device: BTS Ref 20.00 dBm 0 dBidiy og -ma Λ, Center 2.402 GHz #Res BW 100 kHz Span 2 MHz Sweep 1.333 ms #VBW 300 kHz Total Power 9.13 dBm **Occupied Bandwidth** 1.0355 MHz **Transmit Freq Error** 14.767 kHz **OBW Power** 99.00 % x dB Bandwidth 683.3 kHz x dB -6.00 dB **STATUS**

#### OBW NVNT BLE 2402MHz Ant1


#### OBW NVNT BLE 2442MHz Ant1

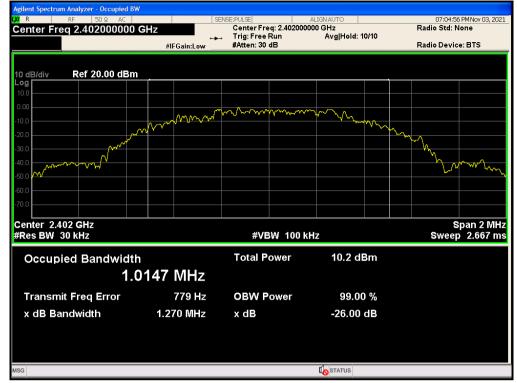


JianYan Testing Group Shenzhen Co., Ltd.

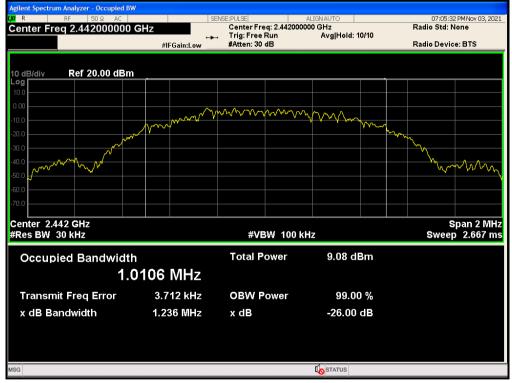
No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366






### OBW NVNT BLE 2480MHz Ant1

### 99% Occupied Channel Bandwidth


Condition	Mode	Frequency	Antenna	99% OBW
		(MHz)		(MHz)
NVNT	BLE	2402	Ant 1	1.0147
NVNT	BLE	2442	Ant 1	1.0106
NVNT	BLE	2480	Ant 1	1.0059



### OBW NVNT BLE 2402MHz Ant1

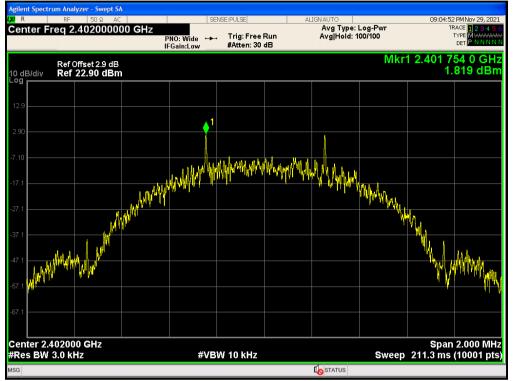


### OBW NVNT BLE 2442MHz Ant1

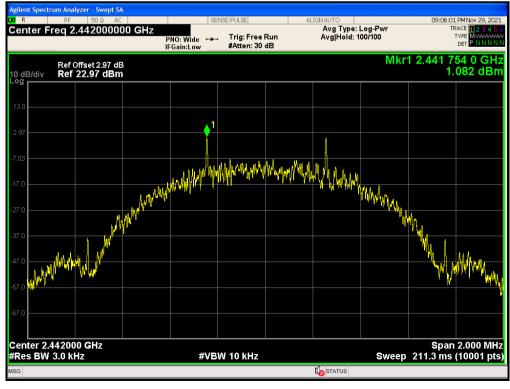






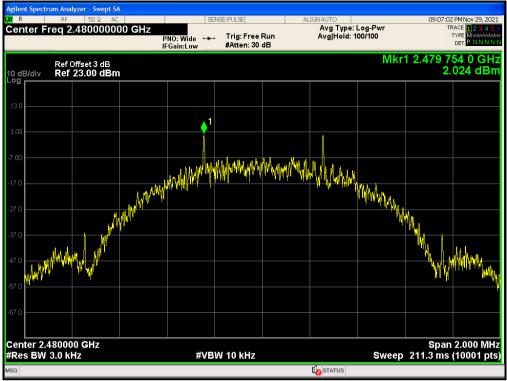

### OBW NVNT BLE 2480MHz Ant1




### Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	1.819	8	Pass
NVNT	BLE	2442	Ant 1	1.082	8	Pass
NVNT	BLE	2480	Ant 1	2.024	8	Pass

### PSD NVNT BLE 2402MHz Ant1




### PSD NVNT BLE 2442MHz Ant1



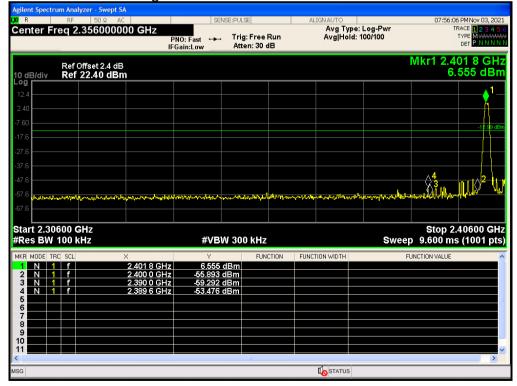
JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



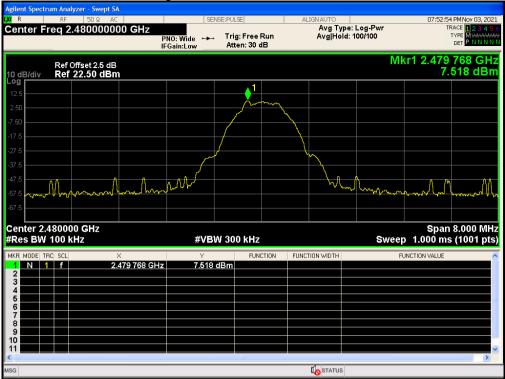


### PSD NVNT BLE 2480MHz Ant1



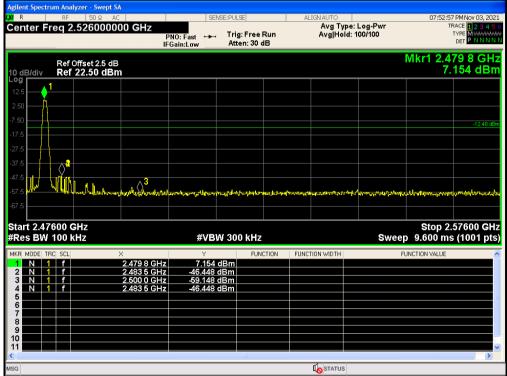

### **Band Edge**

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-60.48	-20	Pass
NVNT	BLE	2480	Ant 1	-53.958	-20	Pass


### )3 PM Nov TRACE TYPE DET P Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run Atten: 30 dB PNO: Wide IFGain:Low -----Mkr1 2.401 768 GHz 7.010 dBm Ref Offset 2.4 dB Ref 22.40 dBm 0 dB/div 1 MM M Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH 2.401 768 GHz 7.010 dBm N 1 f **I**STATUS

### Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission





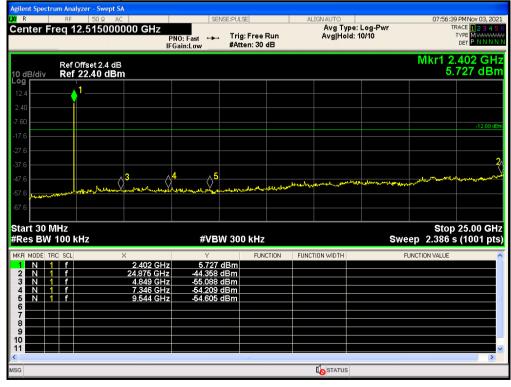



### Band Edge NVNT BLE 2480MHz Ant1 Ref







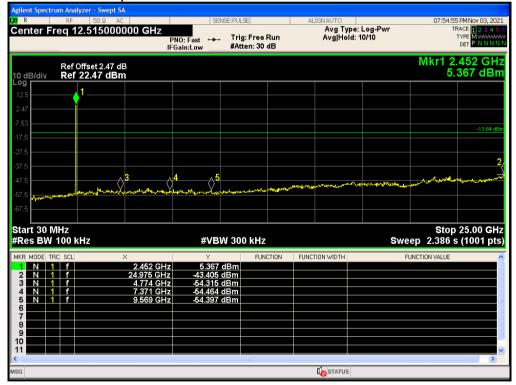

### **Conducted RF Spurious Emission**

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-51.465	-20	Pass
NVNT	BLE	2442	Ant 1	-49.564	-20	Pass
NVNT	BLE	2480	Ant 1	-50.82	-20	Pass

# Tx. Spurious NVNT BLE 2402MHz Ant1 Ref



### Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

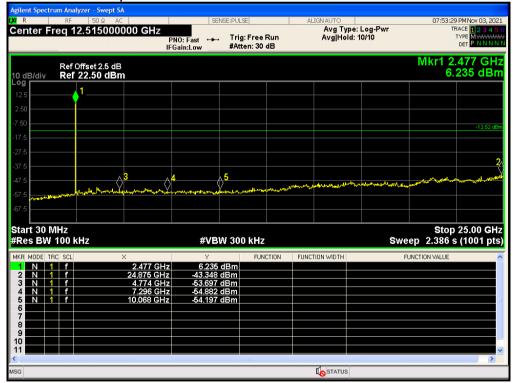







# Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

# Tx. Spurious NVNT BLE 2442MHz Ant1 Emission







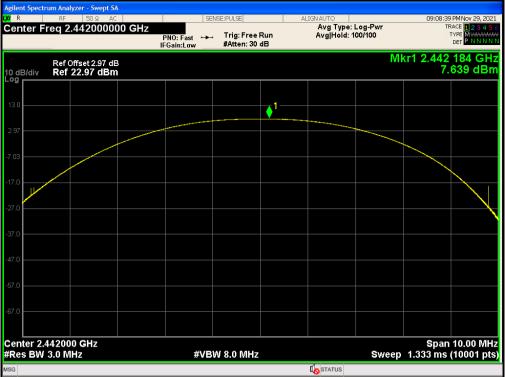

# Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

# Tx. Spurious NVNT BLE 2480MHz Ant1 Emission





# Appendix A – BLE-Coded PHY,S=8


# Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	8.369	0	8.369	30	Pass
NVNT	BLE	2442	Ant 1	7.639	0	7.639	30	Pass
NVNT	BLE	2480	Ant 1	8.524	0	8.524	30	Pass

### Power NVNT BLE 2402MHz Ant1

Agilent Spectrum Analyzer - Sw	AC			00 00 F0 PML 00 0001
Center Freq 2.40200		SENSE:PULSE Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	09:09:59 PMNov 29, 2021 TRACE 1 2 3 4 5 6 TYPE MMMMM DET P N N N N N
Ref Offset 2.9 10 dB/div Ref 22.90 d			М	kr1 2.402 177 GHz 8.369 dBm
12.9		1		
2.90				
-7.10				
-17.1				
-27.1				
-37.1				
-47.1				
-57.1				
-67.1				
Center 2.402000 GHz #Res BW 3.0 MHz	#\	/BW 8.0 MHz	Sweep	Span 10.00 MHz 1.333 ms (10001 pts)
MSG			STATUS	





### Power NVNT BLE 2442MHz Ant1

### Power NVNT BLE 2480MHz Ant1





### -6 dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	0.6818	0.5	Pass
NVNT	BLE	2442	Ant 1	0.6402	0.5	Pass
NVNT	BLE	2480	Ant 1	0.6838	0.5	Pass

#### alyzer - Occupi 06:51:21 PM Nov 25, 202 Radio Std: None R Center Freq: 2.402000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 2.402000000 GHz Avg|Hold: 10/10 #IFGain:Low Radio Device: BTS Ref 20.00 dBm 0 dBidiy og (mr ŝ Center 2.402 GHz #Res BW 100 kHz Span 2 MHz Sweep 1.333 ms #VBW 300 kHz 9.32 dBm Total Power **Occupied Bandwidth** 1.0350 MHz **Transmit Freq Error** 2.734 kHz **OBW Power** 99.00 % x dB Bandwidth 681.8 kHz x dB -6.00 dB **STATUS**

### OBW NVNT BLE 2402MHz Ant1


### OBW NVNT BLE 2442MHz Ant1



JianYan Testing Group Shenzhen Co., Ltd.

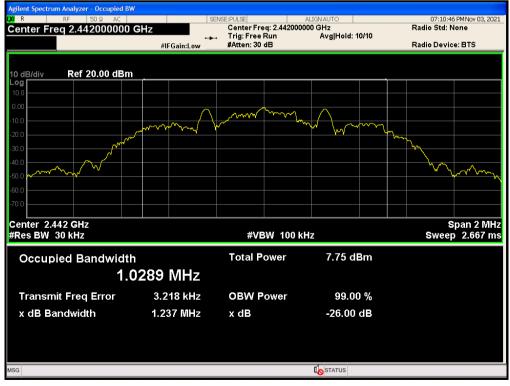
No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### OBW NVNT BLE 2480MHz Ant1




### 99% Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant 1	1.0461
NVNT	BLE	2442	Ant 1	1.0289
NVNT	BLE	2480	Ant 1	1.046

### OBW NVNT BLE 2402MHz Ant1



### OBW NVNT BLE 2442MHz Ant1







### OBW NVNT BLE 2480MHz Ant1



### Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	1.883	8	Pass
NVNT	BLE	2442	Ant 1	1.163	8	Pass
NVNT	BLE	2480	Ant 1	2.031	8	Pass

# PSD NVNT BLE 2402MHz Ant1

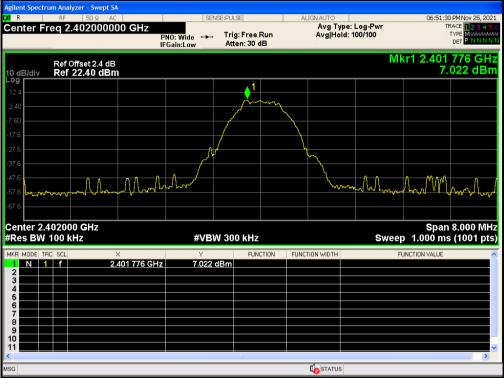


### PSD NVNT BLE 2442MHz Ant1



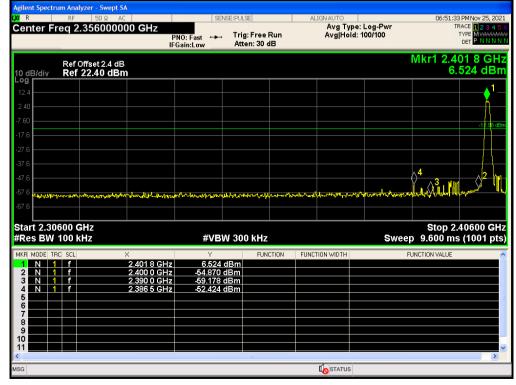




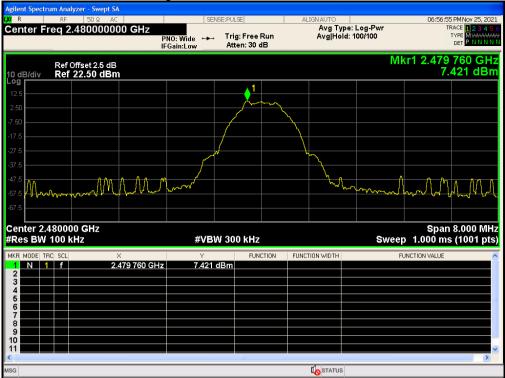

### PSD NVNT BLE 2480MHz Ant1






### Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-59.442	-20	Pass
NVNT	BLE	2480	Ant 1	-55.411	-20	Pass




# Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission








### Band Edge NVNT BLE 2480MHz Ant1 Ref







Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-50.812	-20	Pass
NVNT	BLE	2442	Ant 1	-50.807	-20	Pass
NVNT	BLE	2480	Ant 1	-50.575	-20	Pass

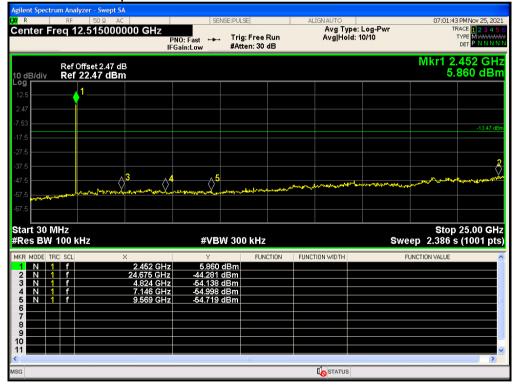
### **Conducted RF Spurious Emission**

### Tx. Spurious NVNT BLE 2402MHz Ant1 Ref



### Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

R	RE	a <mark>lyzer - Swept S</mark> 50 Ω AC		SEN	ISE:PULSE		ALIGNAUTO		06:52:0	9 PM Nov 25, 20
		12.515000	000 GHz	PNO: Fast +++ Gain:Low	Trig: Free #Atten: 30	Run	Avg Type: Avg Hold:		T	RACE 1234 TYPE MUMMAN DET PNNN
0 dB/div		Offset 2.4 dB 22.40 dBn								.402 GH .875 dB
og 12.4		1								
2.40										
7.6										-12.61 0
7.6										
7.6			3 <u>,</u>			-10 ¹⁻¹ -10-10-10-10-10-10-10-10-10-10-10-10-10-	and all and a start of the	Antonia	and the second second second	مەر _{مە} مەر بەرمەر
7.6	كعدويراتين	lehan reaning	unen mentry solutions	her had the man of the second second	and a second	lan phillips	<b>V</b> · · · · · ·			
7.0										
7.6	MU7								Stor	25.00.01
tart 30 l		kHz		#VBV	V 300 kHz			Swe	Stop 2.386 s	
tart 30 I Res BW	100		×	Y	FUN					
tart 30   Res BW R MODE T	100		2.402 GHz	ү 6.875 с	FUN				eep 2.386	
tart 30   Res BW R MODE 1 1 N 2 N	100		2.402 GHz 24.925 GHz 4.624 GHz	6.875 c -43.428 c -54.894 c	FUN dBm dBm dBm		CTION WIDTH		eep 2.386	
tart 30   Res BW R MODE T 1 N 2 N 3 N 4 N	100		2.402 GHz 24.925 GHz 4.624 GHz 7.196 GHz	6.875 c -43.428 c -54.894 c -55.109 c	FUN dBm dBm dBm dBm		CTION WIDTH		eep 2.386	
art 30   Res BW R MODE 1 N 2 N 3 N 4 N 5 N 5	100		2.402 GHz 24.925 GHz 4.624 GHz	6.875 c -43.428 c -54.894 c	FUN dBm dBm dBm dBm		ICTION WIDTH		eep 2.386	
tart 30   Res BW R MODE 1 1 N 2 N 3 N 4 N 5 N 6 6 7	100		2.402 GHz 24.925 GHz 4.624 GHz 7.196 GHz	6.875 c -43.428 c -54.894 c -55.109 c	FUN dBm dBm dBm dBm		ICTION WIDTH		eep 2.386	
tart 30   Res BW Res BW 1 N 2 N 3 N 4 N 5 N 6 6 7 7 8 8 9	100		2.402 GHz 24.925 GHz 4.624 GHz 7.196 GHz	6.875 c -43.428 c -54.894 c -55.109 c	FUN dBm dBm dBm dBm		ICTION WIDTH		eep 2.386	9 25.00 GI s (1001 pi
tart 30   Res BW R MODE 1 1 N 2 N 3 N 4 N 5 N 6 7 8 8 9 9	100		2.402 GHz 24.925 GHz 4.624 GHz 7.196 GHz	6.875 c -43.428 c -54.894 c -55.109 c	FUN dBm dBm dBm dBm		ICTION WIDTH		eep 2.386	
tart 30   Res BW KR MODE 1 1 N 2 N 3 N 4 N 5 N 6 6 7 7	100		2.402 GHz 24.925 GHz 4.624 GHz 7.196 GHz	6.875 c -43.428 c -54.894 c -55.109 c	FUN dBm dBm dBm dBm		ICTION WIDTH		eep 2.386	

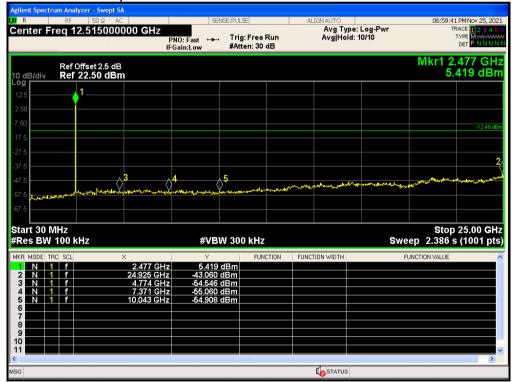

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





# Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

# Tx. Spurious NVNT BLE 2442MHz Ant1 Emission








# Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

# Tx. Spurious NVNT BLE 2480MHz Ant1 Emission



-----End of report-----