

Page 1 of 84

Report No.: UNIA23051709ER-63

FCC RADIO TEST REPORT

FCC ID: 2BBAWPFD-002

Sample : Automatic Pet Feeder

Trade Name : N/A

Main Model: PFD-002 PRO

Additional Model : PTM-701

Report No.: UNIA23051709ER-63

Prepared for

Shenzhenbenfendianzishangwuyouxiangongsi MinZhi JieDao ZhangKengSheQu XiangNanSiQu 25 Dong 703 Shenzhen Shi LongHua Qu, Shenzhen, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

D101, No. 107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China/518109

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

TEST RESULT CERTIFICATION

Applicant	Shenzhenbenfendianzishangwuyouxiangongsi
Address	MinZhi JieDao ZhangKengSheQu XiangNanSiQu 25 Dong 703 Shenzhen Shi LongHua Qu, Shenzhen, China
Manufacturer:	Shenzhen Ipetmon Creative Technology Co., Ltd.
Address:	5th Floor, Building B, Honghengtai High-tech Park, Shangcun, Gongming Street, Guangming District, Shenzhen
Product description	N N
Product:	Automatic Pet Feeder
Trade Name	N/A
Model Name	PFD-002 PRO, PTM-701
Test Methods	FCC Rules and Regulations Part 15 Subpart C Section 15.407 ANSI C63.10: 2013

This device described above has been tested by Shenzhen ZKT Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test
Date (s) of performance of tests:
Date of Issue:
Test Result

May 17, 2023 ~ May 31, 2023 May 31, 2023 Pass

Prepared by:

Reviewer:

Jason Ye/Supervisor

Kelly Cheng/Supervisor

inte/

Approved & Authorized Signer:

Liuze/Manager

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

		5	
	Table of Contents Pa	age	
		0	
	1 TEST SUMMARY	5 -	
	1.1 TEST PROCEDURES AND RESULTS	5	
	1.2 TEST FACILITY	6	
	1.3 MEASUREMENT UNCERTAINTY	7	
	1.4 ENVIRONMENTAL CONDITIONS	7	
	2 GENERAL INFORMATION	8	
	2.1 GENERAL DESCRIPTION OF EUT	8	
	2.2 CARRIER FREQUENCY OF CHANNELS	9	
	2.3 TEST MODE	10	
	2.4 DESCRIPTION OF THE TEST MODES	10	
	2.5 TEST SETUP	11	
	2.6 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	11	
	2.7 MEASUREMENT INSTRUMENTS LIST	12	
	3 CONDUCTED EMISSION	13	
	3.1 TEST LIMIT	13	
	3.2 TEST SETUP	13	
	3.3 TEST PROCEDURE	14	
	3.4 TEST RESULT	14	
	4 RADIATED EMISSION	17	
	4.1 TEST LIMIT	17	
	4.2 TEST SETUP	18	
	4.3 TEST PROCEDURE	19	
	4.4 TEST RESULT	20	
È	5 OCCUPIED BANDWIDTH	34	
	5.1 TEST LIMIT	34	
	5.2 TEST PROCEDURE	34	
	5.3 TEST SET-UP	35	
	5.4 TEST RESULT	35	
	6 MAXIMUM CONDUCTED OUTPUT AVERAGE POWER SPECTRAL DENS	ITY49	
	6.1 TEST LIMIT	49	
	6.2 TEST PROCEDURE	49	
	6.3 TEST SET-UP	49	
	6.4 EQUIPMENT USED	49	
	6.5 TEST RESULT	49	

Report No .:	UNIA23051709ER-63
--------------	-------------------

L.	Table of Contents		Page
2			
7 AVERAGE OUTPUT PO	WER		59
7.1 TEST LIMIT	5		59
7.2 TEST PROCEDURE			59
7.3 TEST SET-UP	in the second se		59
7.4 EQUIPMENT USED		5	59
7.5 TEST RESULT			59
8 CONDUCTED SPURIOU	JS EMISSION		61
8.1 TEST LIMIT		S	61
8.2 TEST SETUP			61
8.3 TEST PROCEDURE	17,		61
8.4 TEST RESUL		L.	61
9 ANTENNA REQUIREME	INT		82
10 PHOTO OF TEST			83

Page 4 of 84

N

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Item FCC Rules		Description Of Test	Result
1 FCC Part 15.407		6dB Bandwidth	Pass
2	FCC Part 15.407	Emission Bandwidth	Pass
3	FCC Part 15.407	Maximum conducted output power	Pass
4	4 FCC Part 15.407 Conducted Spurious Emission		Pass
5	FCC Part 15.407	Maximum Conducted Output Power Density	Pass
6	FCC Part 15.209	Radiated Emission	Pass
7	FCC Part 15.407	Band Edges	Pass
8	8 FCC Part 15.207 Line Conduction Emission		Pass
9	9 FCC Part 15.203 Antenna Requirement		Pass

Note:

"N/A" denotes test is not applicable in this Test Report.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Report No.: UNIA23051709ER-63

1.2 TEST FACILITY

Test Firm

Address

: Shenzhen ZKT Technology Co., Ltd.

: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

Designation Number: CN1299

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 692225

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 27033

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	t Site Method Measurement Frequency Range		U, (dB)
UNI	ANSI	9kHz ~ 150kHz	2.96
	ANOI	150kHz ~ 30MHz	2.44

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
7. 1		9kHz ~ 30MHz	2.50
UNI	UNI ANSI	30MHz ~ 1000MHz	4.80
		1000MHz ~ 18000MHz	4.13

C. RF Conducted Method:

	The second se		
ltem	Measurement Uncertainty		
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$		
Uncertainty of RF power density, conducted	$U_{c} = \pm 2.6 \text{ dB}$		
Uncertainty of spurious emissions, conducted	$U_{c} = \pm 2 \%$		
Uncertainty of Occupied Channel Bandwidth	$U_{c} = \pm 2 \%$		

1.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35 °C
Relative Humidity:	30~60 %
Air Pressure:	950~1050 hPa

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	Automatic Pet Feeder		
Trade Name:	N/A		
Main Model:	PFD-002 PRO		
Additional Model:	PTM-701		
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: PFD-002 PRO.		
Operation Frequency:	Band 1: 5150 MHz \sim 5250MHz; Band 4: 5725 MHz \sim 5850MHz		
Modulation Type:	BPSK, QPSK, 16QAM, 64QAM, 128QAM, 256QAM, OFDM		
Maximum Peak Conducted Output Power:	Band 1: 14.57dBm; Band 4: 14.63dBm		
Antenna Type:	PCBAntenna		
Antenna Gain:	Band 1: 1.97dBi; Band 4: -0.76dBi		
Battery:	N/A		
Adapter:	Model: QL010-0501000UU Input: 100-240V~, 50/60Hz, 0.45A Output: DC 5.0V, 1.0A		
Power Source:	DC 5V from adapter or DC 6.0V from battery		

2.2 CARRIER FREQUENCY OF CHANNELS

Frequency Band	Channel Number	Frequency	Frequency Band	Channel Number	Frequency
	36	5180 MHz	5725 MHz~ 5850MHz	149	5745 MHz
5150 MHz ~ 5250MHz	38	5190 MHz		151	5755 MHz
	40	5200 MHz		153	5765 MHz
	42	5210 MHz		155 📏	5775 MHz
	44	5220 MHz		157	5785 MHz
	46	5230 MHz		159	5795 MHz
G,	48	5240 MHz		165	5825MHz

Note: For 20MHz bandwidth system use Channel 36, 40, 48, 149, 157, 165; For 40MHz bandwidth system use Channel 38, 46, 151, 159.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

2.3 TEST MODE

Mode	Tested channel	Modulation	Date rate(Mbps)
802.11a/n20	36, 40, 48, 149, 157, 165	OFDM	6Mbps/MCS0
802.11n40	38, 46, 151, 159	OFDM	MCS0

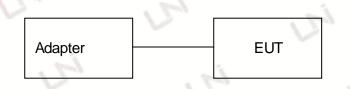
Note:

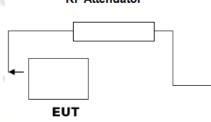
- 1. The EUT has been set to operate continuously on tested channel individually, and the EUT is operating at its maximum duty cycle>or equal 98%.
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.

2.4 DESCRIPTION OF THE TEST MODES

During the measurement the environmental conditions were within the listed ranges:

	Normal Voltage	DC 5V
Voltage	High Voltage	DC 5.5V
	Low Voltage	DC 4.5V
	Normal Temperature	24°C
Other	Relative Humidity	55 %
	Air Pressure	989 hPa


Note: All modes were test at Normal Voltage, High Voltage, and Low Voltage, only the worst results of Normal Voltage was reported in the test report.


Page 11 of 84

2.5 TEST SETUP

Operation of EUT during Radiation testing:

Operation of EUT during RF Conducted testing: RF Attenuator

Spectrum Analyzer	

2.6 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ltem	Equipment	Model No.	Cable Length(cm)	Remark
1	Automatic Pet Feeder	PFD-002 PRO	1.5m	EUT
in .				

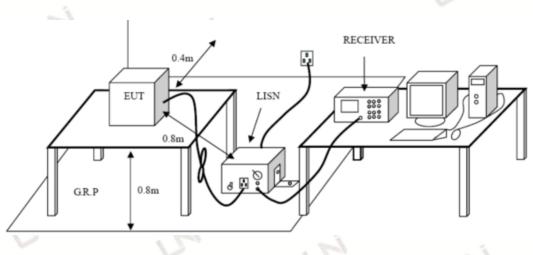
Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2.7 MEASUREMENT INSTRUMENTS LIST

				1	-	
ltem	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
		Conduction Emi	ssions Measuremer	nt		
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A	
2	AMN	Schwarzbeck	NNLK8121	8121370	2023.09.22	
3	AAN	TESEQ	T8-Cat6	38888	2023.09.22	
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2024.05.30	
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2023.09.22	
		Radiated Emis	sions Measurement	7	1	
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A	
2	Horn Antenna	Sunol	DRH-118	A101415	2023.09.27	
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2024.02.26	
4	PREAMP	HP	8449B	3008A00160	2023.09.22	
5	PREAMP	HP	8447D	2944A07999	2024.05.30	
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2023.09.22	
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2023.09.22	
8	Signal Generator	Agilent	E4421B	MY4335105	2023.09.22	
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2023.09.22	
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2023.09.22	
11	RF Power sensor	DARE	RPR3006W	15100041SNO88	2024.05.30	
12	RF Power sensor	DARE	RPR3006W	15100041SNO89	2024.05.30	
13	RF power divider	Anritsu	K241B	992289	2023.09.22	
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2023.09.22	
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2024.05.30	
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2023.09.22	
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2024.05.30	
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2023.09.27	
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2023.09.22	
20	Signal Generator	Agilent	N5183A	MY47420153	2023.09.22	
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2023.09.22	
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2023.09.22	
23	Frequency Meter	VICTOR	VC2000	997406086	2023.09.22	
24	DC Power Source	HYELEC	HY5020E	055161818	2023.09.22	

3 CONDUCTED EMISSION


3.1 TEST LIMIT

For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

_	Maximum RF Line Voltage (dB□ V)						
Frequency (MHz)	CLA	SS A	CLASS B				
(10112)	Q.P.	Ave.	Q.P.	Ave.			
0.15~0.50	79	66	66~56*	56~46*			
0.50~5.00	73	60	56	46			
5.00~30.0	73	60	60	50			

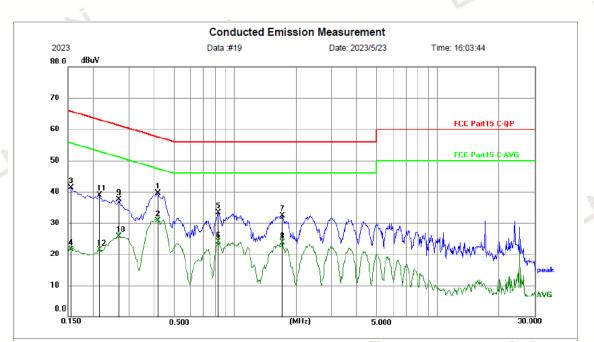
⁵ Decreasing linearly with the logarithm of the frequency. For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

3.3 TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

3.4 TEST RESULT

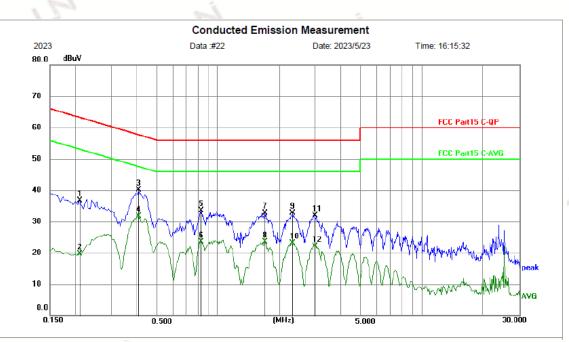

PASS

Remark:

1. All modes were test at Low, Middle, and High channel, only the worst result of Band 1 802.11a Low Channel was reported for below 1GHz test.

2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.

Temperature:	24 ℃	Relative Humidity:	48%			
Test Date:	May 23, 2023	Pressure:	1010hPa			
Test Voltage:	AC 120V, 60Hz	Phase:	Line			
Test Mode:	Transmitting mode of Band 1 802.11a 5180MHz					



			- 10 C							
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
Ī	1	0.4154	29.77	9.64	39.41	57.54	-18.13	peak	Р	
Ī	2 *	0.4154	21.04	9.64	30.68	47.54	-16.86	AVG	Ρ	
1	3	0.1544	31.83	9.53	41.36	65.76	-24.40	peak	Р	
Ī	4	0.1544	12.03	9.53	21.56	55.76	-34.20	AVG	Р	
Ī	5	0.8295	23.76	9.63	33.39	56.00	-22.61	peak	Ρ	
	6	0.8295	14.26	9.63	23.89	46.00	-22.11	AVG	Р	
Ī	7	1.7159	22.63	9.66	32.29	56.00	-23.71	peak	Ρ	
	8	1.7159	14.12	9.66	23.78	46.00	-22.22	AVG	Р	
Ī	9	0.2670	27.75	9.69	37.44	61.21	-23.77	peak	Ρ	
	10	0.2670	16.10	9.69	25.79	51.21	-25.42	AVG	Ρ	
	11	0.2129	29.25	9.71	38.96	63.09	-24.13	peak	Ρ	
ĺ	12	0.2129	11.55	9.71	21.26	53.09	-31.83	AVG	Ρ	

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

	2	[mail]				
Temperature:	24 °C	Relative Humidity:	48%			
Test Date:	May 23, 2023	Pressure:	1010hPa			
Test Voltage:	AC 120V, 60Hz Phase: Neutral		Neutral			
Test Mode:	Transmitting mode of Band 1 802.11a 5180MHz					

١,										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
ľ	1	0.2085	27.07	9.71	36.78	63.26	-26.48	peak	Р	
ľ	2	0.2085	9.93	9.71	19.64	53.26	-33.62	AVG	Р	
	3	0.4065	30.45	9.64	40.09	57.72	-17.63	peak	Р	
	4 *	0.4065	21.98	9.64	31.62	47.72	-16.10	AVG	Р	
	5	0.8295	23.81	9.63	33.44	56.00	-22.56	peak	Р	
	6	0.8295	13.96	9.63	23.59	46.00	-22.41	AVG	Р	
	7	1.7070	23.08	9.66	32.74	56.00	-23.26	peak	Р	
	8	1.7070	13.86	9.66	23.52	46.00	-22.48	AVG	Р	
	9	2.3280	23.01	9.69	32.70	56.00	-23.30	peak	Р	
	10	2.3280	13.48	9.69	23.17	46.00	-22.83	AVG	Р	
Ì	11	2.9849	22.24	9.62	31.86	56.00	-24.14	peak	Р	
	12	2.9849	12.45	9.62	22.07	46.00	-23.93	AVG	Р	

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

4 RADIATED EMISSION

4.1 TEST LIMIT

For unintentional device, according to §15.209(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	L-1	Quasi-peak	300
0.490MHz-1.705MHz	24000/F (kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 10H-	500	54.0	Average	3
Above 1GHz	500	74.0	Peak	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Limit	Distance
(MHz)	(dBuV/m)	(m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
5	-27(Note 2)	68.2
5725~5850	10(Note 2)	105.2
5725~5650	15.6(Note 2)	110.8
150	27(Note 2)	122.2

NOTE:

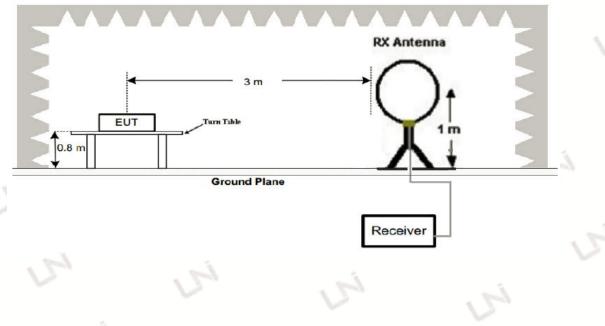
1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$100000\sqrt{30P}$

E= 3 uV/m, where P is the eirp (Watts)

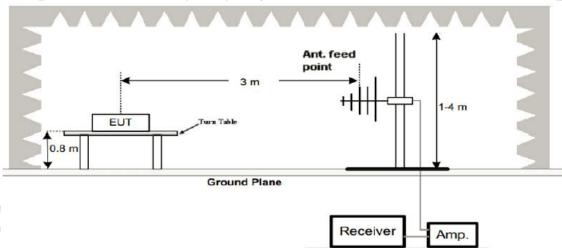
2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or

more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below

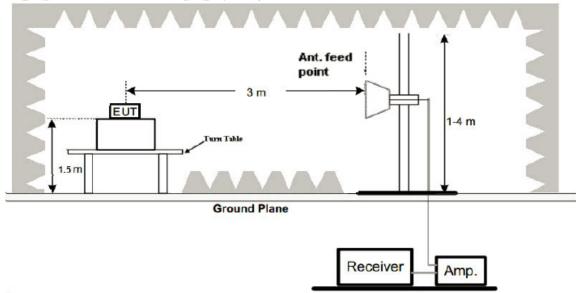

the band edge, and from 25MHz above or below the band edge increasing linearly to a level of

15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band

edge increasing linearly to a level of 27dBm/MHz at the band edge.


4.2 TEST SETUP

1. Radiated Emission Test-Up Frequency Below 30MHz



2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.3 TEST PROCEDURE

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

Note: For battery operated equipment, the equipment tests shall be performed using a new battery.

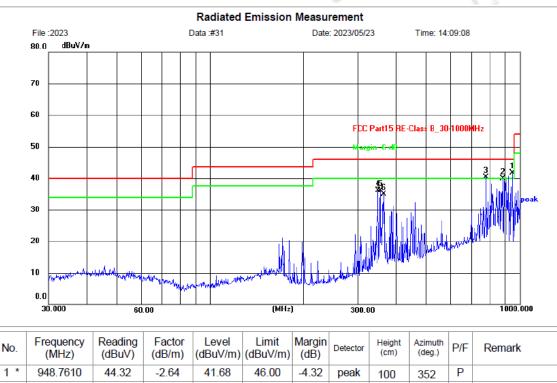
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

4.4 TEST RESULT

PASS

Remark:

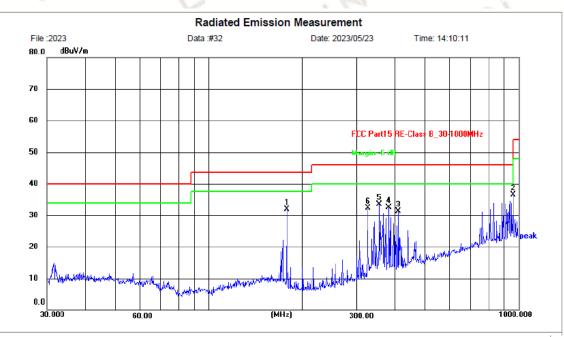
- 1. All modes were test at Low, Middle, and High channel, only the worst result of band 1 802.11a Low Channel was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.


Radiated emission below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

Below 1GHz Test Results:

Temperature:	24 ℃	Relative Humidity:	48%		
Test Date:	May 23, 2023	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Horizontal		
Test Mode:	Transmitting mode of band 1 802.11a 5180MHz				


Page 21 of 84

2	881.4067	43.71	-3.88	39.83	46.00	-6.17	peak	100	293	Р	
3!	779.6067	45.35	-4.99	40.36	46.00	-5.64	peak	100	245	Р	
4	348.0274	51.24	-15.09	36.15	46.00	-9.85	peak	100	121	Р	
5	354.1831	50.97	-14.92	36.05	46.00	-9.95	peak	100	104	Р	
6	362.9843	49.44	-14.58	34.86	46.00	-11.14	peak	100	113	Р	

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

8					
Temperature:	24 ℃	Relative Humidity:	48%		
Test Date:	May 23, 2023	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Vertical		
Test Mode:	Transmitting mode of band 1 802.11a 5180MHz				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	178.1324	49.58	-17.76	31.82	43.50	-11.68	peak	100	148	Р	
2	962.1621	39.07	-2.47	36.60	54.00	-17.40	peak	100	201	Р	
3	408.9460	44.33	-12.97	31.36	46.00	-14.64	peak	100	294	Р	
4	381.2485	46.36	-13.91	32.45	46.00	-13.55	peak	100	93	Р	
5	355.4272	48.33	-14.86	33.47	46.00	-12.53	peak	100	312	Р	
6	325.5957	47.61	-15.34	32.27	46.00	-13.73	peak	100	347	Р	

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, emission from 9kHz to 30MHz are more than 20dB below the limit, so it was not recorded in this report.
 * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

3. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz.

Radiated emission above 1GHz

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5180MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10360.042	47.63	9.14	56.77	68.20	-11.43	peak
15540.063	41.54	10.22	51.76	74.00	-22.24	peak
15540.063	40.32	10.22	50.54	54.00	-3.46	AVG
Remark:				5		17
-actor = Anter	nna Factor + Cable	e Loss – Pre-ar	mplifier.			

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10360.042	46.93	9.14	56.07	68.20	-12.13	peak
15540.063	42.32	10.22	52.54	74.00	-21.46	peak
15540.063	31.85	10.22	42.07	54.00	-11.93	AVG
Remark:		5				

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5200MHz	Antenna	Horizontal/Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10400.042	46.54	9.14	55.68	68.20	-12.52 👘	peak
15600.063	41.62	10.22	51.84	74.00	-22.16	peak
15600.063	31.78	10.22	42.00	54.00	-12.00	AVG
Remark:			1	-		
Factor = Anter	na Eactor + Cabl	e Loss – Pre-ar	molifier		9	

ampimei

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10400.042	46.25	9.14	55.39	68.20	-12.81	peak
15600.063	41.04	10.22	51.26	74.00	-22.74	peak
15600.063	32.69	10.22	42.91	54.00	-11.09	AVG

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

LNi

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5240MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10480.042	46.54	9.27	55.81	68.20	-12.39	peak
15720.063	41.69	10.38	52.07	74.00	-21.93	peak
15720.063	33.51	10.38	43.89	54.00	-10.11	AVG
Remark:	0		1			
Factor = Anter	nna Factor + Cable	e Loss – Pre-a	mplifier.	15	0	-

RADIATED EMISSION ABOVE 1GHZ-Vertical

(dBµV)					
(ubµv)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
43.21	9.27	52.48	68.20	-15.72	peak
41.85	10.38	52.23	74.00	-21.77	peak
33.69	10.38	44.07	54.00	-9.93	AVG
	41.85	41.85 10.38	41.85 10.38 52.23	41.85 10.38 52.23 74.00	41.85 10.38 52.23 74.00 -21.77

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5745MHz	Antenna	Horizontal/Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11490.042	46.96	9.42	56.38	74.00	-17.62	peak
11490.042	38.73	9.42	48.15	54.00	-5.85	AVG
17235.063	41.32	10.51	51.83	68.20	-16.37	peak
Remark:	5		1	1		
= actor = Anter	nna Factor + Cabl	e Loss – Pre-ar	molifier			-

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11490.042	45.63	9.42	55.05	74.00	-18.95	peak
11490.042	37.25	9.42	46.67	54.00	-7.33	AVG
17235.063	40.39	10.51	50.90	68.20	-17.30	peak
Remark:				5		0
Factor = Anter	nna Factor + Cable	e Loss – Pre-a	mplifier.			

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5785MHz	Antenna	Horizontal/Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11570.042	46.96	9.42	56.38	74.00	-17.62	s peak
11570.042	34.32	9.42	43.74	54.00	-10.26	AVG
17355.063	41.85	10.51	52.36	68.20	-15.84	peak
Remark:	15	6	2	6		
-actor = Anter	nna Factor + Cabl	e Loss – Pre-a	mplifier.	. 5		-

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11570.042	46.25	9.42	55.67	74.00	-18.33	peak
11570.042	34.81	9.42	44.23	54.00	-9.77	AVG
17355.063	41.79	10.51	52.30	68.20	-15.90	peak
emark:	÷			1		1

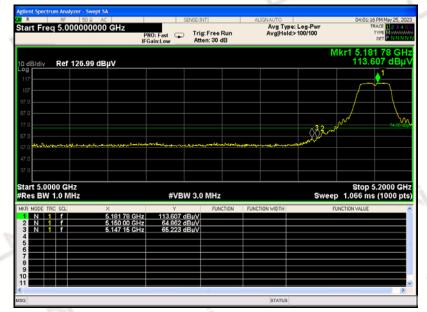
Temperature 25°C Relative Humidity 60	
Temperature 25°C Relative Humidity 60	30%
Pressure 960hPa Test Voltage No	Normal Voltage
Test Mode 802.11a 5825MHz Antenna Ho	Horizontal/Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11650.042	46.88	9.62	52.92	74.00	-21.02	peak
11650.042	37.61	9.62	45.05	54.00	-8.95	AVG
17475.063	42.82	10.75	47.61	68.20	-26.39	peak
Remark:				5		1a
actor = Anter	nna Factor + Cable	e Loss – Pre-ar	nplifier.			C.

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11650.042	48.37	9.62	53.55	74.00	-20.45	peak
11650.042	36.94	9.62	47.64	54.00	-6.36	AVG
17475.063	41.81	10.75	48.61	68.20	-25.39	peak
Remark:			2	1		-i
Factor = Anter	nna Factor + Cable	e Loss – Pre-a	amplifier.			5

Note: All test channels had been tested. The 802.11a is the worst case and recorded in the test report. Other frequencies radiation emission from 1GHz to 40GHz at least have 20dB margin and not recorded in the test report.


Factor = Antenna Factor + Cable loss - Amplifier gain, Margin= Limit-Level.

The "Factor" value can be calculated automatically by software of measurement system.

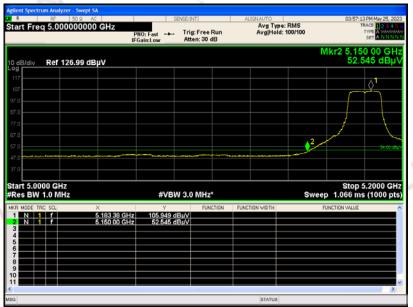
Test result for band edge emission at restricted bands						
Temperature	25°C	Relative Humidity	60%			
Pressure	960hPa	Test Voltage	Normal Voltage			
Test Mode	802.11a 5180MHz	Antenna	Horizontal			

Test Graph for Peak Measurement

Test Graph for Average Measurement

ure rroq o.	.000000000	P		g: Free Run ten: 30 dB	Avg Hold:			VPE A WAAN DET A N N D
dB/div R e	ef 126.99 dB	μV				M	kr1 5.177 106.2	18 G 06 dB
17								
07								
7.0							-+	
7.0								
7.0								1
.0						02,		
						and the second second		
.0								
art 5.0000 Res BW 1.0			#VBW 3.0	0 MHz*		Sweep	Stop 5. 1.066 ms	2000 G (1000 p
R MODE TRC SC		X	Y	FUNCTION	FUNCTION WIDTH	FUI	CTION VALUE	
N 1 f N 1 f A		5.177 18 GHz 5.150 00 GHz	106.206 dBµV 52.973 dBµV					

RESULT: PASS

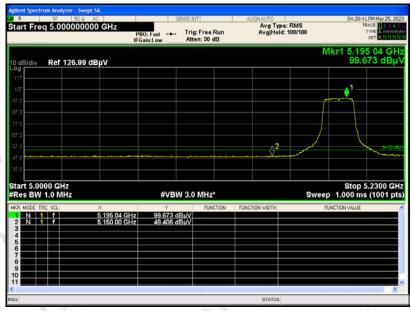

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5180MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

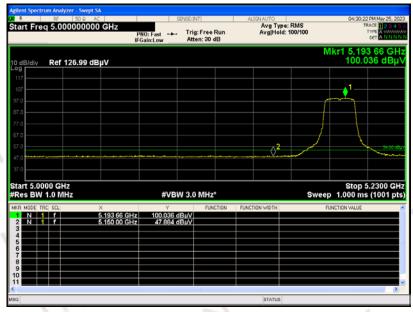
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



RESULT: PASS


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Note: 1. All the 20MHz bandwidth modulation had been tested, the 802.11a at 5180MHz was the worst case and record in his test report. All the 40MHz bandwidth modulation had been tested, the 802.11N40 at 5190MHz was the worst case and record in his test report.

2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

3. Only the data of band edge emission at the restricted band 4.5GHz-5.15GHz and

5.35GHz-5.46GHz record in the report. Other restricted band 7.25GHz-7.77GHz were considered as ambient noise. No recording in the test report.

4. The sideband standard of Band 4 frequency band is not defined, the transmitted signal does not fall in the restricted band, and the edge signal is far away from the edge of other restricted bands, and it is not recorded in the report.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

5 OCCUPIED BANDWIDTH

5.1 TEST LIMIT

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

	FCC Part 15 Subpart C(15.407)						
	Test Item	Limit	Frequency Range(MHz)				
	i i		5150~5250				
V	26 dB Bandwidth	N/A	5250~5350				
			5470~5725				
	6 dB Bandwidth	>500kHz	5725~5850				

5.2 TEST PROCEDURE

6dB bandwidth (DTS bandwidth):

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on operation frequency individually.
- 3. Set RBW = 100kHz.
- 4. Set the VBW \geq 3*RBW. Detector = Peak. Trace mode = max hold.
- 5. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.

99% occupied bandwidth:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 1.5 to 5 times the OBW, centered on a nominal channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

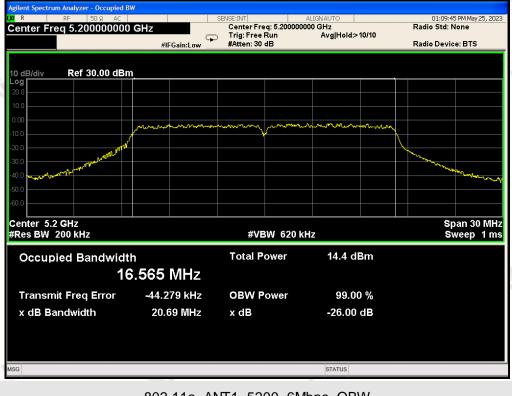
-26dB Bandwidth:

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.

5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Note: The EUT was tested according to KDB 789033 for compliance to FCC 47CFR 15.407 requirements.

in in			5
	Page 35 of 84	Report No.: UNIA2305	51709ER-63
N. N	in .		
5.3 TEST SET-UP		S	in
RF Attenuator	Spectrum Analy	/zer	
		N	N
EUT	RF Cable	in,	
5.4 TEST RESULT	N	N'	N LI
PASS	L.	N	
N N		N	in
	5	N N	
		N	الحل
		N.	أكل
in, in	Un U		
	L.	J V	L'
N		N	N
N N		IN IN	N
in in			`
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd	alcheng High-Tech Park, Taoyuan Community, Dalan 华区大浪街道陶元社区凯诚高新园107(D101) (P.C.518	ng Sub-District, Longhua District, Shenzhen, Guangd 1109) Tel:+86-755-86180996 Fax:+86-755-8618015	ong, China 6
· · · · · · · · · · · · · · · · · · ·			http://www.uni-lab.hk.


Test Data of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz						
Test Mode	Test Channel	99% Occupied	-26dB Bandwidth	Limits	Pass or Fail	
	(MHz)	Bandwidth (MHz)	(MHz)	(MHz)		
	5180	16.618	21.04	N/A	Pass	
802.11a	5200	16.565	20.69	N/A	Pass	
	5240	16.540	20.75	N/A	Pass	
1	5180	16.566	20.80	N/A	Pass	
802.11n20	5200	16.581	20.86	N/A	Pass	
	5240	16.593	21.03	N/A	Pass	
802.11n40	5190	35.831	38.14	N/A	Pass	
	5230	35.822	37.99	N/A	Pass	

Test Da	Test Data of Occupied Bandwidth and DTS Bandwidth for band 5.725-5.85 GHz							
Test Mode	Test Channel (MHz)	99% Occupied Bandwidth (MHz)	DTS Bandwidth (MHz)	Limits (MHz)	Pass or Fail			
802.11a	5745	16.516	16.53	0.5	Pass			
	5785	16.429	16.51	0.5	Pass			
S	5825	16.441	16.55	0.5	Pass			
	5745	16.487	16.52	0.5	Pass			
802.11n20	5785	16.438	16.50	0.5	Pass			
5	5825	16.435	16.52	0.5	Pass			
802.11n40	5755	35.929	36.36	0.5	Pass			
802.11140	5795	35.886	36.37	0.5	Pass			

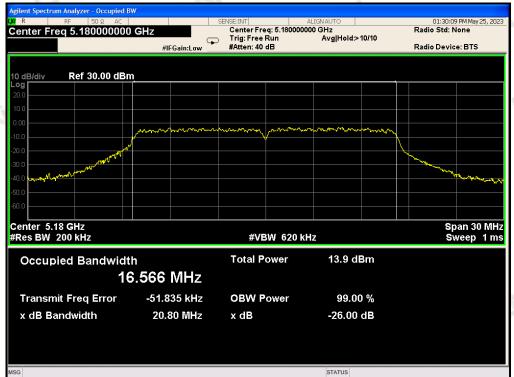
Test Graphs of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz

01:07:41 PM May 25, 2023 Radio Std: None ALIGNAUT Center Freq: 5.180000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 5.180000000 GH: Avg|Hold>10/10 \mathbf{P} Radio Device: BTS #IFGain:Low Ref 30.00 dBm Center 5.18 GHz #Res BW 200 kHz Span 30 MHz Sweep 1 ms #VBW 620 kHz 14.9 dBm **Occupied Bandwidth Total Power** 16.618 MHz -70.181 kHz **Transmit Freq Error OBW Power** 99.00 % 21.04 MHz -26.00 dB x dB Bandwidth x dB

802.11a_ANT1_5180_6Mbps_OBW

802.11a_ANT1_5200_6Mbps_OBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


Page 38 of 84

Report No.: UNIA23051709ER-63

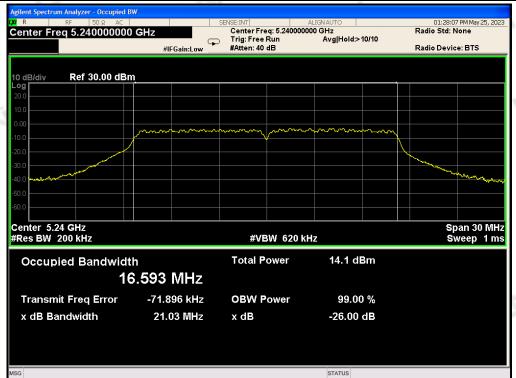
		and the second s		
gilent Spectrum Analyzer - Occupied E	w			
R RF 50Ω AC		SENSE:INT	ALIGN AUTO	01:10:15 PM May 25, 2 Radio Std: None
enter Freq 5.24000000	GHZ	Center Freq: 5.240000 Trig: Free Run	Avg Hold:>10/10	Radio Sta: None
	#IFGain:Low	#Atten: 30 dB	.	Radio Device: BTS
0 dB/div Ref 30.00 dBr	n			
.og	Í			
20.0				
10.0				
).00	Marrian	August and a second state	and the for the state of the second s	
0.0		a branch to have been a		×
0.0				
				- Andrew -
0.0 Martin Martin Martin				Mary Mary Mary and
				and the second se
50.0				
60.0				
enter 5.24 GHz	11			Span 30 M
Res BW 200 kHz		#VBW 620 k	Hz	Sweep 1
Occupied Bandwidt	h	Total Power	14.9 dBm	
	6.540 MHz			
		OBW Power	00.00.1/	
Transmit Freq Error		OBW Power	99.00 %	
x dB Bandwidth	20.75 MHz	x dB	-26.00 dB	

802.11a_ANT1_5240_6Mbps_OBW

STATUS

802.11n20_ANT1_5180_MCS0_OBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


Page 39 of 84

Report No.: UNIA23051709ER-63

R RF 50Ω AC			SENSE:INT		IGNAUTO				33 PM May 25
enter Freq 5.20000000	GHz	_	Tailor Francis	eq: 5.20000000 Run	0 GHz Avg Hold:>1	0/10		Radio Std:	None
	#IF	Gain:Low 📩	#Atten: 40					Radio Devi	ice: BTS
dB/div Ref 30.00 dBn	n								
og 0.0									
0.0									
	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon	mm		m			
0.0							$\setminus$		
0.0 march and a second se								- Andrews	man .
J.0									
1.0									
enter 5.2 GHz								S	pan 30
Res BW 200 kHz			#VE	SW 620 kH	Z			8	Sweep 1
Occupied Bandwidt	h		Total P	ower	13.8 dE	3m			
	5.581								
Transmit Freq Error	-59.43	34 kHz	OBW P	ower	99.00	%			
x dB Bandwidth	20.8	6 MHz	x dB		-26.00	dB			

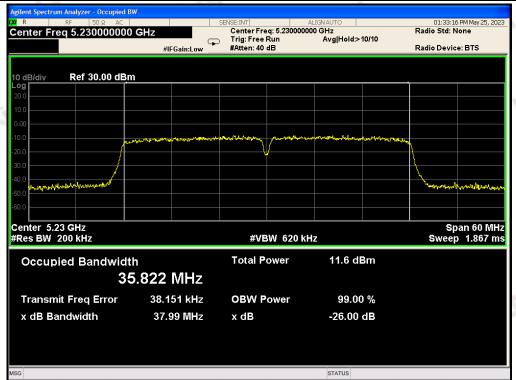
# 802.11n20_ANT1_5200_MCS0_OBW

STATUS



#### 802.11n20_ANT1_5240_MCS0_OBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


Page 40 of 84

Report No.: UNIA23051709ER-63

R RF 50Ω AC Center Freq 5.190000000	GHz	SENSE:INT Center Freq: 5.190000 Trig: Free Run	ALIGNAUTO 1000 GHz Avg Hold:>10/10	01:32:53 PM May 25, Radio Std: None
	#IFGain:Low	#Atten: 40 dB		Radio Device: BTS
0 dB/div Ref 30.00 dBn	n			
.og				
10.0				
0.00				
· · · · · · · · · · · · · · · · · · ·	And the formation of the second second second	wanter market	a lard a future land and the second second	- march
20.0		γ		
30.0				
40.0 martine martine to				Margarith Company and Company
50.0				
50.0				
Center 5.19 GHz				Span 60 N
Res BW 200 kHz		#VBW 620 k	Hz	Sweep 1.867
O		Total Power	11.8 dBm	
Occupied Bandwidt		TOTAL FOWER		
38	5.831 MHz			
Transmit Freq Error	48.750 kHz	OBW Power	99.00 %	
x dB Bandwidth	38.14 MHz	x dB	-26.00 dB	
X UD Dalluwiulli	30. 14 IVITIZ	X UD	-20.00 UB	

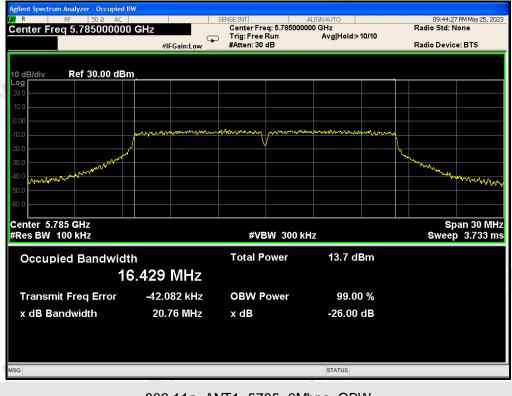
### 802.11n40_ANT1_5190_MCS0_OBW

STATUS



802.11n40_ANT1_5230_MCS0_OBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

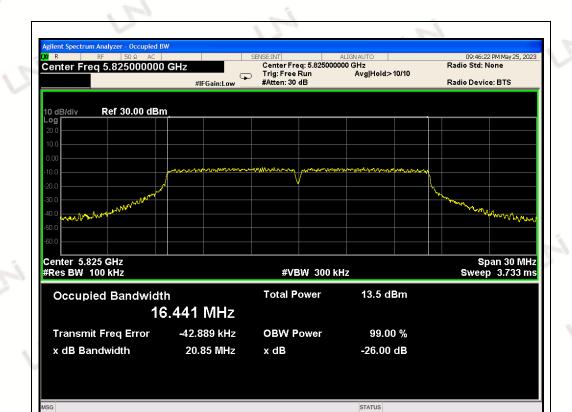



## Test Graphs of Occupied Bandwidth for band 5.725-5.85 GHz

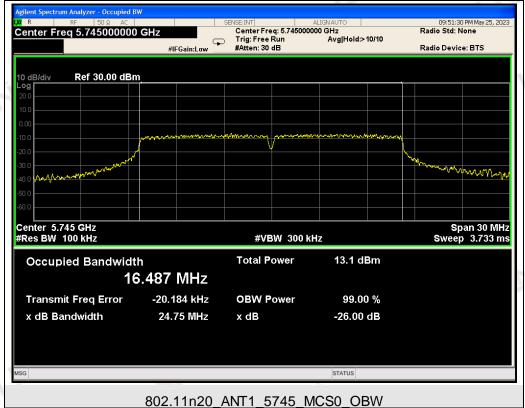
09:39:56 PM May 25, 2023 Radio Std: None ALIGNAUT Center Freq: 5.745000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 5.745000000 GHz Avg|Hold:>10/10  $\mathbf{P}$ Radio Device: BTS #IFGain:Low Ref 30.00 dBm mm Center 5.745 GHz #Res BW 100 kHz Span 30 MHz Sweep 3.733 ms #VBW 300 kHz 13.8 dBm **Occupied Bandwidth Total Power** 16.516 MHz Transmit Freq Error -17.597 kHz **OBW Power** 99.00 % 24.82 MHz -26.00 dB x dB Bandwidth x dB

#### 802.11a_ANT1_5745_6Mbps_OBW

STATUS




#### 802.11a_ANT1_5785_6Mbps_OBW


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

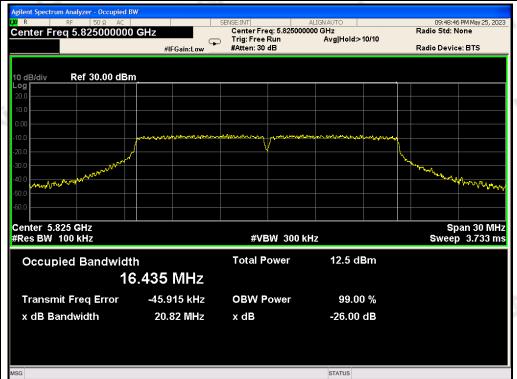
Page 42 of 84

Report No.: UNIA23051709ER-63



802.11a_ANT1_5825_6Mbps_OBW




深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

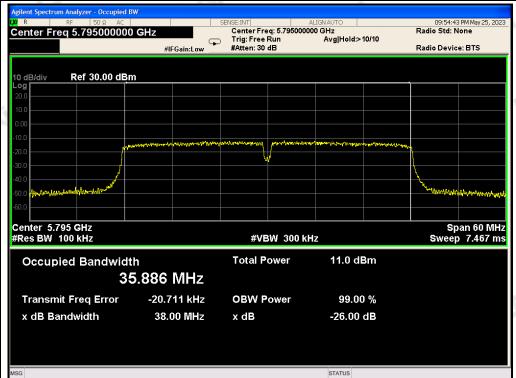
Page 43 of 84

Report No.: UNIA23051709ER-63

Center Freq 5.785000000	GHz #IFGain:Low	Tailan France F	q: 5.78500000 Run	LIGN AUTO 10 GHz Avg Hold:>1	0/10		adio Std: I adio Devi	
0 dB/div Ref 30.00 dBn	n							
- <b>og</b> 20.0								
10.0								
0.00	man have a samplime the work when	mmmn	phan and phanes	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.www			
20.0		Y	, 					
30.0						- Area	war war	
30.0 40.0 40.0 50.0							1	Anne by
60.0								
Center 5.785 GHz #Res BW 100 kHz		#VB	W 300 kH	z				pan 30 M p 3.733
Occupied Bandwidt	h	Total Po	ower	13.3 dE	ßm			
16	5.438 MHz							
Transmit Freq Error	-40.714 kHz	OBW P	ower	99.00	%			
x dB Bandwidth	20.80 MHz	x dB		-26.00	dB			

## 802.11n20_ANT1_5785_MCS0_OBW

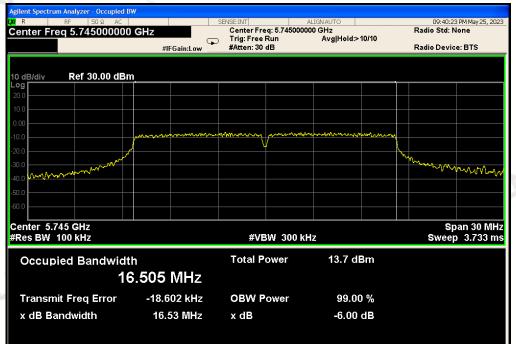



#### 802.11n20_ANT1_5825_MCS0_OBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Open 60.000 MHz  Center Freg: 5.75500000 GHz  Radio Std: None    #/FGain:Low  #/FGain:Low  Avg Hold>10/10  Radio Device: BTS    0 dB/div  Ref 30.00 dBm	R      RF      50 Ω      AC		OF NOT-THIT		00.50.50 DM M051
Performance  Provide the second seco			SENSE:INT	ALIGNAUTO	09:52:53 PM May 25, 2 Radio Std: None
or of the second	oan 60.000 MHZ		) Trig: Free Run		Radio Device: BTS
or of the second					
Occupied Bandwidth  Total Power  11.6 dBm    Occupied Bandwidth  Total Power  11.6 dBm	dB/div Def 30.00 dB	<b>m</b> 0			
2000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 400 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4					
000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000  000 <td>.0</td> <td></td> <td></td> <td></td> <td></td>	.0				
Denter 5.755 GHz Res BW 100 kHz Concupied Bandwidth 35.929 MHz State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State	.0				
Denter 5.755 GHz Rees BW 100 kHz Cocupied Bandwidth 35.929 MHz State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State	m				
Center 5.755 GHz Res BW 100 kHz Cocupied Bandwidth 35.929 MHz					
200  With My Multiplication    200  With My Multiplication    200  Senter 5.755 GHz    Scenter 5.755 GHz  #VBW 300 kHz    Span 6    Stress BW 100 kHz  Sweep 7.4    Occupied Bandwidth  Total Power    35.929 MHz		and the second of the second second	manhalitageners provintiones	TVU WWW Sight (V apple on Mary Mary Mark	mu
Implaying  Impla			↓		
Senter 5.755 GHz  Span 6    Res BW 100 kHz  #VBW 300 kHz    Occupied Bandwidth  Total Power    35.929 MHz	.0				
Senter 5.755 GHz  Span 6    Res BW 100 kHz  #VBW 300 kHz    Occupied Bandwidth  Total Power    35.929 MHz	0 and the stand Number and the				Way www. Wy Martin Lather and
Center 5.755 GHz Res BW 100 kHz #VBW 300 kHz Span 6 Sweep 7.4 Occupied Bandwidth Total Power 11.6 dBm 35.929 MHz	.0				
Center 5.755 GHz Res BW 100 kHz #VBW 300 kHz Span 6 Sweep 7.4 Occupied Bandwidth Total Power 11.6 dBm 35.929 MHz	0				
Res BW 100 kHz #VBW 300 kHz Sweep 7.4 Occupied Bandwidth Total Power 11.6 dBm 35.929 MHz	i <b>de la companya de la compa</b>				
Occupied Bandwidth Total Power 11.6 dBm 35.929 MHz					Span 60 M
35.929 MHz	tes BW 100 kHz		#VBW 300 k	Hz	Sweep 7.467
35.929 MHz	Occupied Bandwid	th	Total Power	11.6 dBm	
Transmit Fred Error 20.519 kHz OBW Power 99.00 %	3	S.SZS IVINZ			
	Transmit Freq Error	20.519 kHz	OBW Power	99.00 %	
x dB Bandwidth 38.45 MHz x dB -26.00 dB	x dB Bandwidth	38.45 MHz	x dB	-26.00 dB	

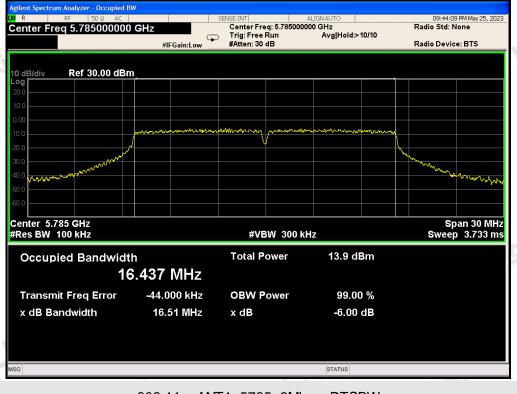
# 802.11n40_ANT1_5755_MCS0_OBW


STATUS



#### 802.11n40_ANT1_5795_MCS0_OBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.






### Test Graphs of DTS Bandwidth for band 5.725-5.85 GHz

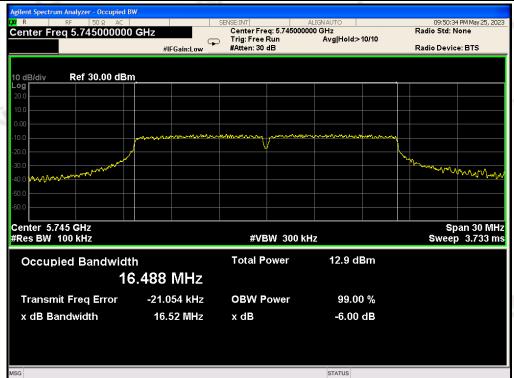
802.11a_ANT1_5745_6Mbps_DTSBW

STATUS



802.11a_ANT1_5785_6Mbps_DTSBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


Page 46 of 84

Report No.: UNIA23051709ER-63

R RF 50 Ω AC		SENSE:INT	ALIGNAUTO	09:46:43 PM May 25,
enter Freq 5.82500000	GHZ	Center Freq: 5.825000 Trig: Free Run	Avg Hold>10/10	Radio Std: None
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
dB/div Ref 30.00 dBn	n			
og				
0.0				
0.0				
00				
0.0	mannoment	monorman portoning	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	۸ <u>.                                    </u>
1.0	4	V		
0.0				North and a state of the state
0.0 When the second sec				
0.0				ALLON WY
0.0				
enter 5.825 GHz				Span 30 N
Res BW 100 kHz		#VBW 300 k	(Hz	Sweep 3.733
Occupied Bandwidt	b	Total Power	13.4 dBm	
18	5.438 MHz			
Transmit Freq Error	-47.020 kHz	OBW Power	99.00 %	
			-6.00 dB	
x dB Bandwidth	16.55 MHz	x dB		

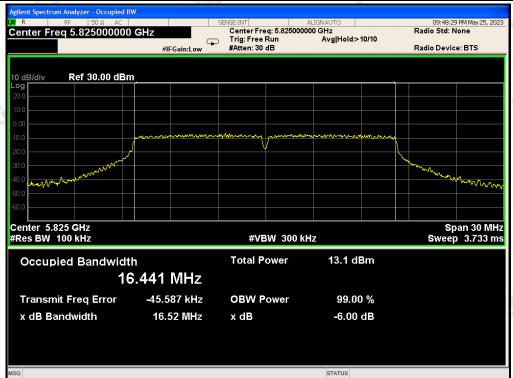
### 802.11a_ANT1_5825_6Mbps_DTSBW

STATUS



#### 802.11n20_ANT1_5745_MCS0_DTSBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


Page 47 of 84

Report No.: UNIA23051709ER-63

R RF 50 Ω AC enter Freq 5.785000000	GHz	Center Freq: 5.7850000	ALIGN AUTO 000 GHz Avg Hold:>10/10	09:49:59 PM May 25, Radio Std: None
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
og Ref 30.00 dBn	n			
0.0				
0.0				
.00				
0.0	mannonmann	monor permanent		A
0.0	/	<u> </u>		h.
0.0				"Martine Via
0.0				
0.0				
enter 5.785 GHz				Span 30 IV
Res BW 100 kHz		#VBW_300 ki	Hz	Sweep 3.733
Occupied Bandwidt	h	Total Power	12.9 dBm	
16	5. <b>42</b> 8 MHz			
Transmit Freq Error	-37.775 kHz	OBW Power	99.00 %	
x dB Bandwidth	16.50 MHz	x dB	-6.00 dB	

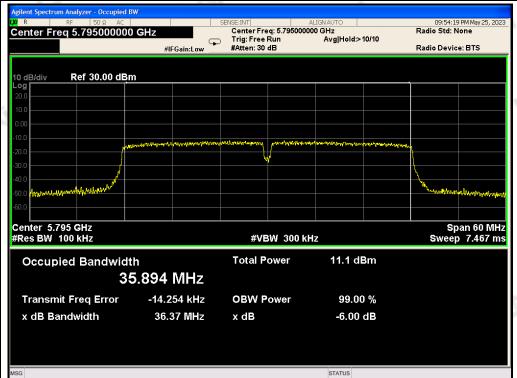
### 802.11n20_ANT1_5785_MCS0_DTSBW

STATUS



#### 802.11n20_ANT1_5825_MCS0_DTSBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


Page 48 of 84

Report No.: UNIA23051709ER-63

				5. · · · · · · · · · · · · · · · · · · ·
gilent Spectrum Analyzer - Occupie	d BW			
R RF 50Ω AC		SENSE:INT	ALIGNAUTO	09:53:19 PM May 25, 2
enter Freq 5.7550000		Center Freq: 5.755000 Trig: Free Run	000 GHz Avg Hold:>10/10	Radio Std: None
	#IFGain:Low	#Atten: 30 dB	Avginola.> lot lo	Radio Device: BTS
0 dB/div Ref 30.00 dl	βm			
20.0				
10.0				
0.00				
10.0	าและการเหตุลายสายเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น	manner portionen	**************************************	
20.0	Www.dodf.ood.anglad.anglad.ood.ood.ood.ood.ood.ood.ood.ood.ood.o			
30.0		W*		
40.0				h., .
Contract and Ward and Wald of Ward				Mumily Min wy www.
60.0				
Center 5.755 GHz				Cnon 60 M
Res BW 100 kHz		#VBW 300 k	<b>U</b> 7	Span 60 N Sweep 7.467
100 KHZ		#4D44 300 K	112	омеер гатог
Occupied Bandwid	lth	Total Power	11.3 dBm	
	35.914 MHz			
Transmit Freq Error	22.879 kHz	OBW Power	99.00 %	
x dB Bandwidth	36.36 MHz	x dB	-6.00 dB	
	00.00 10012		0.00 0.0	

### 802.11n40_ANT1_5755_MCS0_DTSBW

STATUS



#### 802.11n40_ANT1_5795_MCS0_DTSBW

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

## 6 MAXIMUM CONDUCTED OUTPUT AVERAGE POWER SPECTRAL DENSITY

## 6.1 TEST LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

FCC Part 15 Subpart E(15.407)						
Test Item	Limit	Frequency Range(MHz)				
1	Other than Mobile and					
J.	Portable : 17dBm/MHz					
	Mobile and Portable :	5150~5250				
Power Spectral Density	11dBm/MHz					
L.	11dBm/MHz	5250~5350				
	11dBm/MHz	5470~5725				
in in	30dBm/500kHz	5725~5850				

## 6.2 TEST PROCEDURE

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) Set the RBW to: 1 MHz
- (5) Set the VBW to: 3 MHz
- (6) Detector: RMS
- (7) Trace: Max Hold
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

### 6.3 TEST SET-UP

Same as 5.3.

### 6.4 EQUIPMENT USED

Same as Radiated Emission Measurement.

## 6.5 TEST RESULT

PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Те	st Data of Conduc	cted Output Power Density for band	l 5.15-5.25 GH	łz
Test Mode	Test Channel (MHz)	Average Power Density (dBm/MHz)	Limits (dBm/MHz)	Pass or Fail
	5180	5.442	11	Pass
802.11a	5200	5.460	11	Pass
	5240	6.051	11	Pass
1	5180	4.722	11	Pass
802.11n20	5200	4.677	11	Pass
	5240	4.801	11	Pass
000 11=10	5190	1.376	11	Pass
802.11n40	5230	0.361	11	Pass
			1. Contract (1. Contract)	

	Test Data of Conducted Output Power Density for band 5.725-5.85 GHz							
	Test	<u> </u>						
Test Mode	Test	Average Power	Average Power	Limits	Pass or			
Test Mode	Channel	Density(dBm/100kHz)	Density(dBm/500kHz)	(dBm/500kHz)	Fail			
	5745	-5.126	1.864	30	Pass			
802.11a	5785	-5.508	1.482	30	Pass			
in .	5825	-4.825	2.165	30	Pass			
	5745	-6.326	0.664	30	Pass			
802.11n20	5785	-6.110	0.880	30	Pass			
in a second	5825	-6.154	0.836	30	Pass			
802.11n40	5755	-10.074	-3.084	30	Pass			
002.111140	5795	-10.521	-3.531	30	Pass			

Note:1. Power density(dBm/500kHz) = Power density(dBm/100kHz) +10*log(500/100).

## Test Graphs of Conducted Output Power Spectral Density for band 5.15-5.25 GHz

 
 Aglient Spectrum Analyzer - Swigt SA
 Ol: 40:56 FM Mar2s, 2023

 Marker 1 5.176700000000 GHz
 PNO: Fast IFGain:Low
 Trig: Free Run Atten: 40 dB
 Avg Type: Log-Pwr Avg|Hold>100/100
 Trig: CF el 20:435 Trig: CF el 20:435 Avg Type: Log-Pwr Avg|Hold>100/100
 Trig: Free Run Atten: 40 dB
 Mkr1 5.176 70 GHz 5.442 dBm

 10 dB/div
 Ref 30.00 dBm
 5.442 dBm
 5.442 dBm

 200
 0
 0
 0
 0

 00
 0
 0
 0
 0
 0

 00
 0
 0
 0
 0
 0
 0

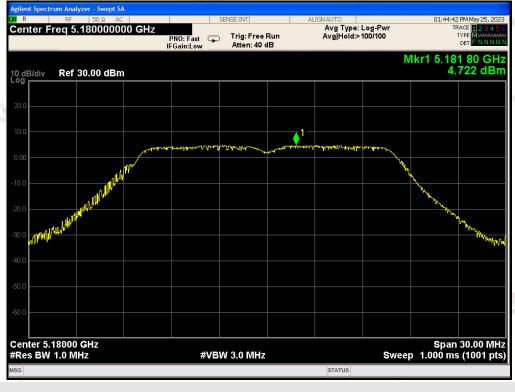
 00
 0
 0
 0
 0
 0
 0
 0

 00
 0
 0
 0
 0
 0
 0
 0
 0

 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

#### 802.11a_ANT1_5180_6Mbps_PSD




深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

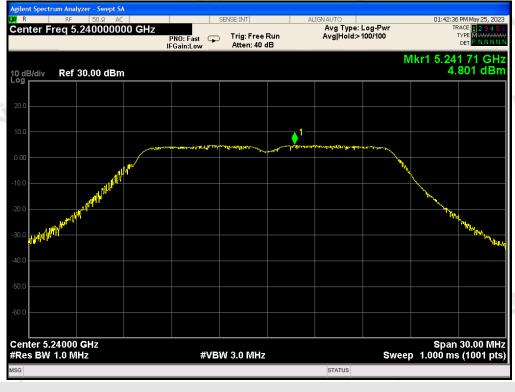
Page 52 of 84



### 802.11a_ANT1_5240_6Mbps_PSD



#### 802.11n20_ANT1_5180_MCS0_PSD

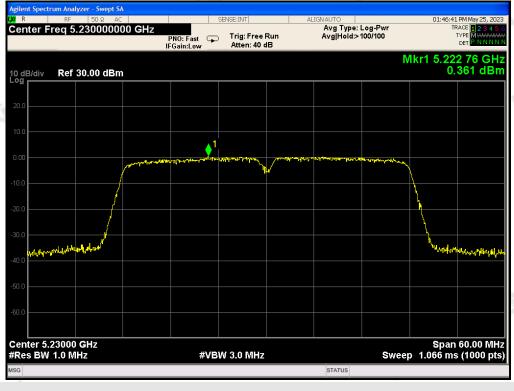

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 53 of 84

Report No.: UNIA23051709ER-63



### 802.11n20_ANT1_5200_MCS0_PSD



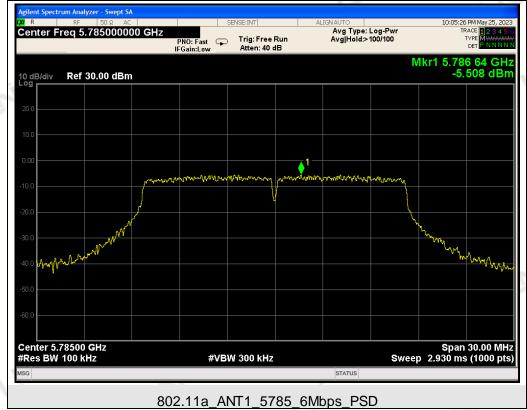

### 802.11n20_ANT1_5240_MCS0_PSD

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.



### 802.11n40_ANT1_5190_MCS0_PSD




#### 802.11n40_ANT1_5230_MCS0_PSD

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

## Test Graphs of Conducted Output Power Spectral Density for band 5.725-5.85 GHz

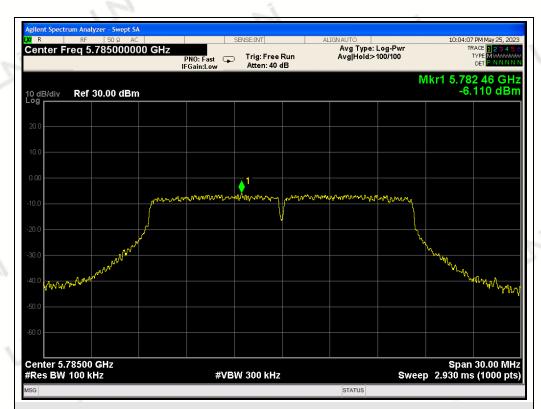
 Adjoint Spectrum Analyzer - Swept SA
 Integration of the second seco

#### 802.11a_ANT1_5745_6Mbps_PSD




深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 56 of 84




### 802.11a_ANT1_5825_6Mbps_PSD

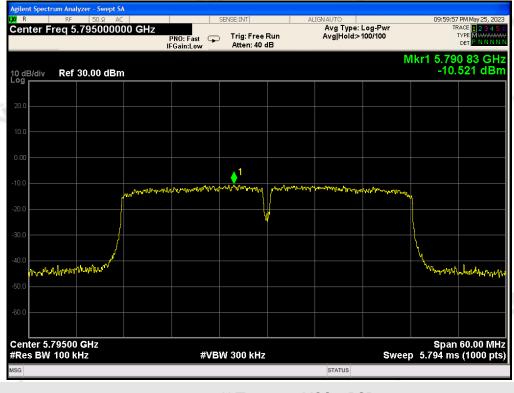


#### 802.11n20_ANT1_5745_MCS0_PSD

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.



### 802.11n20_ANT1_5785_MCS0_PSD




802.11n20_ANT1_5825_MCS0_PSD

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.



### 802.11n40_ANT1_5755_MCS0_PSD



#### 802.11n40_ANT1_5795_MCS0_PSD

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

## 7 AVERAGE OUTPUT POWER

## 7.1 TEST LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

FCC Part 15 Subpart E(15.407)						
Test Item	Limit	Frequency Range(MHz)				
5	Fixed: 1 Watt (30dBm)					
	Mobile and Portable:	5150~5250				
1	250mW (24dBm)					
Conducted Output Power	250mW (24dBm)	5250~5350				
	250mW (24dBm)	5470~5725				
71, 2	1 Watt (30dBm)	5725~5850				

### 7.2 TEST PROCEDURE

- 1. The EUT was tested according to according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.
- 2. The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 4. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 5.Record the measurement data.

## 7.3 TEST SET-UP

### AVERAGE POWER SETUP

Power	Sensor

____ PC

## 7.4 EQUIPMENT USED

Same as Radiated Emission Measurement.

## 7.5 TEST RESULT

PASS

Test Data of Conducted Output Power for band 5.15-5.25 GHz										
Test Mode	Test Channel (MHz)	Average Power (dBm)	Limits (dBm)	Pass or Fail						
	5180	14.57	23.98	Pass						
802.11a	5200	14.55	23.98	Pass						
	5240	14.56	23.98	Pass						
	5180	13.02	23.98	Pass						
802.11n20	5200	13.01	23.98	Pass						
	5240	13.01	23.98	Pass						
802.11n40	5190	11.82	23.98	Pass						
	5230	11.79	23.98	Pass						
	17	1								

	Test Data of Conducted Output Power for band 5.725-5.85 GHz										
Test Mode	Test Channel	Limits	Pass or Fail								
Test Mode	(MHz)	(dBm)	(dBm)	Pass of Fall							
	5745	14.63	30	Pass							
802.11a	5782	14.52	30	Pass							
5	5825	14.55	30	Pass							
5	5745	13.21	30	Pass							
802.11n20	5782	13.20	30	Pass							
	5825	13.20	30	Pass							
802.11n40	5755	11.93	30	Pass							
002.11140	5795	11.92	30	Pass							

# 8 CONDUCTED SPURIOUS EMISSION

## 8.1 TEST LIMIT

	Applicable Limits -27dBm/MHz emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more a ve or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz ove or below the band edge, and from 25 MHz above or below the band					
2	-27dBm/MHz	5150MHz-5250MHz				
bove or below the ban	d edge increasing linearly to 10 dBm/	/MHz at 25 MHz				
above or below the ba	ly to a level of 15.6 dBm/MHz at 5 MH nd edge, and from 5 MHz above or ncreasing linearly to a level of 27 dBr					

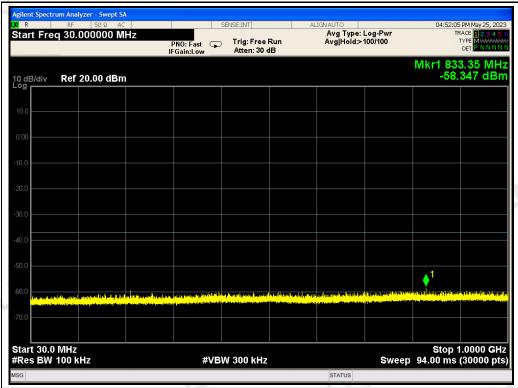
## 8.2 TEST SETUP

Same as 5.3

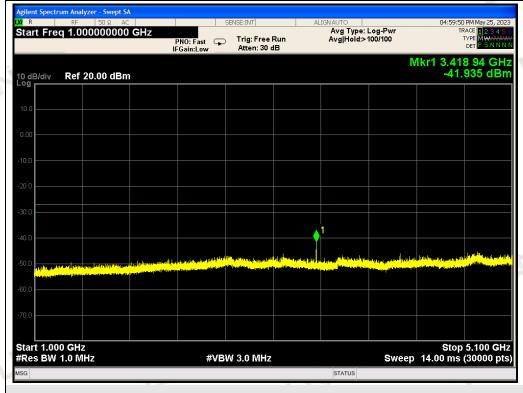
## 8.3 TEST PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

**Note:** The EUT was tested according to KDB 789033 for compliance to FCC 47CFR 15.407 requirements.

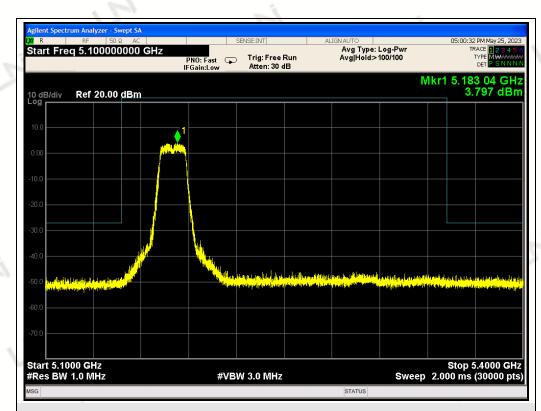

### 8.4 TEST RESUL

### PASS


Note: All the 20MHz bandwidth modulation had been tested, the 802.11a was the worst case and record in this test report. All the 40MHz bandwidth modulation had been tested, the 802.11N40 was the worst case and record in this test report.



Test Graphs of Spurious Emissions outside of the 5.15-5.35 GHz band for transmitters operating in the 5.15-5.25 GHz band




#### 802.11a_ANT1_5180_6Mbps_Frequency Band 1




#### 802.11a_ANT1_5180_6Mbps_Frequency Band 2

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

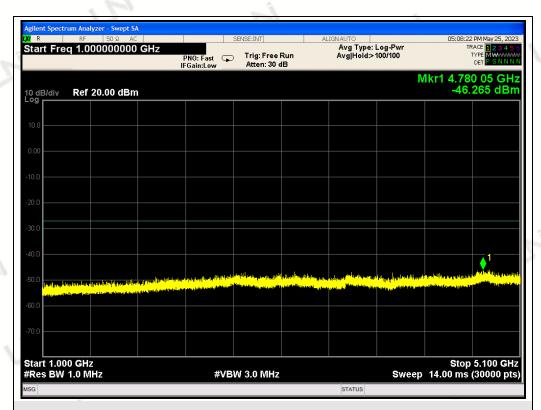


# 802.11a_ANT1_5180_6Mbps_Frequency Band 3

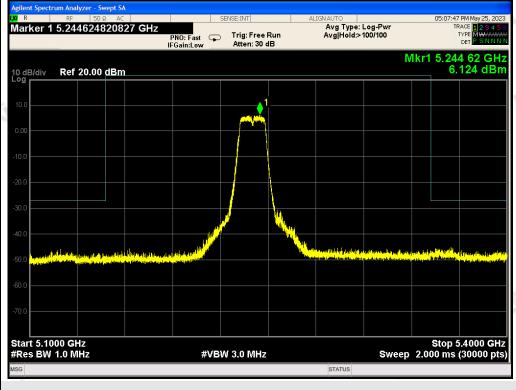


#### 802.11a_ANT1_5180_6Mbps_Frequency Band 4

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


	ectrum Analyzer - S							
arker	RF 50 1 38.60375	Ω DC 345844	PNO: Fast		Avg Type Avg Hold	e: Log-Pwr :>100/100	TRACE 1234 TYPE MWWW DET P NNN	5 6 WW NN
0 dB/div	Ref 10.00	) dBm	IFGain:Low	Atten: 20		Mkr	1 38.603 8 GH -48.551 dB	Next Pe
.og 0.00								Next Pk Rig
10.0								Next Pk L
30.0							-30.00 c	
40.0							1	Marker De
50.0 <mark>Miliana</mark> 50.0	a ha	tilga artifustionist - saar olaa - Magaa	life of a state of a st				i de la superior de l Notae de la superior d	Mkr→(
0.0								Mkr→Refl
30.0								Mo
	.000 GHz V 1.0 MHz		#VB\	N 3.0 MHz	s	weep 22	Stop 40.000 GH .00 ms (30000 pt	1 c ts)
SG						STATUS		

# 802.11a_ANT1_5180_6Mbps_Frequency Band 5


IXI R	rum Analyzer - Swep RF 50 Ω ≷q 30.000000	ac MHz	PNO: Fast	SENSE:INT Trig: Free Atten: 30 d	Run	IGNAUTO Avg Type: Avg Hold>		TF	2 PM May 26, 2023 RACE <b>1 2 3 4 5</b> TYPE <b>MWWWW</b> DET <b>P S N N N</b>
10 dB/div	Ref 20.00 di	Зm						Mkr1 92 -57.	4.01 MH 949 dBn
10.0									
0.00									
-10.0									
20.0									
-30.0									
50.0									<u></u> 1
-60.0	ngalinda, standy volta pod kapita pod		الارمان الدولية المراجع المراجع معالم المراجع ال	defense fallen <mark>juli bere</mark>	anta da kita da da sera da				•
-70.0									
Start 30.0 #Res BW	0 MHz 100 kHz		#VB	W 300 kHz			Sweep	Stop ⁄ 294.0 ms	1.0000 GH (30000 pt:
ISG						STATUS			

### 802.11a_ANT1_5240_6Mbps_Frequency Band 1

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.



## 802.11a_ANT1_5240_6Mbps_Frequency Band 2



#### 802.11a_ANT1_5240_6Mbps_Frequency Band 3

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 66 of 84

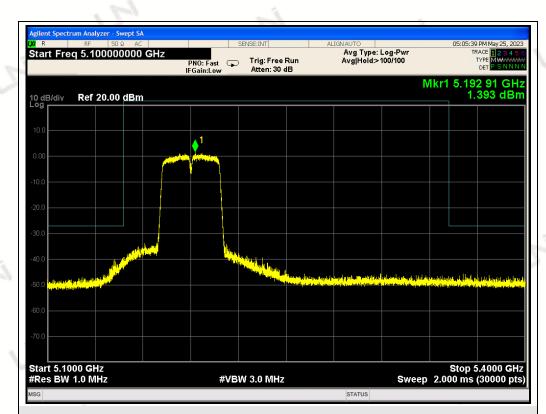


## 802.11a_ANT1_5240_6Mbps_Frequency Band 4

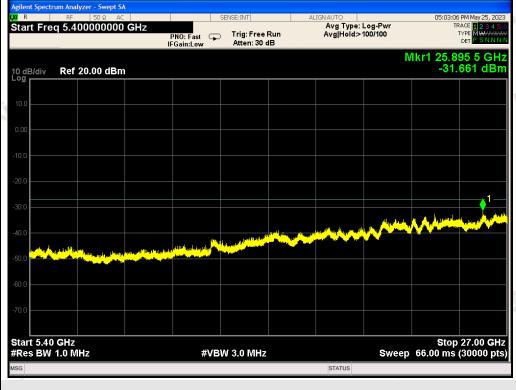
Agilent Spectrum Analyzer - Swe RF 50 S Marker 1 37.619620	DC	SENSE:INT Trig: Free Run Atten: 20 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 123456 TYPE MWWWW DET PNNNNN	Peak Search
10 dB/div Ref 10.00		Auch. 10 dB	Mkr1	37.619 6 GHz -49.071 dBm	Next Pea
0.00					Next Pk Rig
20.0					Next Pk Le
30.0				-30.00 dBm	Marker De
50.0	and have been the close to a section of the section	e anerona e e attanti an Lanazita e din			Mkr→0
		and the second state of th			
80.0					Mkr→RefL
Start 27.000 GHz #Res BW 1.0 MHz	#\\B\A	3.0 MHz	Sween 22	Stop 40.000 GHz 00 ms (30000 pts)	<b>Mo</b> 1 of
ISG	# V B VV	3.0 IVIN2	SWEED 22	00 ms (50000 pts)	

### 802.11a_ANT1_5240_6Mbps_Frequency Band 5

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


R RF 50 Ω AC tart Freq 30.000000 MHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:55:44 PM May 25, 20 TRACE 1 2 3 4 5
tart Freq 50.000000 MHZ	PNO: Fast 🖵 Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold>100/100	
dB/div Ref 20.00 dBm			Mkr1 712.13 MH -58.595 dB
0.0			
00			
.0			
0.0			
0.0			
.0			
).0			
		1	
	en al 1997 à 2006 (normalistra de la construction de la construction de la construction de la construction de La construction de la construction d	n yn yn yn fan yn	
0.0			
tart 30.0 MHz Res BW 100 kHz	#VBW 300 kHz		Stop 1.0000 GF 94.00 ms (30000 pt

## 802.11n40_ANT1_5190_MCS0_Frequency Band 1


tart Freq 1.000000000 GF	<b>+Z</b> PNO: Fast ⊊ IFGain:Low	) Trig: Free Run Atten: 30 dB	Avg Type: L Avg Hold≫1	.og-Pwr 00/100	TΥ	CE 1234 PE MWAAAA DET PSNNI
0 dB/div Ref 20.00 dBm				Μ	lkr1 4.815 -45.8	72 G⊦ 46 dB
10.0						
1.00						
0.0						
0.0						
0.0						
0.0						1
0.0				فالملبط أمعام المراط	dian and a state	
				li area.		
0.0						
tart 1.000 GHz					Stop 5	5.100 GI
Res BW 1.0 MHz	#VB	W 3.0 MHz		Sweep	14.00 ms (	30000 p

## 802.11n40_ANT1_5190_MCS0_Frequency Band 2

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

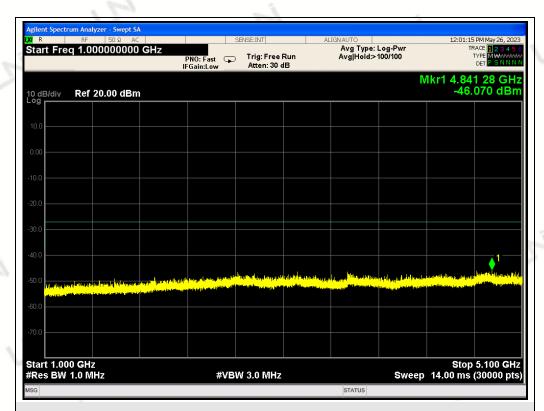


#### 802.11n40_ANT1_5190_MCS0_Frequency Band 3

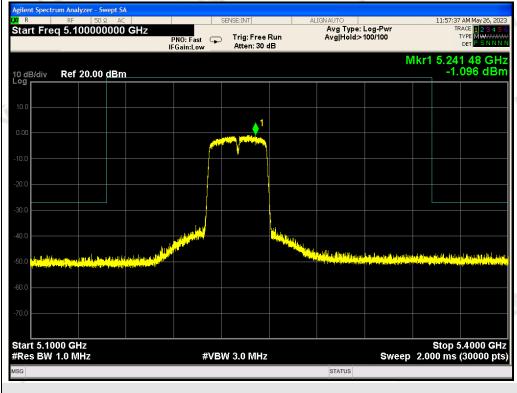


#### 802.11n40_ANT1_5190_MCS0_Frequency Band 4

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


<mark>x</mark> Marker 1	RF 5 38.7779	59265309	OGHZ PNO: Fast	SENSE:IN Trig: Free Run Atten: 20 dB	Avg Ty	pe: Log-Pwr d:>100/100	TRACE 123456 TYPE MWWWWW DET PNNNNN	Peak Search
10 dB/div	Ref 10.0	0 dBm	FGame	Atten: 20 dB		Mkr1	38.778 0 GHz -48.579 dBm	Next Pe
0.00								Next Pk Rig
-10.0								Next Pk L
30.0							-30.00 dBm	Marker De
-40.0	la di suante di	una dan dika daki dan gina	المراجعة ال	-contenenting of the state of the				Mkr→
-60.0		andra de la della del		نام و _{این} بر ا ^{رز ا} للاستان _{می} بین الاستور ب				Mkr→Ref
.80.0								
Start 27.0	00 GHz 1.0 MHz		#VBM	3.0 MHz		Sween 22 (	Stop 40.000 GHz 00 ms (30000 pts)	<b>M</b> ( 1 (

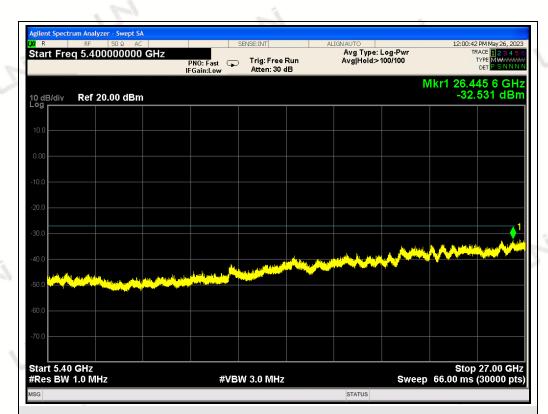
## 802.11n40_ANT1_5190_MCS0_Frequency Band 5


LXIR	rum Analyzer - Swept RF 50 Ω / q 30.000000 Γ	AC MHz	PNO: Fast 🖵 Gain:Low	SENSE:INT ) Trig: Free   Atten: 30 c	Run	IGNAUTO Avg Type: Avg Hold>1		TF	D PM May 26, 2023 RACE <b>1 2 3 4 5 6</b> TYPE <b>MWWWWW</b> DET <b>P S N N N N</b>
10 dB/div Log	Ref 20.00 dB	m						Mkr1 77 -59.	6.54 MHz 663 dBm
10.0									
0.00									
-10.0									
-20.0									
-30.0									
-40.0									
-50.0									
-60.0	terretleber forstateler and by	en diel alige Mellete als angeler	the star from the distance	la ang sang sang sang sang sa		n den besteren der son			
-70.0		and a sin Mandadi M of silves at							
Start 30.0 #Res BW			#VB	W 300 kHz			Sweep	′ Stop 294.0 ms	1.0000 GHz (30000 pts
MSG						STATUS			

### 802.11n40_ANT1_5230_MCS0_Frequency Band 1

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.




#### 802.11n40_ANT1_5230_MCS0_Frequency Band 2



#### 802.11n40_ANT1_5230_MCS0_Frequency Band 3

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 71 of 84



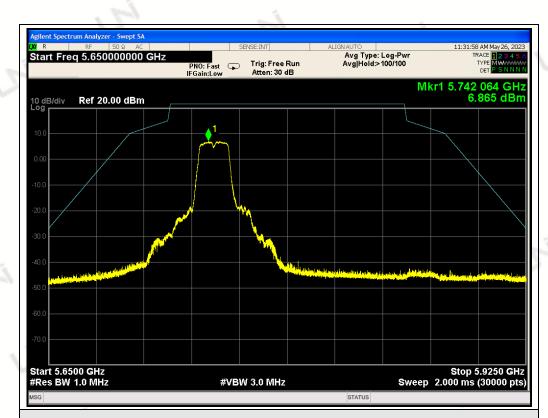
#### 802.11n40_ANT1_5230_MCS0_Frequency Band 4

Agilent Spectrum A Marker 1 38.	F 50 Ω DC			SE:INT	Avg Type		TRA	DE <b>1 2 3 4 5</b> 6	Peak Search
		PNO: Fast G	Trig: Free Atten: 20		Avg Hold:		r <mark>1 38.76</mark>	37 GHz 17 dBm	Next Pea
I0 dB/div Re	f 10.00 dBm						-40.0		
0.00									Next Pk Rig
10.0									
~									Next Pk L
20.0									
30.0								-30.00 dBm	Marker De
40.0									Warker De
								<b>♦</b> ¹	
50.0	and a state of the second state of the	Sectors of Dependence	a alifebili e sastin	i in a statistica statistica statistica statistica statistica statistica statistica statistica statistica statis	ladaga diterinda Angla angli angli angli angli ang ing ing ing ing ing ing ing ing ing i	and the states	debilder der Urfd T ^{ernen} ter der Urfd		Mkr→
60.0 <b>1</b>	and the second secon	New York and the second se	an internet and a second state	an a					
70.0									Mkr→RefL
30.0									Ма
tart 27.000 C	GH7						Stop 40	.000 GHz	1 0
Res BW 1.0		#VB	V 3.0 MHz		S	weep 2		00000 pts)	
SG						STATI	JS		

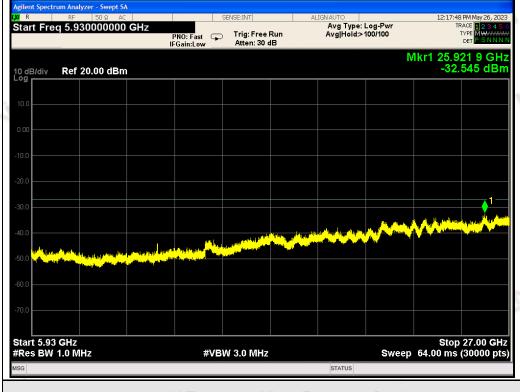
## 802.11n40_ANT1_5230_MCS0_Frequency Band 5

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Test Graphs of Spurious Emissions outside of the 5.725-5.85 GHz band for transmitters operating in the 5.725-5.85 GHz band


#### 802.11a_ANT1_5745_6Mbps_Frequency Band1




802.11a_ANT1_5745_6Mbps_Frequency Band2

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 73 of 84

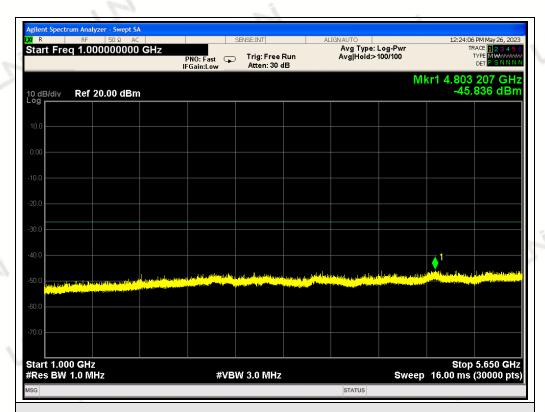


## 802.11a_ANT1_5745_6Mbps_Frequency Band3



#### 802.11a_ANT1_5745_6Mbps_Frequency Band4

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


X	um Analyzer - Swept SA RF 50 Ω DC		SENS	E:INT				Peak Search
Marker 1 3	37.6599219974	00 GHz PNO: Fast IFGain:Low	Trig: Free Atten: 30 d	Run Av	/g Type: Log-Pwr g Hold:>100/100	TRACE TYPE DET	1 2 3 4 5 6 MWWWWW P N N N N N	
0 dB/div	Ref 20.00 dBm				Mk	r1 37.659 -37.25	9 GHz 4 dBm	NextPe
10.0								Next Pk Rig
0.00								Next Pk L
10.0								NEXTPRE
30.0							-27.00 dBm	Marker De
40.0	See for Low one provide a Mark State	and the second states	والمعادلين وحدا أأله العراق					Mkr→
50.0		na na shin an						
70.0								Mkr→Refl
						Oton 40.0		<b>M</b> c 1 c
itart 27.00 Res BW 1		#VBV	V 3.0 MHz		Sweep 2	Stop 40.0 2.00 ms (30	000 GHZ 000 pts)	

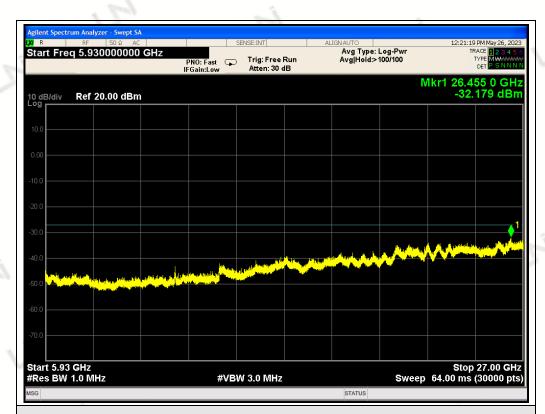
## 802.11a_ANT1_5745_6Mbps_Frequency Band5

Agilent Spectrum Analy 194 R RF Start Freq 30.0	50Ω AC	PNO: Fast	SENSE:INT Trig: Free Atten: 30 o	Run	IGNAUTO Avg Type: Avg Hold>1		TF	3 PM May 26, 2023 RACE <b>1 2 3 4 5</b> ( TYPE <b>MWWWW</b> DET <b>P S N N N 1</b>
10 dB/div <b>Ref</b> 2	20.00 dBm						Mkr1 96 -59.	8.38 MH: 963 dBm
10.0								
0.00								
-10.0								
-20.0								
30.0								
-40.0								
-50.0								
-60.0	ste nachants b ^{ard} ing Dira dalijing verseti basht		an antain à bhaite ha	in the state of the second	aren blander tillstadere	ومراوية والمراوية المراوي	di di Manan, di sta da da si	
70.0	n an	The second se	e al dan bar ganta an		a Marakan ang kang bang bang bang sang sang sang sang sang sang sang s	in a sain mallani kana na	e laka da antiki (inang jaja tanan tika t	a dan an an an ann an an an an an an an an
Start 30.0 MHz							Stop 7	1.0000 GHz
#Res BW 100 kl	Hz	#VB	W 300 kHz		STATUS	Sweep	294.0 ms	(30000 pts
			_			_		_

### 802.11a_ANT1_5825_6Mbps_Frequency Band1

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.




## 802.11a_ANT1_5825_6Mbps_Frequency Band2



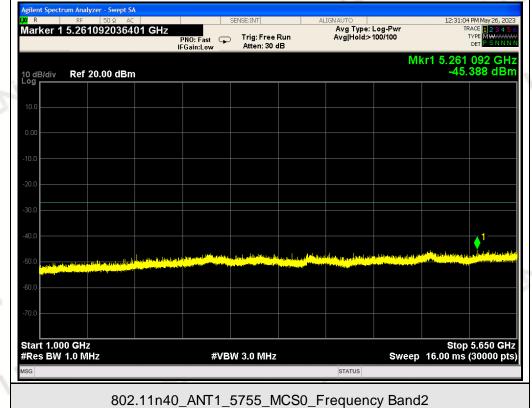
#### 802.11a_ANT1_5825_6Mbps_Frequency Band3

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 76 of 84

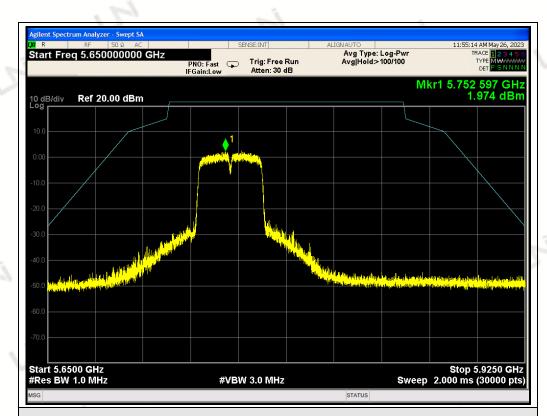


Marker 1 38.668755625188 GHz IFGain:Low  Avg Type: Log-Pwr AvgHoid:>100/100  TRACE  I and a start    Image: Sense in the start of the s	802	2.11a_ANT1_5825_6	Mbps_Frequence	y Band4	
PNO: Fast IFGainLow      Trg: Free Run Atten: 30 dB      Avg Hold:>100/100      Pro: Fast Pro: Fast -37.265 dBm      Next Peal        10 dB/div      Ref 20.00 dBm      Image: Free Run Atten: 30 dB      Image: Free Run Atten: 30 dB      Next Peal      Next Peal        10 dB/div      Ref 20.00 dBm      Image: Free Run Atten: 30 dB      Image: Free Run Atten: 30 dB      Next Peal      Next Peal        10 dB/div      Ref 20.00 dBm      Image: Free Run Atten: 30 dB      Image: Free Run Atten: 30 dB      Image: Free Run Atten: 30 dB      Next Peal        10 dB/div      Image: Free Run Atten: 30 dB      Next Peal        10 dB/div      Image: Free Run Atten: 30 dB      Image: Free	LXI RF 50 Ω DC	88 GHz		TRACE 1 2 3 4 5 6	Peak Search
Log    Image: Control of the state of th		PNO: Fast 🕞 Trig: Free Run		38.668 8 GHz	NextPeak
1000    Image: state st	Log			-37.265 dBm	
100  Image: state s	10.0				Next Pk Righ
-200  Image: state					Next Pk Lef
-30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0  -30.0					
-500 -500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 -	-30.0				Marker Delta
	-40.0				Mkr→CF
-70.0					
More					MKr→RefLV
Start 27.000 GHz Stop 40.000 GHz 1 of 2					More 1 of 2
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 22.00 ms (30000 pts)	#Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 22.0	0 ms (30000 pts)	


802.11a_ANT1_5825_6Mbps_Frequency Band5

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 77 of 84


XU R	um Analyzer - Swep RF 50 Ω	AC		SENSE:INT		VAUTO			0 PM May 26, 20
Start Free	q 30.000000	MHz	PNO: Fast 🖵 IFGain:Low	) Trig: Free Rur Atten: 30 dB	ı	Avg Type: l Avg Hold:>1	Log-Pwr 100/100	1	RACE 1234 TYPE MWWWM DET PSNNI
10 dB/div Log	Ref 20.00 dE	ßm						Mkr1 90 -60	5.23 MH .109 dB
10.0									
0.00									
-10.0									
-20.0									
-30.0									
-40.0									
-50.0									
-60.0									<b>♦</b> ¹
18 de augustion de	a la la distriction de la companya d La companya de la comp	te die Liefe Helle weer (pee die Negelaarse konstantie	in the second			anga di fra bila aasta aato, daam	ar para an ing sana di sa bada ana sina. Ng para ang sa sakadar ana sina.	a por spongang sa pang ang sa pa	n and an a h drawn
-70.0									
Start 30.0								Stop	1.0000 GI
#Res BW	TUU KHZ		#VB	W 300 kHz		STATUS	Sweep	294.0 ms	(30000 p

## 802.11n40_ANT1_5755_MCS0_Frequency Band1



#### 深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 78 of 84



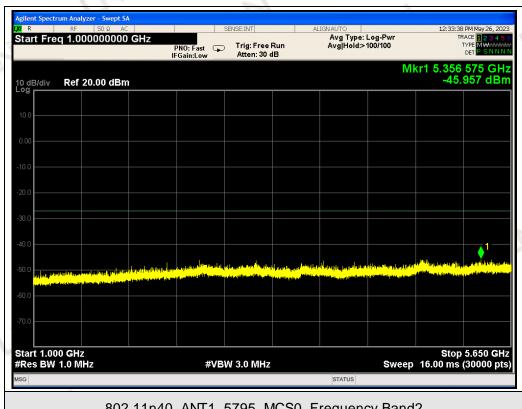
### 802.11n40_ANT1_5755_MCS0_Frequency Band3



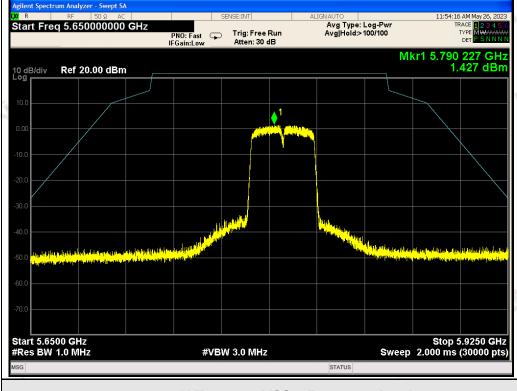
#### 802.11n40_ANT1_5755_MCS0_Frequency Band4

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

 Narker 1 37.549	50 Ω DC	CU-	SENSE:INT		e: Log-Pwr	TRACE 1 2 3 4 5 6	Peak Search
arker 1 37.54		PNO: Fast Gain:Low	Trig: Free Run Atten: 30 dB	Avg Hold	:>100/100		
0 dB/div Ref 2	0.00 dBm				Mkr1	37.549 4 GHz -37.375 dBm	NextPe
<b>og</b> 10.0							Next Pk Rig
0.00							
10.0							Next Pk L
0.0						-27.00 dBm	Marker D
0.0				In		1	
							Mkr→
60.0							Mkr→Ref
70.0							M
tart 27.000 GHz Res BW 1.0 MH		#VBW :			S S	top 40.000 GHz ) ms (30000 pts)	1.


## 802.11n40_ANT1_5755_MCS0_Frequency Band5

Agilent Spectrum Analyzer - Swept SA X R RF 50 Ω AC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	12:34:49 PM May 26, 2023 TRACE <b>1 2 3 4 5</b> 6
Start Freq 30.000000 MHz	PNO: Fast 🕞 Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold>100/100	TYPE MWWWWW DET PSNNN
10 dB/div Ref 20.00 dBm			Mkr1 802.05 MHz -59.472 dBm
10.0			
0.00			
-10.0			
-20.0			
30.0			
40.0			
-50.0			
-60.0	e e e a la popular popu	a na taman san akara kara kara kara kara na sa	
70.0			
Start 30.0 MHz	#\/DW/ 200 L/L+		Stop 1.0000 GHz
#Res BW 100 kHz	#VBW 300 kHz	SWEED	p 294.0 ms (30000 pts)


### 802.11n40_ANT1_5795_MCS0_Frequency Band1

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 80 of 84




### 802.11n40_ANT1_5795_MCS0_Frequency Band2



#### 802.11n40_ANT1_5795_MCS0_Frequency Band3

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

Page 81 of 84

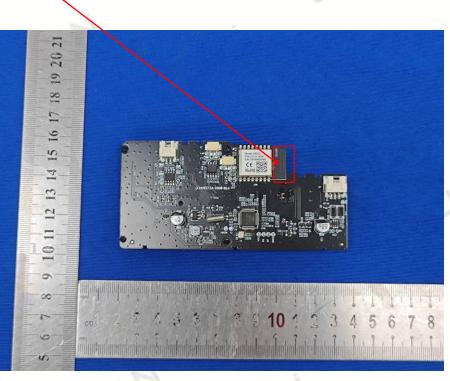


RF 50Ω C Marker 1 38.65012167		Avg Type: Log-Pwr TRACE 1 2 3 Avg Hold:>100/100 TYPE NW DET IP NN	MANANA -
10 dB/div Ref 20.00 dBi		Mkr1 38.650 1 G -38.127 dl	iHz Next Pea Bm
10.0			Next Pk Rigi
10.0			Next Pk Le
-20.0		-27.0	o dBm Marker Del
40.0	terreta justi par		Mkr→C
60.0			Mkr→RefL
70.0			Mor 1 of
Start 27.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Stop 40.000 C Sweep 22.00 ms (30000 ISTATUS	pts)

#### 802.11n40 ANT1 5795 MCS0 Frequency Band4

802.11n40_ANT1_5795_MCS0_Frequency Band5

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.


### **9 ANTENNA REQUIREMENT**

#### Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction The antenna used in this product is a PCB Antenna.

### ANTENNA:

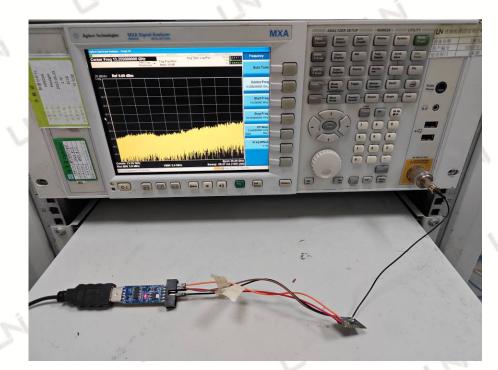


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.



Above 1GHz




Page 84 of 84

Report No.: UNIA23051709ER-63

## CONDUCTED EMISSION



# **RF CONDUCTED**



***End of Report***

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.