RADIOMETRICS Midwest Corporation

Electromagnetic Compatibility Test Report

Tests Performed on a Fybr, LLC Transciever, Model Fybr Gateway 3

Radiometrics Document RP-8683

Product L	Product Detail:					
FCC ID	FCC ID: 2ALBF5005					
	374-5005					
Equipm	nent type: Low power trar	nsmitter				
Test Star	ndards:					
	R Title 47, Chapter I, FC		2			
	art 15 CFR Title 47: 2016					
	y Canada RSS-247, Issu					
	port concerns: Original G	rant for Certificatio	n			
FCC P	art 15.247					
T (D	<u> </u>					
	rformed For:		Test Facility:			
Fybr, L			Radiometrics Midwest Corporation			
	pi Dr., Suite C		12 Devonwood Avenue			
Cheste	erfield, MO 63005		Romeoville, IL 60446-1349			
			(815)	293-0772		
	e(s): (Month-Day-Year)					
July 19) thru August 11, 2017					
Docum	Document RP-8683 Revisions:					
Rev.	Issue Date	Affected Sections		Revised By		
0	September 1, 2017					
1	September 11, 2017	10.0		Joseph Strzelecki		

Table of Contents

1.0ADMINISTRATIVE DATA	
2.0TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	3
3.0EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	4
3.2 EUT Operating Modes	4
4.0TESTED SYSTEM DETAILS	
4.1 Tested System Configuration	
4.2 Special Accessories	
4.3 Equipment Modifications	
5.0TEST SPECIFICATIONS	
6.0TEST PROCEDURE DOCUMENTS	
7.0RADIOMETRICS' TEST FACILITIES	
8.0DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	
9.0CERTIFICATION	
10.0TEST EQUIPMENT TABLE	
11.0TEST SECTIONS	
11.1 AC Conducted Emissions	
11.2 Occupied Bandwidth	
11.3 Peak Output Power	
11.4 Power Spectral Density	
11.5 Band-edge Compliance of RF Conducted Emissions	
11.6 Spurious RF Conducted Emissions at Antenna Port	
11.7 Spurious Radiated Emissions (Restricted Band)	
11.7.1 Radiated Emissions Field Strength Sample Calculation	
11.7.2 Spurious Radiated Emissions Test Results (Restricted Band)	
11.8 Unintentional Emissions (Receive Mode)	
11.8.1 Measurement Instrumentation Uncertainty	35

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1.0 ADMINISTRATIVE DATA

Equipment Under Test:	
A Fybr, LLC, Transceiver	
Model: Fybr Gateway 3 Serial Number: None	
This will be referred to as the EUT in this Report	
Date EUT Received at Radiometrics: (Month-Day-Year)	Test Date(s): (Month-Day-Year)
July 11, 2017	July 19 thru August 11, 2017
Test Report Written By:	Test Witnessed By:
Joseph Strzelecki	The tests were not witnessed by Fybr, LLC
Senior EMC Engineer	
Radiometrics' Personnel Responsible for Test:	Test Report Approved By
Joseph Strzelecki	Chris W. Carlson
Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	Chris W. Carlson Director of Engineering NARTE EMC-000921-NE

2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a transceiver, Model Fybr Gateway 3, manufactured by Fybr, LLC. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results						
Environmental Phenomena	Frequency Range	FCC Section	RSS- Section	Test Result		
6 dB Bandwidth Test	902-928 MHz	15.247 a	RSS-247 (5.2)	Pass		
20 dB Bandwidth Test	902-928 MHz	15.247 a	RSS GEN (8.8)	Pass		
Peak Output Power	902-928 MHz	15.247 b	RSS-247 (5.4d)	Pass		
Spurious Radiated Emissions	30 MHz to 9.5 GHz	15.247 d	RSS-247 (3.3)	Pass		
Antenna Port Conducted Unwanted	30 MHz to 9.5 GHz	15.247 d	RSS-247 (5.5)	Pass		
Emissoins						
Power Spectral Density	902-928 MHz	15.247 e	RSS-247 (5.2b)	Pass		
RF Radiated Emissions (Unintential	30-5,000 MHz	15.209	GEN; 7.1.2	Pass		
Radiation Receive mode)						

Note: The RSS-210 specification is not currently covered in Radiometrics' Scope of Accreditation. This is technically very similar to FCC, CFR 47 Part 15 which is on Radiometrics scope.

2.1 RF Exposure Compliance Requirements

Since the power output is less than 30 mW, and the separation distance is greater than 20 cm the EUT meets the FCC requirement for RF exposure and it is exempt from RSS-102 SAR and RF exposure evaluations. There are no power level adjustments available to the end user. The antenna is professionally installed. The detailed calculations for RF Exposure are presented in a separate document.

3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a transceiver, Model Fybr Gateway 3, manufactured by Fybr, LLC. The EUT was in good working condition during the tests, with no known defects.

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The Gateway must be professionally installed. It will not be sold to the general public.

3.2 EUT Operating Modes

Environmental Phenomena	Channels Tested (MHz	Notes
Bandwidth Test	903, 904, 915 & 927	
Peak Output Power	903, 904, 915 & 927	
Band-edge Compliance of RF	903, 915 & 927	
Conducted Emissions		
RF Conducted Emissions	903, 904, 915 & 927	
Radiated Emissions	904, 915 & 927	
Power Spectral Density	903, 904, 915 & 927	
Conducted Emissions, AC Mains	915	Note 1

Note 1: During preliminary testing, 915 MHz was found to be worst cast for this test.

The transmit mode for all tests was continuous.

The EUT operates from 903 to 927 MHz with each channel separated by 1 MHz. 903 MHz is only used for verification purposes at the manufacturing plant. The final installation uses 904 to 927 MHz. Therefore, some tests were done at both 903 and 904 as the low frequency.

4.0 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

Since the EUT is wall mounted, it was placed in an upright configuration during the tests. The EUT was tested as a stand-alone device. Power was supplied at 120 VAC, 60 Hz single-phase to its external power supply.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Testing of the Fybr, LLC, Model Fybr Gateway 3, Transceiver

Tested System Configuration List

Item	Description Ty	pe*	Manufacturer	Model Number	Serial Number
1	Transceiver	Е	Fybr, LLC	Fybr Gateway 3	None
2	19 VDC Power supply	E	Lenovo	PA-1650-52LC	11536001678ZZ400 1694TG
3	Omni Directional Antenna	Е	L-Com	HG906U-PRO	None
4	Patch Antenna	Е	L-Com	HG908P-NF	None

* Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

List of System Cables

QTY	Length (m)	Cable Description	Shielded?
1	1.5	AC Cord to external power supply	No
1	1.8	DC Cord from external power supply	No
1	0.6	Coaxial Cable to antenna	Yes

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5.0 TEST SPECIFICATIONS

Document	Date	Title
FCC CFR Title 47	2017	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
IC RSS-247 Issue 2	2017	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment
IC RSS-Gen Issue 4	2014	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)

6.0 TEST PROCEDURE DOCUMENTS

Document	Date	Title
ANSI C63.4-2014	2014	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	2013	American National Standard for Testing Unlicensed Wireless Devices
558074 D01 DTS Meas Guidance	2016	Guidance for Performing Compliance Measurements On Digital Transmission Systems (DTS) Operating Under §15.247; v03r04

The tests were performed using the procedures from the following specifications:

7.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber. The floor has a 9' x 9' section of microwave absorber for testing above 1 GHz.
- Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC 3124A-1.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

9.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification and the data contained herein was taken with calibrated test equipment. The results relate only to the EUT listed herein.

10.0 TEST EQUIPMENT TABLE

					Frequency	Cal	
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Cal Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	01/09/17
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	01/09/17
ANT-04	Tensor	Biconical Antenna	4104	2246	20-250MHz	24 Mo.	05/16/16
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	11/25/15
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	12/28/16
ANT-66	ETS-Lindgren	Horn Antenna	3115	62580	1.0-18GHz	12 Mo.	02/15/17
HPF-01	Solar	High Pass Filter	7930-100	HPF-1	0.15-30MHz	24 Mo.	03/15/16
HPF-07	Mini-Circuits	High Pass Filter	VHF-1500+	31121	1.7-10 GHz	24 Mo.	03/31/16
LSN-01	Electrometrics	50 uH LISN	FCC/VDE 50/2	1001	0.01-30MHz	24 Mo.	06/30/17
LSN-17	EMCO	LISN	3810/2NM	9602-1356	0.15 - 30MHz	12 Mo.	02/22/17
REC-11	HP / Agilent	Spectrum Analyzer	E7405A	US39110103	9Hz-26.5GHz	24 Mo	03/23/16
				33330A00135			
REC-20	HP / Agilent	Spectrum Analyzer	85460A/84562A	3410A00178	30Hz-6GHz	24 Mo.	07/13/16
REC-21	Agilent	Spectrum Analyzer	E7405A	MY45118341	9Hz-26.5 GHz	24 Mo.	12/22/15
THM-03	Fluke	Temp/Humid Meter	971	95850465	N/A	24 Mo.	02/20/17

Note: All calibrated equipment is subject to periodic checks.

Software Company	Test Software Name	Version	Applicable Tests
Radiometrics	EN550XX0	06.10.16	RF Conducted Emissions (FCC Part 15 & EN 55011/22) REC-10
Radiometrics	REREC11D	01.05.16	RF Radiated Emissions (FCC Part 15 & EN 55011/22)
Agilent	PSA/ESA-E/L/EMC	2.4.0.42	Bandwidth and screen shots

11.0 TEST SECTIONS

11.1 AC Conducted Emissions

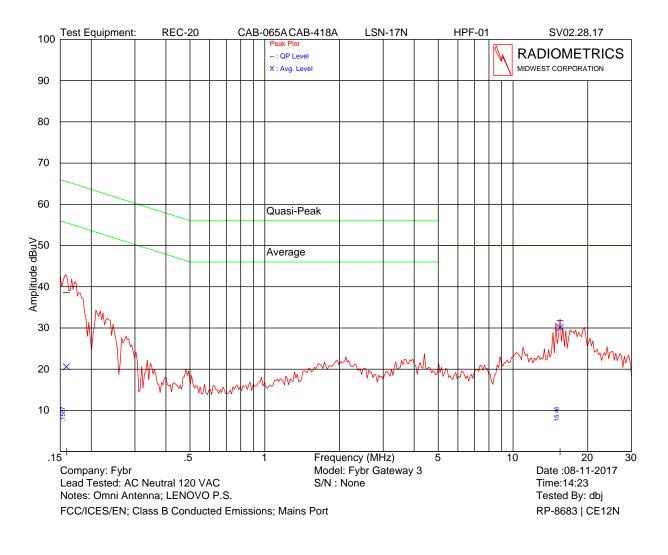
The tests and limits are in accordance with FCC section 15.207 and RSS Gen section 8.8.

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on a semi-log graph generated by the computer. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

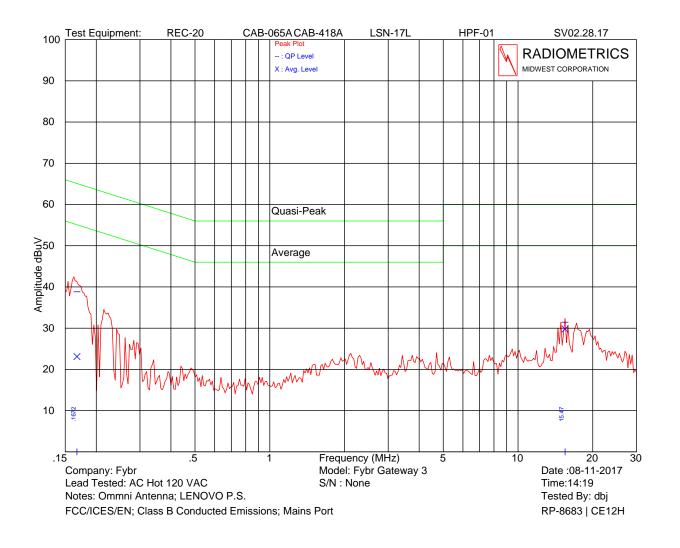
Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

FCC Limits of Conducted Emissions at the AC Mains Ports

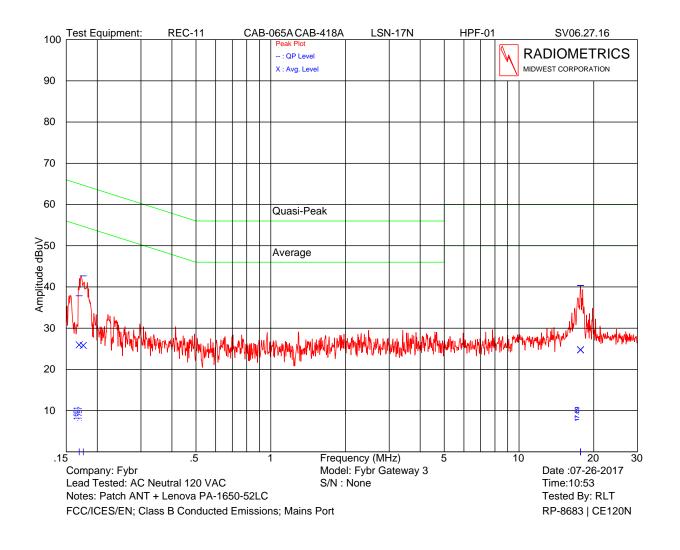
Testing of the Fybr, LLC, Model Fybr Gateway 3, Transceiver

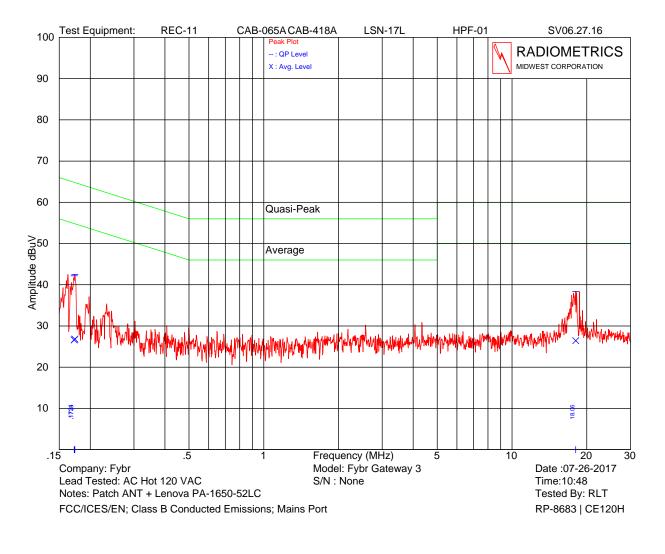

Frequency Range	Class B Limits (dBuV)				
(MHz)	Quasi-Peak	Average			
0.150 - 0.50*	66 - 56	56 - 46			
0.5 – 5.0	56	46			
5.0 - 30	60	50			
* The limit decreases	* The limit decreases linearly with the logarithm of the frequency in this range.				

The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from the power cord, after testing all modes of operation.

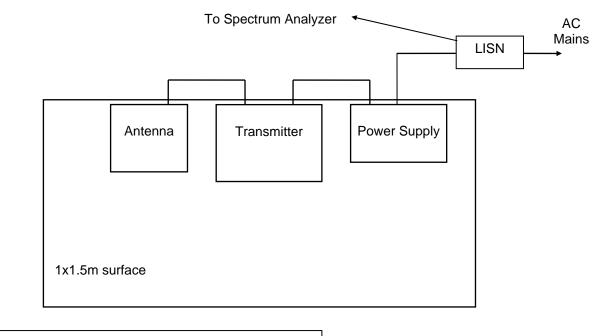

Test Date : July 26 & August 11, 2017

The Amplitude is the final corrected value with cable and LISN Loss.


* QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.


Frequency (MHz)	QP Amplitude (dBuV)	QP Limit (dBuV)	Average Amplitude (dBuV)	Average Limit (dBuV)	Margin (dB)
0.159	38.6	65.5	20.6	55.5	26.9
15.469	31.8	60.0	30.1	50.0	19.9

Frequency (MHz)	QP Amplitude (dBuV)	QP Limit (dBuV)	Average Amplitude (dBuV)	Average Limit (dBuV)	Margin (dB)
0.167	38.8	65.1	23.1	55.1	26.3
15.470	31.5	60.0	29.8	50.0	20.2


Frequency (MHz)	QP Amplitude (dBuV)	QP Limit (dBuV)	Average Amplitude (dBuV)	Average Limit (dBuV)	Margin (dB)
0.169	37.8	65.0	26.0	55.0	27.2
0.176	42.7	64.7	25.8	54.7	22.0
17.699	40.3	60.0	24.8	50.0	19.7

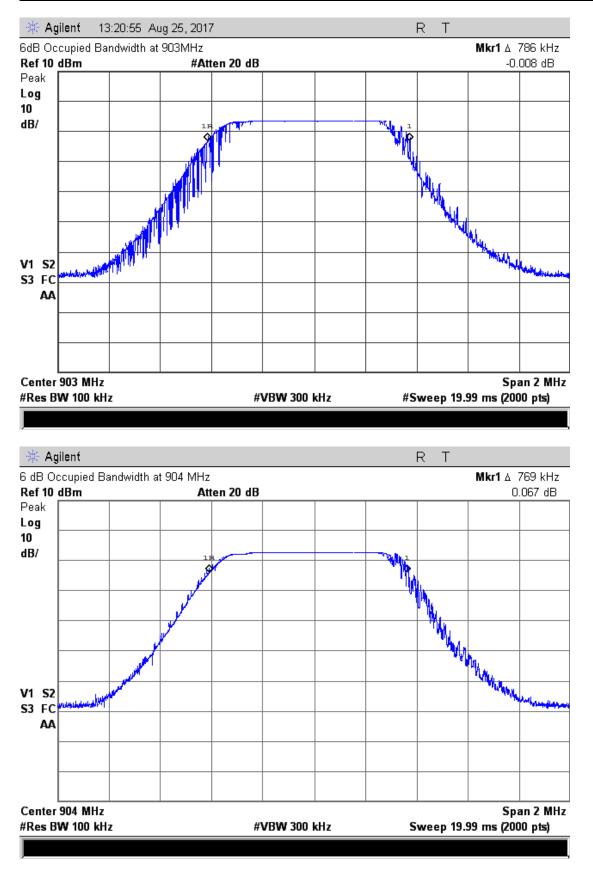
Frequency (MHz)	QP Amplitude (dBuV)	QP Limit (dBuV)	Average Amplitude (dBuV)	Average Limit (dBuV)	Margin (dB)
0.173	42.5	64.8	26.8	54.8	22.3
18.061	38.4	60.0	26.4	50.0	21.6

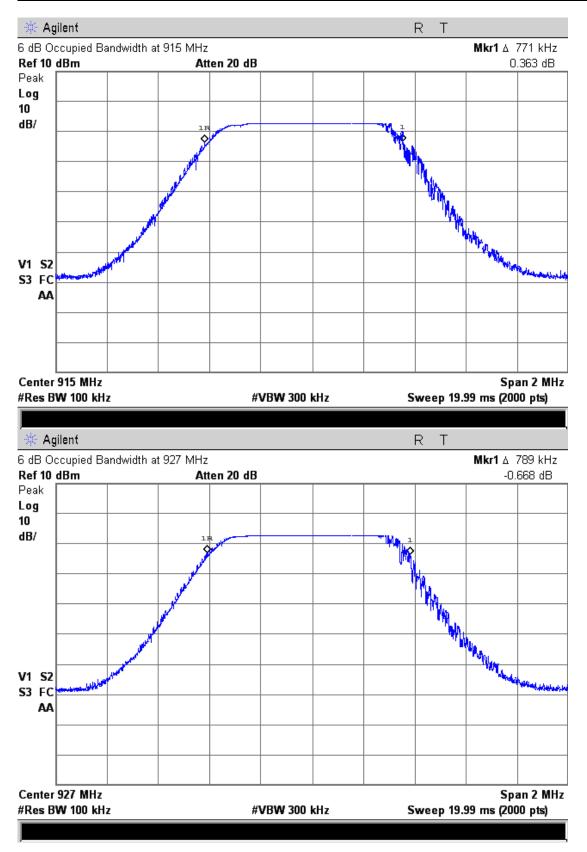
Judgment: Passed by 19.7 dB

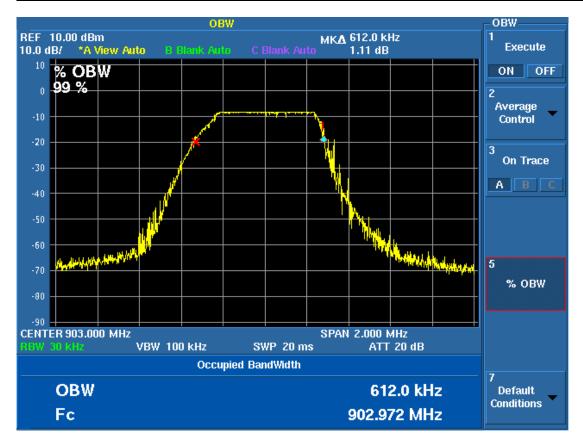
Figure 1. Conducted Emissions Test Setup

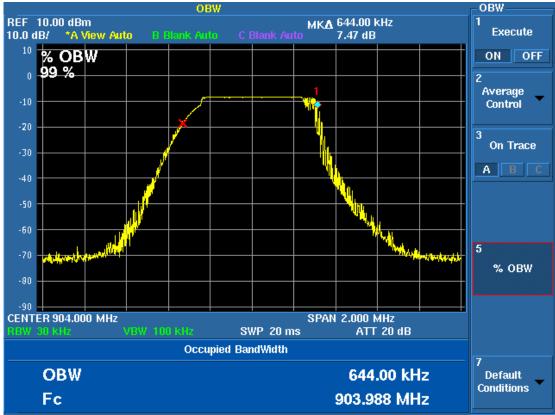
Notes:

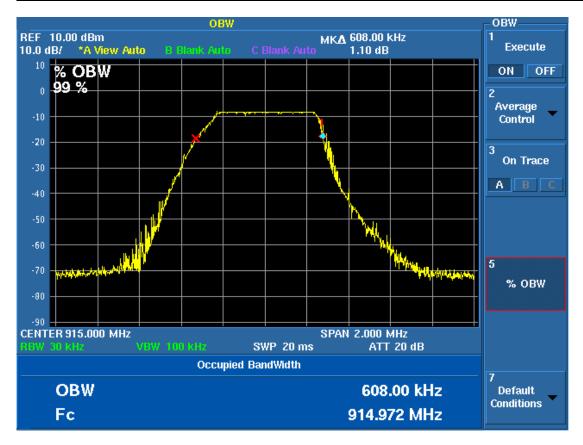
- LISN's at least 80 cm from EUT chassis
- Vertical conductive plane 40 cm from rear of table top
- EUT power cord bundled


11.2 Occupied Bandwidth


The test procedures were in accordance to FCC DTS Measurement Guideline 558074 D01, Section 8.1.


The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize. The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 6 or 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the bandwidth of the emission.


Channel	99% EBW kHz	6 dB EBW kHz
903	612	786
904	644	769
915	608	771
927	628	789


The 6 dB bandwidth is greater than 500 kHz Judgement: Pass

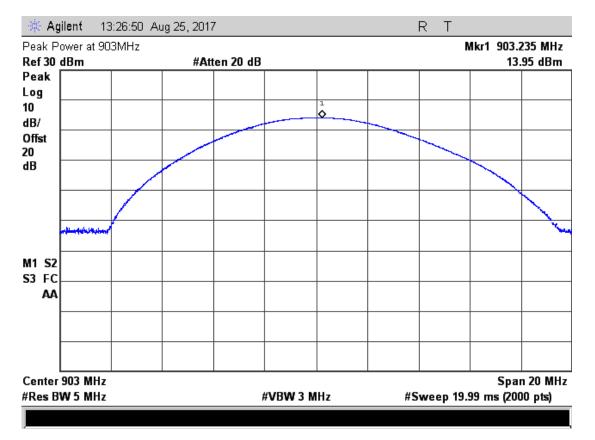


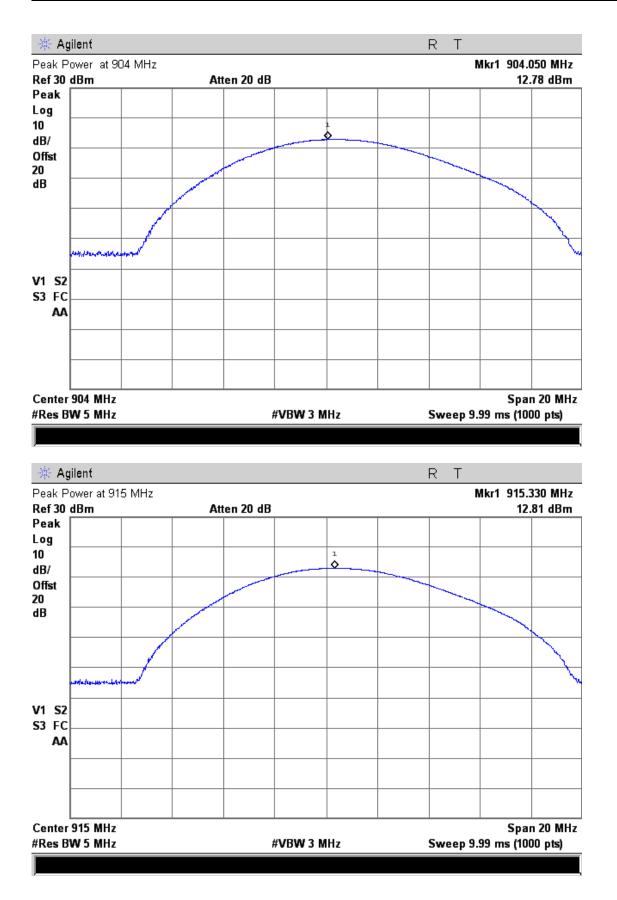
11.3 Peak Output Power

The test procedures were in accordance to FCC DTS Measurement Guideline 558074 D01, Section 9.1.1. The EUT antenna port was connected to the Spectrum analyzer Via a low loss coaxial cable.

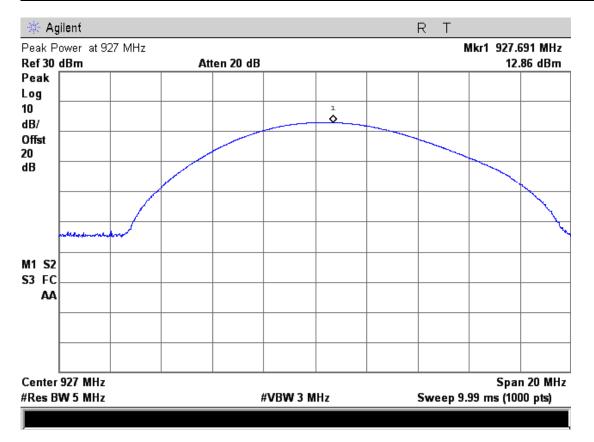
The power output test method from ANSI C63.10 section 6.10.2.1 c) was used for this test. The spectrum analyzer was set to the following settings:

Span = 20 MHz; RBW = 5 MHz; VBW = 5 MHz; Sweep = auto Detector function = peak; Trace = max hold


The trace was allowed to stabilize. The indicated level is the peak output power. Since the gain of the antenna may be as high as 8 dB, the limit is reduced by 2 dB.


Tested by: Joseph Strzelecki/ Richard Tichgelaar Test Date: 08/25/2017

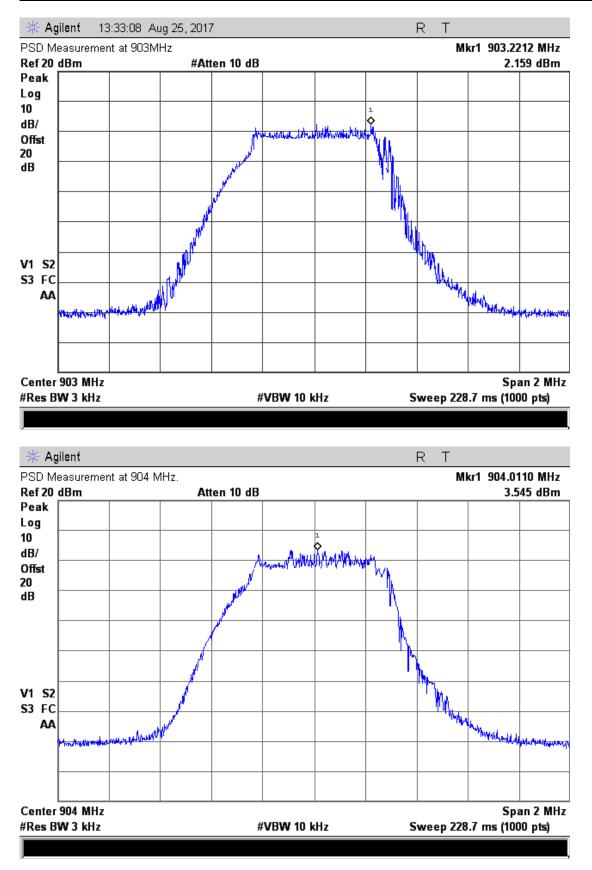
Frequency	Reading	Cable Loss	Total Pov	ver (dBm)	
(MHz)	(dBm)	(dB)	dBm	Watts	Limit (dBm)
903	14.0	0.4	14.4	0.0275	28.0
904	12.8	0.4	13.2	0.0209	28.0
915	12.8	0.4	13.2	0.0209	28.0
927	12.9	0.4	13.3	0.0212	28.0

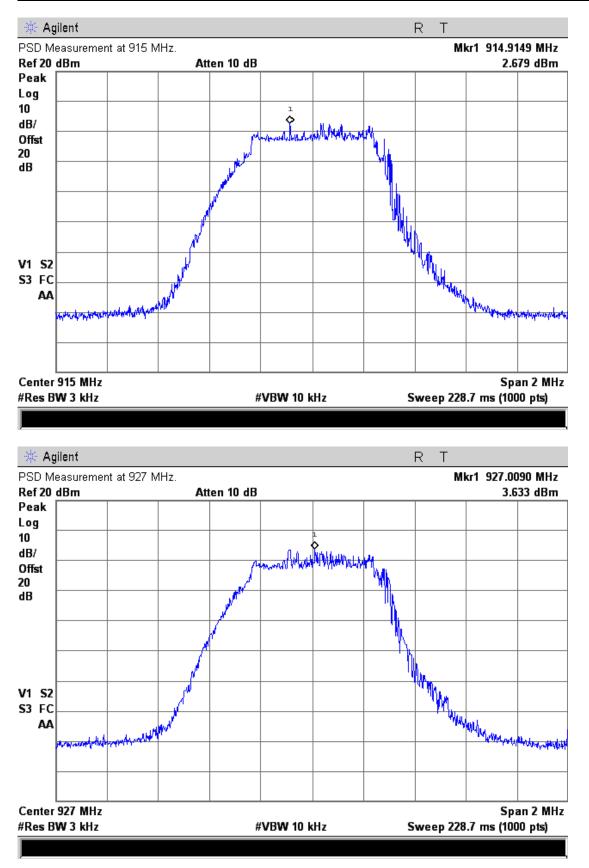

Judgment: Passed by 13.6 dB

Tested by: Joseph Strzelecki/ Richard Tichgelaar Test Date: August 25, 2017

Testing of the Fybr, LLC, Model Fybr Gateway 3, Transceiver

11.4 Power Spectral Density

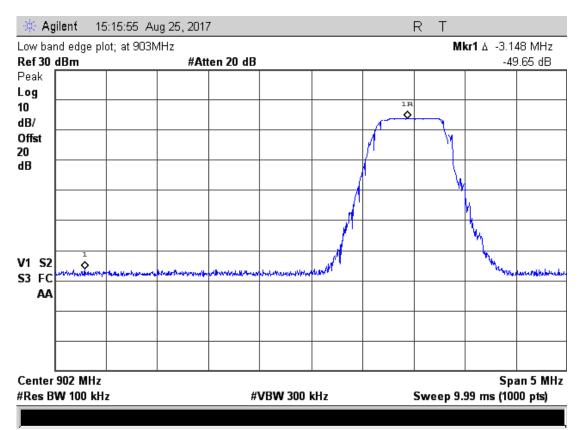

The PSD test method from ANSI C63.10 section 11.10.2 and FCC DTS Measurement Guideline 558074 D01, Section 10.2. The spectrum analyzer was set to the following settings:

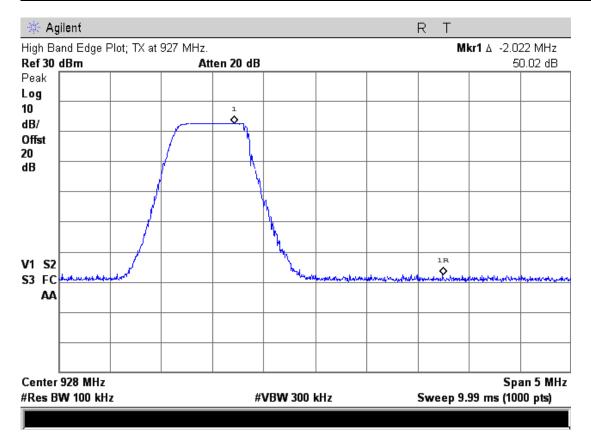

Span = 2 MHz; RBW = 3 kHz; VBW = 10 kHz

Tested by: Joseph Strzelecki/ Richard Tichgelaar Test Date: August 25, 2017

Frequency (MHz)	Reading dBm	Cable Loss (dB)	3 kHz Spectral Density (dBm)	Limit (dBm)
903	2.2	0.4	2.6	8.0
904	3.5	0.4	3.9	8.0
915	2.7	0.4	3.1	8.0
927	3.6	0.4	4.0	8.0

Judgment: Passed by 4.0 dB




11.5 Band-edge Compliance of RF Conducted Emissions

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize.

Tested by: Joseph Strzelecki/ Richard Tichgelaar Test Date: August 25, 2017

Testing of the Fybr, LLC, Model Fybr Gateway 3, Transceiver

	Reading at	Band Edge	Minimum Allowed
Channel	Freq. (MHz)	Delta (dB)	dB
903 Lower Band edge	902.0	49.7	20
927 Upper Band edge	928.0	50.0	20

Judgment: Passed by 29.7 dB

11.6 Spurious RF Conducted Emissions at Antenna Port

The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds. The red dislplay line was set to 20 dB below the level of the fundamental.

Radiometrics	Midwest	Corporation
i la al offici i colo		oorporation

	ent 13:	55:10 At	ug 25, 2017	7				RΤ		
Spur. Em		Range 1; !								88 MHz
Ref 30 dl			#At	ten 20 dB					-35.	27 dBm
Peak Log	Marke	r								
10 8	38.00	0000	MHz							
	35.27		1							
Offst										
20										
dB										
DI [.6.1]										
dBm										
M1 S2	\$	n in a sulta a		a substantia a co	and the second second	and the second second	figure at the state		and chains to an a	(hu-ba-culos)
S3 FC										
AA										
\vdash										
L Start 1 M										p 1 GHz
🔆 Agile Spur. Em		ange 1; a	at 904 MHz	ſ.				 Т	Mkr1	640 MHz
Ref 30 dl	Bm	-	At	ten 20 dB					-34.	19 dBm
Peak										
Log				1						
10										
10 dB/										
10 dB/ Offst 20										
10 dB/ Offst 20 dB										
10 dB/ Offst 20 dB DI										
10 dB/ Offst 20 dB DI 8.5										
10 dB/ Offst 20 dB DI -8.5										
10 dB/ Offst 20 dB DI 8.5										
10 dB/ Offst 20 dB DI 8.5 dBm V1 S2							1			
10 dB/ Offst 20 dB DI 8.5 dBm V1 S2 S3 FC "	under mente landre	مراجع الحكاري العرار معاري		agent by the stand of the						
10 dB/ Offst 20 dB DI 8.5 dBm V1 S2	under-sur-filmbre	njestoplantesta		agently had not not a	مرید می رو به رو این رو او م					
10 dB/ Offst 20 dB DI 8.5 dBm V1 S2 S3 FC "		njezista kontek		Byrelyka Joseff Josef			1	kourgest of water		
10 dB/ Offst 20 dB DI 8.5 dBm V1 S2 S3 FC "	colf-court-limbre			a contraction of the second se						
10 dB/ Offst 20 dB DI 8.5 dBm V1 S2 S3 FC "		ngha liyyfr, gar blywrhyf		agently had not not a						
10 dB/ Offst 20 dB DI 8.5 dBm V1 S2 S3 FC X4		geben kirgelin geben kirgen			48. mid an estadere los		1	for you have		
10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC "/					vBW 300	,		(листино weed 101	Sto 3.5 ms (100	op 1 GHz

🔆 Ag	jilent							RТ		
Spur. E Ref 30		Range 1; :	at 915 MH:	z. :en 20 dB						627 MHz 06 dBm
Ref 30 Peak	авт		All	en zu ab					-34.0	ль авт
Log										
10										
dB/										
Offst										
20										
dB										
DI										
-8.4										
dBm										
							1			
V1 S2	محدد والمسالية		a har a superior of the	1. Algorithe Conden	-	aunstransford the	Prov Fill and remains into	mentionalization	when the many states	A MARCHINE ROLLING
S 3 FC	N. PROMATINE AND A									
AA										
Start 1	MHz								Sto	p 1 GHz
#Res B	W 100 kH	z		#'	VBW 300 I	kHz	S	weep 103	.5 ms (100)0 pts)
An 🎼	ilenf							RТ		
Ag		Dongo 1: -	-+ 007 MH-	.				RТ	Mket	602 MHz
Spur. E	missions;	Range 1; :	at 927 MH:					RT		603 MHz 26 dBm
Spur. E Ref 30	missions;	Range 1; :		z. en 20 dB				RT		603 MHz 26 dBm
Spur. E Ref 30 Peak	missions;	Range 1; :						R T		
Spur.E Ref 30 Peak Log	missions;	Range 1; :						R T		
Spur. E Ref 30 Peak Log 10	missions;	Range 1; :						RT		
Spur. E Ref30 Peak Log 10 dB/	missions;	Range 1; :						R T		
Spur. E Ref30 Peak Log 10 dB/ Offst 20	missions;	Range 1; :						R T		
Spur. E Ref30 Peak Log 10 dB/ Offst 20	missions;	Range 1; :						R T		
Spur. E Ref30 Peak Log 10 dB/ Offst 20 dB DI	missions;	Range 1; :						R T		
Spur. E Ref30 Peak Log 10 dB/ Offst 20 dB DI 8.4	missions;	Range 1; :						R T		
Spur. E Ref30 Peak Log 10 dB/ Offst 20 dB DI 8.4	missions;	Range 1; :						R T		
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.4	missions;	Range 1; :						R T		
Spur. E Ref30 Peak Log 10 dB/ Offst 20 dB DI -8.4 dBm	missions;	Range 1; :						R T		
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.4 dBm V1 S2	missions;	Range 1; :								26 dBm
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.4 dBm V1 S2 S3 FC	missions;	Range 1; :				and the second		R T		
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.4 dBm V1 S2	missions;	Range 1; :						R T		26 dBm
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.4 dBm V1 S2 S3 FC	missions;	Range 1; :						R T		26 dBm
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.4 dBm V1 S2 S3 FC	missions;	Range 1; :						R T		26 dBm
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB DI 8.4 dBm V1 S2 S3 FC	missions;	Range 1; :			-4,+9>,>,+4+,+1()			R T		26 dBm
Spur. E Ref 30 Peak Log 10 18/ 01 18 18 18 18 18 18 18 18 18 18 18 18 18	missions; dBm	Range 1; :						R T	-34.i	26 dBm
Spur. E Ref 30 Peak Log 10 dB/ Offst 20 dB dB dB dB dB dB dB dB dB dB dB dB dB	missions; dBm								-34.i	26 dBm
Spur. E Ref 30 Peak Log ID IB IB IB IB IB IB IB IB IB IB IB IB IB	missions; dBm			en 20 dB	-4++++++++++++++++++++++++++++++++++++				-34.i	26 dBm

	jilent							RТ		
Spur Er Ref 30	missions F	Range 2 at		ten 20 dB						976 GHz
	abm		#Att	ien zu ab					-32	.8 dBm
Peak										
Log										
10										
dB/										
Offst										
20										
dB										
DI										
-8.5										
dBm										
abm										
			1							
V1 S2			Å.							
S3 FC	a mound	and and the second second	man	mon	mohush	mound	man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hours	more man
AA										
~~										
Start 1	CH7	1	1	1					Ston	9.5 GHz
	W 100 kH	_		ш	UDIAL 200	-U -		C 00		
#Res D	WV TUU KH	2		#	VBW 300			Sweep oo	0.6 ms (40	JT ptsj
🔆 Ag	ilenf							RТ		
- AP - OB	110111							1 1		
~ -	-									
	missions;	Range 2 a	it 904 MHz							906 GHz
Ref 30	missions;	Range 2 a		ten 20 dB						906 GHz 48 dBm
Ref 30 Peak	missions;	Range 2 a								
Ref 30 Peak	missions;	Range 2 a								
Ref 30 Peak Log	missions;	Range 2 a								
Ref 30 Peak Log 10	missions;	Range 2 a								
Ref30 Peak Log 10 dB/	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst 20	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst 20 dB	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst 20 dB DI	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5	missions;	Range 2 a								
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5	missions;	Range 2 a		ten 20 dB						
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2	dBm			ten 20 dB					-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2	dBm	Range 2 a		ten 20 dB						48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC	dBm			ten 20 dB					-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2	dBm			ten 20 dB				herman and the starting of	-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC	dBm			ten 20 dB				hermitis the start of	-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC	dBm			ten 20 dB				hermitie Hausting P	-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC	dBm			ten 20 dB				herman har Harachar B	-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC	dBm			ten 20 dB				Herman Arabita	-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC AA	dBm			ten 20 dB				44.000 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-33.4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC AA Start 1	GHz	na nd to kike ye to met		<u>үнь тиц, у</u>					-33,4	48 dBm
Ref 30 Peak Log 10 dB/ Offst 20 dB DI -8.5 dBm V1 S2 S3 FC AA Start 1	dBm	na nd to kike ye to met		<u>үнь тиц, у</u>	vBW 300				-33.4	48 dBm

Testing of the Fybr, LLC, Model Fybr Gateway 3, Transceiver

🔆 Agilent							RТ		
pur. Emissions;	Range 2 a								778 GHz
ef 30 dBm		Att	en 20 dB					-33.	64 dBm
eak									
og									
, B/									
ffst									
2									
B									
I									
.4									
Bm									
4 62		1 ()							
1 S2 3 FC	ويسرعه معيلهم مدينة بطلله مرم	Jun marken be	And Marine	an termsternet	an landstaffing die kan si	and an enderthy	- males - hubble	- And Alight Barrison Starts and	storten en
Ves DAM 100 KH	-								
							RT		
Agilent pur. Emissions;							RT		
Agilent pur. Emissions; ef 30 dBm			en 20 dB				R T		982 GHz 24 dBm
Agilent pur. Emissions; ef 30 dBm eak							R T		
Res BW 100 kH Agilent pur. Emissions; ef 30 dBm eak og							R T		982 GHz 24 dBm
Agilent pur. Emissions; ef 30 dBm eak og							R T		
Agilent pur. Emissions; ef 30 dBm eak og 0 B/ ffst							R T		
Agilent pur. Emissions; ef 30 dBm eak og D B/ ffst D							R T		
Agilent pur. Emissions; ef 30 dBm eak og D B/ ffst B							R T		
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H l H							R T		
Agilent pur. Emissions; ef 30 dBm eak og D B/ ffst B							R T		
Agilent pur. Emissions; eak og b fist b fist c fist							R T		
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H ffst i i i i i i i i i i i i i i i i i i i		Att					R T		
Agilent pur. Emissions; ef 30 dBm eak og B/ ffst B I. B I	Range 2 a		en 20 dB						24 dBm
Agilent pur. Emissions; ef 30 dBm eak og b ffst b ffst b ffst c affst c affst c b ffst c b ffst c b ffst c c c c c c c c c c c c c c c c c c c	Range 2 a		en 20 dB						24 dBm
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H ffs	Range 2 a		en 20 dB						24 dBm
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H ffst b H ffst b H ffst c	Range 2 a		en 20 dB						24 dBm
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H ffst b H ffst b H ffst c	Range 2 a		en 20 dB						24 dBm
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H ffst b H ffst c ff	Range 2 a		en 20 dB						24 dBm
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H ffst b H ffst b H ffst c	Range 2 a		en 20 dB						24 dBm
Agilent pur. Emissions; ef 30 dBm eak og b H ffst b H ffst b H ffst b H ffst c	Range 2 a		en 20 dB					-33.	24 dBm

Judgement: Pass by at least 10 dB

11.7 Spurious Radiated Emissions (Restricted Band)

The procedures were in accordance to FCC DTS Measurement Guideline 558074 D01, Section 12.1 and ANSI C63.10.

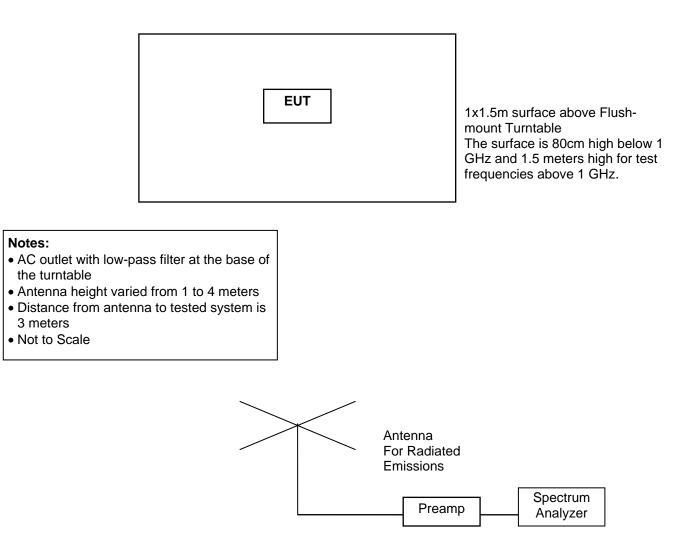
Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. A harmonic mixer was used from 18 to 25 GHz. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

For tests from 1 to 10 GHz, a high pass filter was used to reduce the fundamental emission. High pass filters were not needed above 10 GHz, since the preamplifiers attenuated the fundamental emission. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 9500 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.


11.7.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AGWhere: FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain HPF = High pass Filter Loss

Testing of the Fybr, LLC, Model Fybr Gateway 3, Transceiver

Figure 2. Drawing of Radiated Emissions Setup

11.7.2 Spurious Radiated Emissions Test Results (Restricted Band)

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

A Video Bandwidth of 10 Hz was used for Average measurements above 1 GHz.

Testing of the Fybr, LLC, Model Fybr Gateway 3, Transceiver

Manufacturer	Fybr, LLC	Specification	FCC Part 15 Subpart C & RSS-210
Model	Fybr Gateway 3	Test Date	07/25/2017
Serial Number	None	Test Distance	3 Meters
Abbreviations	Pol = Antenna Polarization; V	′ = Vertical; H = H	orizontal; BC = Biconical (ANT-3);
	LP = Log-Periodic (ANT-6); H	IN = Horn (ANT-1	3) P = peak; Q = QP
Configuration	Patch Antenna		

This Restricted band Emissions.

	Meter			Ant					
Freq.	Reading		Ant.	Factor	Cable	Dist Fact	EUT	Limit	Margin Under
MHz	dBuV	Dect.	Pol.	dB/m	Loss dB	dB	dBuV/m	dBuV/m	Limit dB
250.2	31.6	Q	Н	11.1	1.3	0.0	44.0	46.0	2.0
274.9	25.7	Q	Н	13.1	1.4	0.0	40.2	46.0	5.8
975.0	9.8	Р	Н	22.7	2.7	0.0	35.2	54.0	18.8
977.5	10.8	Р	Н	22.8	2.7	0.0	36.3	54.0	17.7
250.2	19.6	Р	V	11.1	1.3	0.0	32.0	46.0	14.0
250.2	22.2	Р	V	11.1	1.3	0.0	34.6	46.0	11.4
250.2	22.1	Р	V	11.1	1.3	0.0	34.5	46.0	11.5
274.9	14.1	Р	V	13.1	1.4	0.0	28.6	46.0	17.4
274.9	17.9	Р	V	13.1	1.4	0.0	32.4	46.0	13.6
274.9	16.9	Р	V	13.1	1.4	0.0	31.4	46.0	14.6
960.0	9.2	Р	V	22.6	2.7	0.0	34.5	46.0	11.5
970.0	9.9	Р	V	22.5	2.7	0.0	35.1	54.0	18.9
975.0	12.4	Р	V	22.7	2.7	0.0	37.8	54.0	16.2

Configuration Monopole Antenna 08/07/17

_	Meter		_		Cable &				
Freq.	Reading		Ant.	Ant	Amp	Dist Fact	EUT	Limit	Margin Under
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB
127.9	19.7	Р	Η	11.9	1.0	0.0	32.6	43.5	10.9
250.2	30.1	Q	Н	11.1	1.3	0.0	42.5	46.0	3.5
274.9	25.7	Q	Н	13.1	1.4	0.0	40.2	46.0	5.8
325.0	17.2	Р	Н	13.6	1.6	0.0	32.4	46.0	13.6
962.5	10.5	Р	Н	22.5	2.7	0.0	35.7	54.0	18.3
113.1	17.7	Q	V	12.5	0.9	0.0	31.1	43.5	12.4
128.4	18.9	Q	V	11.9	1.0	0.0	31.8	43.5	11.7
250.2	25.3	Р	V	11.1	1.3	0.0	37.7	46.0	8.3
256.0	17.2	Р	V	11.6	1.4	0.0	30.2	46.0	15.8
260.6	12.8	Р	V	11.8	1.4	0.0	26.0	46.0	20.0
274.9	16.5	Р	V	13.1	1.4	0.0	31.0	46.0	15.0
400.4	13.5	Р	V	14.8	1.7	0.0	30.0	46.0	16.0
976.3	12.4	Р	V	22.8	2.7	0.0	37.9	54.0	16.1

Restricted band Emissions above 1 GHz

Configuration | Monopole Antenna 08/07/17

							EUT	Peak	Ave	Peak	Ave	Margin
hrm	Tx	Peak	Ave	Peak	Ave	Corr.	Emission		. FS	Limit		Under
#	Freq	Vert	tical	Horiz	ontal	Fact.	Freq MHz	dBu	V/m	dBu	V/m	Limit
3	904	47.5	38.6	42.1	34.0	-2.3	2712.0	45.2	36.3	74	54	17.7
4	904	46.7	38.1	41.2	32.1	4.0	3616.0	50.7	42.1	74	54	11.9
5	904	47.8	38.5	42.3	32.4	6.6	4520.0	54.4	45.1	74	54	8.9
6	904	44.0	35.6	42.6	33.2	10.6	5424.0	54.6	46.2	74	54	7.8
8	904	40.4	32.3	35.0	25.9	16.0	7232.0	56.4	48.3	74	54	5.7
9	904	35.9	27.9	35.0	25.8	16.5	8136.0	52.4	44.4	74	54	9.6
10	904	36.2	23.7	37.8	26.3	20.7	9040.0	58.5	47.0	74	54	7.0
3	915	46.1	36.5	43.2	33.6	-2.1	2745.0	44.0	34.4	74	54	19.6
4	915	42.3	32.7	39.8	30.2	4.2	3660.0	46.5	36.9	74	54	17.1
5	915	48.1	39.6	40.7	32.2	7.0	4575.0	55.1	46.6	74	54	7.4
8	915	39.8	31.0	39.8	31.0	16.0	7320.0	55.8	47.0	74	54	7.0
9	915	39.5	30.5	39.9	30.9	17.2	8235.0	57.1	48.1	74	54	5.9
10	915	40.2	28.1	39.7	27.6	20.6	9150.0	60.8	48.7	74	54	5.3
3	927	47.1	39.1	41.6	32.7	-2.0	2781.0	45.1	37.1	74	54	16.9
4	927	42.2	32.9	39.0	30.1	4.4	3708.0	46.6	37.3	74	54	16.7
5	927	44.9	35.7	40.1	30.5	7.3	4635.0	52.2	43.0	74	54	11.0
8	927	39.4	29.5	40.1	31.8	15.5	7416.0	55.6	47.3	74	54	6.7
9	927	38.5	29.9	39.0	29.6	17.9	8343.0	56.9	47.8	74	54	6.2
	Column Numbers											
1	2	3	4	5	6	7	8	9	10	11	12	13

Notes on Columns:

Column #1. hrm = Harmonic; BE = Band Edge emissions

Column #2. Frequency of Transmitter.

Column #3. Uncorrected Vertical readings from the spectrum analyzer

Column #4. Raw Average reading; The average reading was converted from the peak reading. Ave = Peak – Dwell time correction factor from section 10.3.2 herein.

Column #5. Uncorrected Horizontal readings from the spectrum analyzer

Column #6. Raw Average reading; The average reading was converted from the peak reading. Ave = Peak – Dwell time correction factor from section 10.3.2 herein.

Column #7. Corr. Factors = Cable Loss – Preamp Gain + Antenna Factor

Column #8. Frequency of Tested Emission

Column #9. Highest peak field strength at listed frequency.

Column #10. Highest Average field strength at listed frequency.

Column #11. Peak Limit.

Column #12. Average Limit.

Column #13. The margin (last column) is the worst case margin under the peak or average limits for that row.

Judgment: Passed by 5.3 dB

No other emissions were detected in the restricted bands within 10 dB of the limits.

Configuration	Patch Antenna 07/25/17
---------------	------------------------

							EUT	Peak	Ave	Peak	Ave	Margin
hrm	Tx	Peak	Ave	Peak	Ave	Corr.	Emission		FS	-S Lin		Under
#	Freq	Vert	ical	Horiz	ontal	Fact.	Freq MHz	dBu	V/m	dBu	V/m	Limit
3	904	42.1	32.3	48.2	39.8	-2.4	2712.0	45.8	37.4	74	54	16.6
4	904	38.3	29.8	41.9	33.6	3.7	3616.0	45.6	37.3	74	54	16.7
5	904	44.5	35.1	49.4	40.1	6.7	4520.0	56.1	46.8	74	54	7.2
6	904	39.4	29.5	39.3	31.0	10.7	5424.0	50.1	41.7	74	54	12.3
8	904	39.7	31.3	39.5	29.8	15.8	7232.0	55.5	47.1	74	54	6.9
9	904	39.0	30.3	38.9	30.8	16.5	8136.0	55.5	47.3	74	54	6.7
10	904	39.8	27.9	39.3	27.1	20.7	9040.0	60.5	48.6	74	54	5.4
3	915	47.1	37.5	43.4	34.4	-2.3	2745.0	44.8	35.2	74	54	18.8
4	915	39.8	30.2	40.0	31.2	3.8	3660.0	43.8	35.0	74	54	19.0
5	915	46.9	35.9	55.1	42.8	7.1	4575.0	62.2	49.9	74	54	4.1
8	915	40.0	31.2	38.6	30.2	15.7	7320.0	55.7	46.9	74	54	7.1
9	915	39.7	30.7	41.8	32.9	16.8	8235.0	58.6	49.7	74	54	4.3
10	915	39.3	27.3	39.1	27.3	21.2	9150.0	60.5	48.5	74	54	5.5
3	927	48.0	38.8	44.7	34.8	-2.2	2781.0	45.8	36.6	74	54	17.4
4	927	39.6	31.5	43.6	35.5	4.0	3708.0	47.6	39.5	74	54	14.5
5	927	45.0	35.5	46.8	38.3	7.3	4635.0	54.1	45.6	74	54	8.4
8	927	39.9	31.6	40.3	30.5	15.1	7416.0	55.4	46.7	74	54	7.3
9	927	39.7	30.3	40.0	31.8	17.5	8343.0	57.5	49.3	74	54	4.7
					Co	olumn N	lumbers					
1	2	3	4	5	6	7	8	9	10	11	12	13

Notes on Columns:

Column #14. hrm = Harmonic; BE = Band Edge emissions

Column #15. Frequency of Transmitter.

Column #16. Uncorrected Vertical readings from the spectrum analyzer

Column #17. Raw Average reading; The average reading was converted from the peak reading.

Ave = Peak – Dwell time correction factor from section 10.3.2 herein.

Column #18. Uncorrected Horizontal readings from the spectrum analyzer

Column #19. Raw Average reading; The average reading was converted from the peak reading. Ave = Peak – Dwell time correction factor from section 10.3.2 herein.

Column #20. Corr. Factors = Cable Loss - Preamp Gain + Antenna Factor

Column #21. Frequency of Tested Emission

Column #22. Highest peak field strength at listed frequency.

Column #23. Highest Average field strength at listed frequency.

Column #24. Peak Limit.

Column #25. Average Limit.

Column #26. The margin (last column) is the worst case margin under the peak or average limits for that row.

Judgment: Passed by 4.3 dB

No other emissions were detected from 1 to 9.5 GHz in the restricted bands within 10 dB of the limits.

11.8 Unintentional Emissions (Receive Mode)

Manufacturer	Fybr, LLC	Specification	FCC Part 15.209 & RSS-GEN
Model	Fybr Gateway 3	Test Date	07/25/2017
Serial Number	None	Test Distance	3 Meters
Abbreviations	Pol = Antenna Polarizat	ion; V = Vertical;	H = Horizontal; P = peak; Q = QP
Configuration	Receive mode		

	Meter	Dect			Cable Loss	Field S dBu	Margin Under Limit	
Freq. MHz	Reading dBuV	Dect. Type	Factor dB	Polarity	Factors dB	EUT	Limit	dB
32.2	-6.4	Q	11.3	H	0.5	5.4	40.0	34.6
65.2	17.6	Р	7.8	Н	0.7	26.1	40.0	13.9
125.2	13.9	Р	12.1	Н	0.9	26.9	40.0	13.1
163.6	17.0	Р	15.4	Н	1.1	33.5	40.0	6.5
199.9	19.0	Q	16.4	Н	1.2	36.6	40.0	3.4
225.3	14.7	Q	14.4	Н	1.2	30.4	40.0	9.6
250.0	27.1	Q	11.1	Н	1.3	39.5	46.0	6.5
250.2	30.6	Q	11.1	Н	1.3	43.0	46.0	3.0
350.0	27.6	Q	14.0	Н	1.6	43.1	46.0	2.9
626.3	10.7	Р	18.9	Н	2.1	31.8	46.0	14.2
651.3	10.7	Р	20.4	Н	2.2	33.3	46.0	12.7
726.3	15.0	Р	21.1	Н	2.3	38.4	46.0	7.6
738.8	14.8	Р	20.9	Н	2.3	38.0	46.0	8.0
767.5	13.0	Р	21.3	Н	2.4	36.7	46.0	9.3
787.5	13.5	Р	20.7	Н	2.5	36.7	46.0	9.3
807.5	13.9	Р	20.6	Н	2.6	37.1	46.0	8.9
856.3	11.6	Р	22.4	Н	2.6	36.6	46.0	9.4
34.4	-6.5	Q	11.4	V	0.5	5.4	40.0	34.6
50.9	17.0	Р	11.2	V	0.6	28.7	40.0	11.3
125.2	13.0	Р	12.1	V	0.9	26.0	40.0	14.0
199.9	13.5	Р	16.4	V	1.2	31.1	40.0	8.9
225.3	15.8	Р	14.4	V	1.2	31.4	40.0	8.6
245.6	13.5	Р	16.3	V	1.3	31.1	47.0	15.9
250.2	25.8	Р	11.1	V	1.3	38.2	46.0	7.8
283.4	17.7	Р	13.6	V	1.4	32.7	46.0	13.3
300.3	23.4	Р	14.4	V	1.5	39.3	46.0	6.7
325.0	15.3	Р	13.6	V	1.5	30.5	46.0	15.5
350.3	25.6	Q	14.0	V	1.6	41.1	46.0	4.9
375.0	18.5	Р	14.5	V	1.6	34.6	46.0	11.4
425.0	15.3	Р	16.0	V	1.8	33.0	46.0	13.0
475.1	13.9	Р	17.5	V	1.9	33.3	46.0	12.7
550.0	11.6	Р	18.7	V	2.0	32.3	46.0	13.7
740.0	13.5	Р	20.8	V	2.3	36.6	46.0	9.4
780.0	14.0	Р	21.3	V	2.4	37.8	46.0	8.2
801.3	14.2	Р	20.4	V	2.5	37.1	46.0	8.9
975.0	12.5	Р	22.7	V	2.7	37.9	54.0	16.1
988.8	11.4	Р	23.1	V	2.7	37.2	54.0	16.8

Judgment: Passed by 2.9 dB. The Quasi-Peak are the final determination of compliance

No other emissions were detected from 1 to 5 GHz within 10 dB of the limits.

11.8.1 Measurement Instrumentation Uncertainty

Measurement	Uncertainty
Conducted Emissions, LISN method, 150 kHz to 30 MHz	2.7 dB
Radiated Emissions, E-field, 3 meters, 30 to 200 MHz	3.3 dB
Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz	4.9 dB
Radiated Emissions, E-field, 3 meters, 1 to 18 GHz	4.8 dB
Bandwidth using marker delta method at a span of 10 MHz	4 kHz
99% Occupied Bandwidth using REC-43	1% of frequency
	span
Conducted power REC-11/21 at 915 MHz	0.8 dB
Amplitude measurement 1-10,000 MHz; REC-11/21	1.5 dB
Temperature THM-02	0.6 Deg C

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.