

FCC Radio Test Report FCC ID: 2BCGWC410

Report No. : eLab-FCCP-1-2312G166

Equipment: Smart Wire-Free Indoor/Outdoor Security Camera

Brand Name : tp-link
Test Model : Tapo C410
Series Model : TC82, Tapo C402

Applicant: TP-LINK CORPORATION PTE. LTD.

Address : 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987

Radio Function : WLAN 2.4 GHz

FCC Rule Part(s) Measurement Procedure(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

: ANSI C63.10-2013

Date of Receipt : 2024/1/9

Date of Test : 2024/1/22-2024/2/29

Issued Date : 2024/3/22

The above equipment has been tested and found in compliance with the requirement of the above standards by eLab Inc.

Prepared by : Hunter Chiang

Approved by : Sam Chuang

eLab Inc.

10F., No. 167, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Tel: +886-2-8692-6160 Fax: +886-2-8692-6170

Project No.: 2312G166 Page 1 of 88 eTest certification Laboratory Inc. www.btl.com.tw
Report Version: R00

Declaration

eLab represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

eLab's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **eLab** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **eLab** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

eLab's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

eLab is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVISIO	N HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8
1.5	DUTY CYCLE	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	13
3	AC POWER LINE CONDUCTED EMISSIONS TEST	14
3.1	LIMIT	14
3.2	TEST PROCEDURE	14
3.3	TEST SETUP	15
3.4	TEST RESULT	15
4	RADIATED EMISSIONS TEST	16
4.1	LIMIT	16
4.2	TEST PROCEDURE	17
4.3	TEST SETUP	17
4.4	EUT OPERATING CONDITIONS	18
4.5	TEST RESULT – BELOW 30 MHZ	19
4.6	TEST RESULT – 30 MHZ TO 1 GHZ	19
4.7	TEST RESULT – ABOVE 1 GHZ	19
5	BANDWIDTH TEST	20
5.1	LIMIT	20
5.2	TEST PROCEDURE	20
5.3	TEST SETUP	20
5.4	EUT OPERATING CONDITIONS	20
5.5	TEST RESULT	20
6	MAXIMUM OUTPUT POWER TEST	21
6.1	LIMIT	21
6.2	TEST PROCEDURE	21
6.3	TEST SETUP	21
6.4	EUT OPERATING CONDITIONS	21
6.5	TEST RESULT	21
7	POWER SPECTRAL DENSITY	22
7.1	LIMIT	22
7.2	TEST PROCEDURE	22
7.3	TEST SETUP	22
7.4	EUT OPERATING CONDITIONS	22
7.5	TEST RESULT	22
8	ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST	23
8.1	LIMIT	23
8.2	TEST PROCEDURE	23
8.3	TEST SETUP	23

Project No.: 2312G166 Report Version: R00

Page 3 of 88 eTest certification Laboratory Inc. www.btl.com.tw

8.4	EUT O	PERATING CONDITIONS	23
8.5	TEST	RESULT	23
9	LIST OF	MEASURING EQUIPMENTS	24
10	EUT TES	T PHOTO	25
11	EUT PHO	DTOS	25
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	26
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	29
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	32
APPEND	IX D	BANDWIDTH	75
APPEND	IX E	MAXIMUM OUTPUT POWER	79
APPEND	IX F	POWER SPECTRAL DENSITY	82
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS	85

Page 4 of 88

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
eLab-FCCP-1-2312G166	R00	Original Report.	2024/3/22	Valid

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

FCC CFR Title 47, Part 15, Subpart C						
Standard(s) Section	Test Item	Test Result	Judgment	Remark		
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS			
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C	PASS			
15.247(a)(2)	Bandwidth	APPENDIX D	PASS			
15.247(b)(3)	Maximum Output Power	APPENDIX E	PASS			
15.247(d)	Power Spectral Density	APPENDIX F	PASS			
15.247(e)	Antenna conducted Spurious Emission	APPENDIX G	PASS			
15.203	Antenna Requirement		PASS	Note(2)		

NOTE:

- "N/A" denotes test is not applicable in this Test Report.
- (1) (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

Page 6 of 88

(3) The report format version is FR15CWL2.4_V1.0

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No.64, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 681248 and DN: TW4045.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The eLab measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> (dB)
C01	CISPR	150 kHz ~ 30MHz	2.4498

B. Radiated emissions test:

Test Site	Measurement Frequency Range	<i>U</i> ,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB01	1 GHz ~ 6 GHz	5.21
СВОТ	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	<i>U</i> ,(dB)
Occupied Bandwidth	1.0502
Output power	1.0406
Conducted Spurious emissions	1.20
Conducted Band edges	1.0518
Power Spectral Density	1.20

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

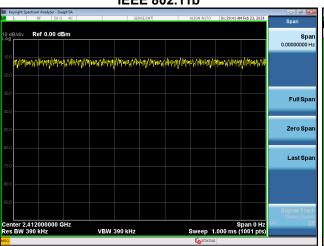
1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120V	Hunter Chiang
Radiated emissions below 1 GHz	25°C, 60%	AC 120V	Hunter Chiang
Radiated emissions above 1 GHz	24°C, 60%	AC 120V	Hunter Chiang
Bandwidth	24°C, 60%	AC 120V	Cheng Tsai
Maximum Output Power	24°C, 60%	AC 120V	Cheng Tsai
Power Spectral Density	24°C, 60%	AC 120V	Cheng Tsai
Antenna conducted Spurious Emission	25°C, 45%	AC 120V	Cheng Tsai

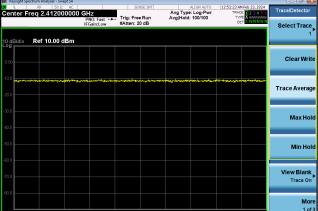
Page 7 of 88

Project No.: 2312G166 Report Version: R00 eTest certification Laboratory Inc.

www.btl.com.tw


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

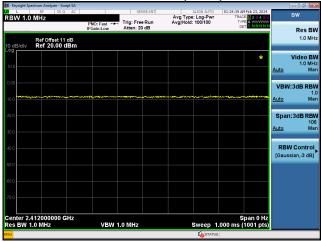
Test Software	IPOP V4.0				
Mode	2412 MHz	2437 MHz	2462 MHz	Data Rate	
IEEE 802.11b	70	127	67	1 Mbps	
IEEE 802.11g	50	127	40	6 Mbps	
IEEE 802.11n(HT20)	40	127	35	MCS 0	


1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.

IEEE 802.11b

Duty cycle = 0.000 ms / 0.000 ms = 0.00% Duty Factor = 10 log(1/Duty cycle) = 0.00



IEEE 802.11g

Duty cycle = 0.000 ms / 0.000 ms = 0.00% Duty Factor = 10 log(1/Duty cycle) = 0.00

VBW 1.0 MHz

IEEE 802.11n(HT20)

Duty cycle = 0.000 ms / 0.000 ms = 0.00% Duty Factor = 10 log(1/Duty cycle) = 0.00

Page 8 of 88

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Smart Wire-Free Indoor/Outdoor Security Camera		
Brand Name	tp-link		
Test Model	Tapo C410		
Series Model	TC82, Tapo C402		
Model Difference(s)	Only differ in model name.		
Software Version	1.X		
Hardware Version	1.0		
Power Source	1# DC Voltage supplied from AC adapter. Model: A8-501000 2# Supplied from battery. Model: INR18650/33V 3# Supplied from solar panel. Model: Tapo A201 1# I/P: 100-240V~ 50/60Hz 0.2A Max. O/P: 5V===1A		
Power Rating	2# DC 3.3V*2 3# DC 5V		
Operation Band	2400 MHz ~ 2483.5 MHz		
Operation Frequency	2412 MHz ~ 2462 MHz		
Modulation Technology	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM		
Transfer Rate	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps		
Maximum Output Power	Ant.1: IEEE 802.11g: 25.82 dBm (0.3819 W) Ant.2: IEEE 802.11g: 25.87 dBm (0.3864 W)		

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

_								
	CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n (HT20)							
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
Γ	01	2412	05	2432	09	2452		
ſ	02	2417	06	2437	10	2457		
	03	2422	07	2442	11	2462		
Ī	04	2427	08	2447				

(3) Table for Filed Antenna:

$\overline{}$						
Ant.	Manufacturer	P/N	Antenna Type	Connector	Gain (dBi)	
1	BIG FIELD GLOBAL PTE. LTD	3101506732	Dipole	N/A	0	
2	BIG FIELD GLOBAL PTE. LTD	3101506733	Dipole	N/A	0	

Note:

- The antenna gain is provided by the manufacturer.
 The Ant.2 is the main antenna, Ant.1 is the reserve antenna. Ant.1 and Ant.2 do not work at the same time.

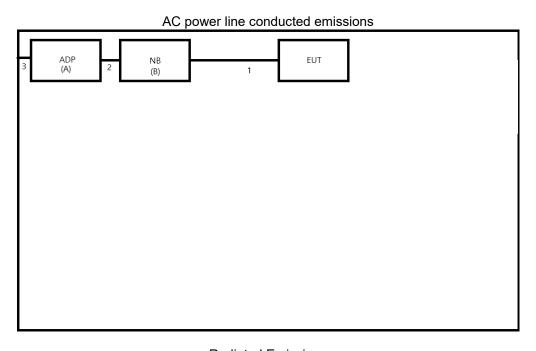
Page 10 of 88

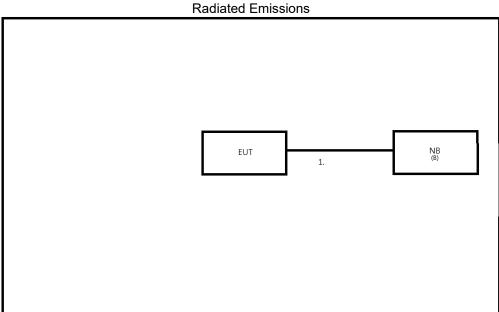
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	TX Mode_IEEE 802.11b	06	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11b	06	-
T " B " 1 F 1	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions (above 1GHz)	TX Mode_IEEE 802.11g	01/02/10/11	Bandedge
(above 16112)	TX Mode_IEEE 802.11n (HT20)		
T " B " 1 F 1	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions (above 1GHz)	TX Mode_IEEE 802.11g	01/02/06/10/11	Harmonic
(above 13112)	TX Mode_IEEE 802.11n (HT20)		
Bandwidth &	TX Mode_IEEE 802.11b		
Output Power & Power Spectral Density &	TX Mode_IEEE 802.11g	01/06/11	-
Antenna conducted Spurious Emission	TX Mode_IEEE 802.11n (HT20)		

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) The Output Power for Ant.1 and Ant.2 are tested are recorded in the report. The worst case is Ant.2 and only the worst case is documented for other test items.


Page 11 of 88



2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Remarks
Α	ADP	TOSHIBA	PA5279E-1AC3	Supplied by test lab.
В	NB	Dynabook	TECRA A40-J	Supplied by test lab.

Item	Cable Type	Ferrite Core	Length	Shielded	Remarks
1	USB Cable	NO	0.5m	NO	Supplied by test requester.
2	DC Cable	YES	1.5m	NO	Supplied by test lab.
3	AC Cable	NO	1m	NO	Supplied by test lab.

Project No.: 2312G166 Report Version: R00

Page 13 of 88

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
(dBuV)		(dB)		(dBuV)
38.22	+	3.45	=	41.67

Measurement Value (dBuV)		Limit Value (dBuV)		Margin Level (dB)
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

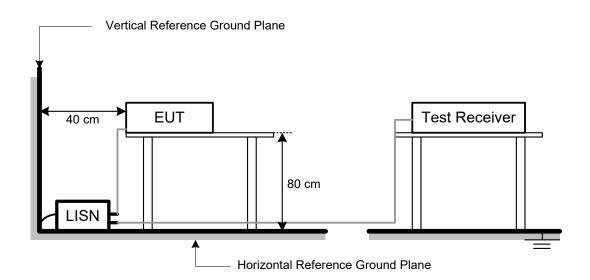
The following table is the setting of the receiver:				
Receiver Parameter	Setting			
Attenuation	10 dB			
Start Frequency	0.15 MHz			
Stop Frequency	30 MHz			
IF Bandwidth	9 KHz			

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


Page 14 of 88

Project No.: 2312G166 Report Version: R00 eTest certification Laboratory Inc.

3.3 TEST SETUP

Page 15 of 88

3.4 TEST RESULT

Please refer to the **APPENDIX A**.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
(dBuV)		(dB)		(dBuV/m)
19.11	+	2.11	=	21.22

Measurement Value (dBuV/m)		Limit Value (dBuV/m)		Margin Level (dB)
21.22	-	54	=	-32.78

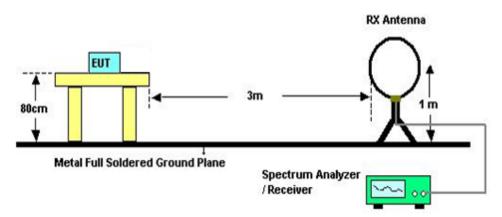
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2312G166 Report Version: R00

Page 16 of 88 eTest certification Laboratory Inc.

www.btl.com.tw

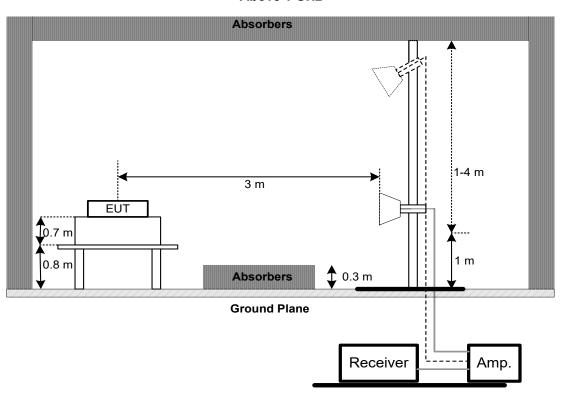


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

Page 18 of 88

4.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

Project No.: 2312G166 Report Version: R00

eTest certification Laboratory Inc.

www.btl.com.tw

4.5 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.6 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2312G166 Report Version: R00

eTest certification Laboratory Inc.

Page 19 of 88

www.btl.com.tw

5 BANDWIDTH TEST

5.1 LIMIT

FCC Part15, Subpart C (15.247)					
Section Test Item Limit					
15.247(a)	6 dB Bandwidth	500 kHz			

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 300KHz, VBW=1MHz, Sweep time = 1 ms.

5.3 TEST SETUP

Page 20 of 88

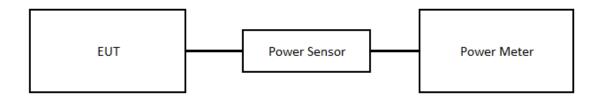
5.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.5 TEST RESULT

Please refer to the APPENDIX D.

MAXIMUM OUTPUT POWER TEST


6.1 LIMIT

FCC Part15, Subpart C (15.247)					
Section Test Item Limit					
15.247(b)	Maximum Output Power	1 Watt or 30dBm			

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- c. Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

6.3 TEST SETUP

6.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.5 TEST RESULT

Please refer to the APPENDIX E.

POWER SPECTRAL DENSITY

7.1 LIMIT

FCC Part15, Subpart C (15.247)					
Section Test Item Limit					
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)			

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block
- Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULT

Please refer to the APPENDIX F.

ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- Offset = antenna gain + cable loss.

8.3 TEST SETUP

8.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.5 TEST RESULT

Please refer to the APPENDIX G.

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Two-Line V-Network	R&S	ENV216	101051	2023/7/21	2024/7/20			
2	EMI Test Receiver	Keysight	N9038A	MY54130009	2023/6/26	2024/6/25			

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Pre-Amplifier	EMCI	EMC001330-202 01222	980807	2023/12/11	2024/12/10			
2	Pre-Amplifier	EMCI	EMC184045SE	980512	2023/12/11	2024/12/10			
3	Pre-Amplifier	EMCI	EMC051845SE	980779	2023/12/11	2024/12/10			
4	Test Cable	EMCI	EMC105-SM-SM- 3000	210118	2023/12/11	2024/12/10			
5	Test Cable	EMCI	EMC105-SM-SM- 1000	210119	2023/12/11	2024/12/10			
6	EMI Test Receiver	Keysight	N9038A	MY54130009	2023/6/26	2024/6/25			
7	EXA Spectrum Analyzer	Y I KAVSIANI I NIMITITA I MIYANAKUAAA		2023/9/12	2024/9/11				
8	Broad-Band Horn Antenna	1 RESPIN 1 DRH18-Ε Ι 210109Δ18Ε		210109A18E	2023/2/10	2024/2/9			
9	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	340	2023/6/29	2024/6/28			
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	01207	2023/1/13	2024/1/12			
11	Loop Ant.	Electro-Metrics	EMCI-LPA600	274	2023/6/28	2024/6/27			
12	6dB Attenuator	EMCI	EMCI-N-6-05	N/A	2023/1/13	2024/1/12			
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

Bandwidth & Maximum Output Power & Power Spectral Density & Antenna conducted Spurious Emission							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	EXA Signal Analyzer	KEYSIGHT	N9010A	MY54430168	2023/6/8	2024/6/7	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2312G166 Report Version: R00

eTest certification Laboratory Inc.

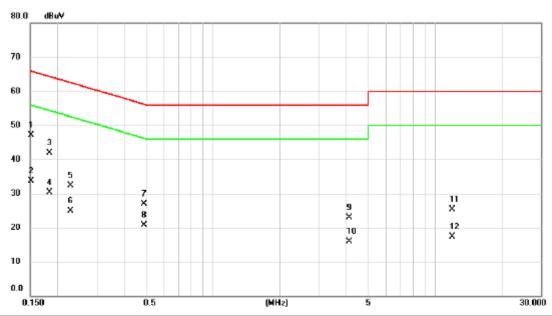
www.btl.com.tw

10 EUT TEST PHOTO

Please refer to APPENDIX-TEST PHOTOS.

11 EUT PHOTOS

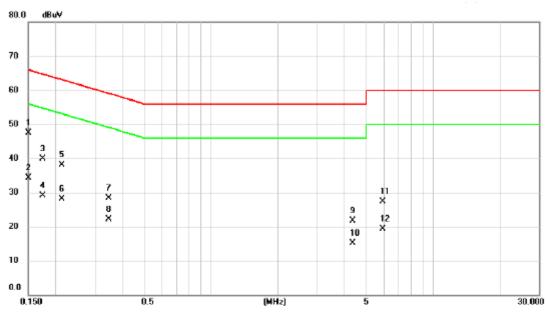
Please refer to APPENDIX-EUT PHOTOS.



APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

Test Mode	TX B Mode Channel 06	Tested Date	2024/2/29
Test Frequency	2437MHz	Phase	Line

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1517	37.42	9.67	47.09	65.91	-18.82	QP	
2	0.1517	24.11	9.67	33.78	55.91	-22.13	AVG	
3	0.1836	32.27	9.67	41.94	64.32	-22.38	QP	
4	0.1836	20.54	9.67	30.21	54.32	-24.11	AVG	
5	0.2287	22.68	9.67	32.35	62.50	-30.15	QP	
6	0.2287	15.24	9.67	24.91	52.50	-27.59	AVG	
7	0.4910	17.19	9.69	26.88	56.15	-29.27	QP	
8	0.4910	11.09	9.69	20.78	46.15	-25.37	AVG	
9	4.0954	13.02	9.88	22.90	56.00	-33.10	QP	
10	4.0954	6.05	9.88	15.93	46.00	-30.07	AVG	
11	11.9000	15.21	10.09	25.30	60.00	-34.70	QP	
12	11.9000	7.18	10.09	17.27	50.00	-32.73	AVG	


REMARKS:

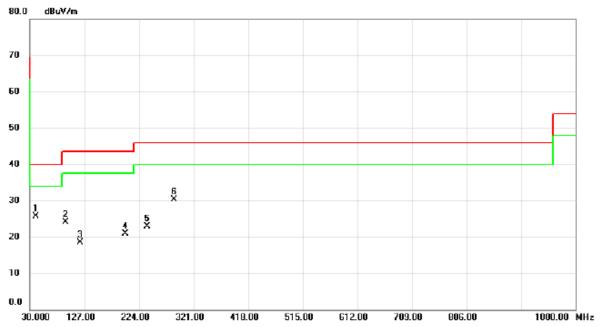
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	TX B Mode Channel 06	Tested Date	2024/2/29
Test Frequency	2437MHz	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1503	37.78	9.67	47.45	65.98	-18.53	QP	
2	0.1503	24.57	9.67	34.24	55.98	-21.74	AVG	
3	0.1748	30.18	9.67	39.85	64.73	-24.88	QP	
4	0.1748	19.36	9.67	29.03	54.73	-25.70	AVG	
5	0.2133	28.39	9.66	38.05	63.08	-25.03	QP	
6	0.2133	18.44	9.66	28.10	53.08	-24.98	AVG	
7	0.3453	18.67	9.66	28.33	59.07	-30.74	QP	
8	0.3453	12.53	9.66	22.19	49.07	-26.88	AVG	
9	4.3340	11.73	9.88	21.61	56.00	-34.39	QP	
10	4.3340	5.31	9.88	15.19	46.00	-30.81	AVG	
11	5.9500	17.38	9.94	27.32	60.00	-32.68	QP	
12	5.9500	9.41	9.94	19.35	50.00	-30.65	AVG	

REMARKS:

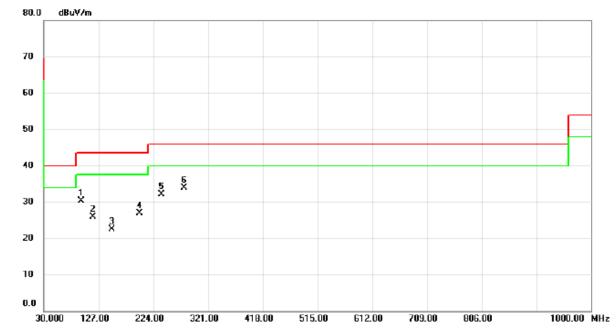
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Test Mode	IEEE 802.11b	Test Date	2024/2/6
Test Frequency	2437MHz	Polarization	Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	*	40.6700	38.16	-12.52	25.64	40.00	-14.36	peak	100	336		
2		94.0200	40.99	-16.85	24.14	43.50	-19.36	peak	100	261		
3		119.2400	32.53	-14.00	18.53	43.50	-24.97	peak	200	234		
4	,	199.7500	35.16	-14.22	20.94	43.50	-22.56	peak	200	318		
5		238.5500	35.31	-12.48	22.83	46.00	-23.17	peak	200	345		
6		287.0500	40.80	-10.46	30.34	46.00	-15.66	peak	200	354		


REMARKS:

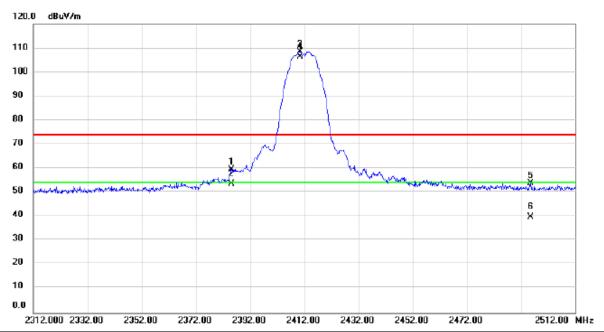
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/6
Test Frequency	2437MHz	Polarization	Horizontal

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	95.9600	46.98	-16.64	30.34	43.50	-13.16	peak	200	139	
2	117.3000	40.04	-14.18	25.86	43.50	-17.64	peak	200	314	
3	150.2800	33.63	-11.12	22.51	43.50	-20.99	peak	177	360	
4	199.7500	41.09	-14.22	26.87	43.50	-16.63	peak	100	360	
5	238.5500	44.57	-12.48	32.09	46.00	-13.91	peak	100	165	
6 *	279.2900	44.62	-10.80	33.82	46.00	-12.18	peak	100	232	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Test Mode	IEEE 802.11b	Test Date	2024/2/4
Test Frequency	2412MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2385.200	56.58	3.05	59.63	74.00	-14.37	peak			
2		2385.200	50.45	3.05	53.50	54.00	-0.50	AVG			
3	Χ	2410.600	105.47	3.09	108.56	74.00	34.56	peak			No Limit
4	*	2410.600	103.14	3.09	106.23	54.00	52.23	AVG			No Limit
5		2495.600	50.55	3.23	53.78	74.00	-20.22	peak			
6		2495.600	36.56	3.23	39.79	54.00	-14.21	AVG			

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

2517.00 MHz

Test Mode	IEEE 802.11b	Test Date	2024/2/4	
Test Frequency	2417MHz	Polarization	Vertical	
120.0 dBuV/m				
110		3		
100		(X)		
90				
80				
70	1	***		
60		The same of the sa	5 water a year way have	
50 manuschhemmenteleten	white the same of	and a supply		
40			e X	
30				
20				
10				

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2390.000	55.87	3.04	58.91	74.00	-15.09	peak			
2		2390.000	50.43	3.04	53.47	54.00	-0.53	AVG			
3	X	2415.600	103.91	3.09	107.00	74.00	33.00	peak			No Limit
4	*	2415.600	99.92	3.09	103.01	54.00	49.01	AVG			No Limit
5		2509.600	49.72	3.28	53.00	74.00	-21.00	peak			
6		2509.600	36.62	3.28	39.90	54.00	-14.10	AVG			

2417.00

2437.00

2457.00

2477.00

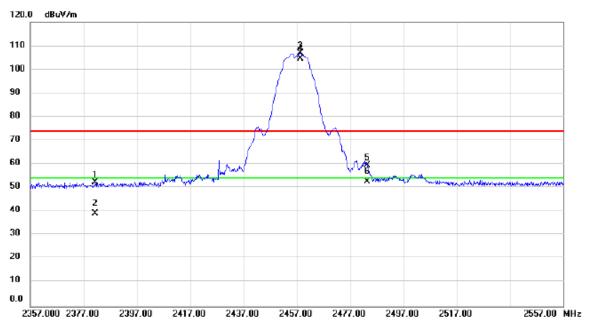
REMARKS:

2317.000 2337.00

(1) Measurement Value = Reading Level + Correct Factor.

2357.00

2377.00

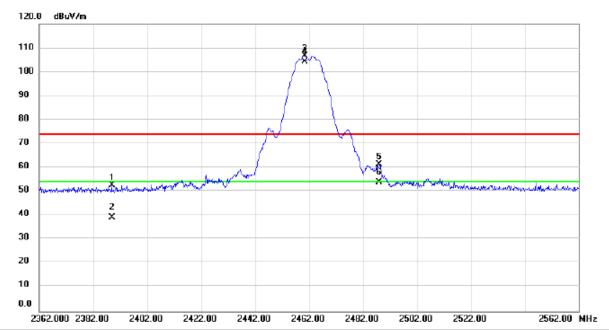

2397.00

(2) Margin Level = Measurement Value - Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/4
Test Frequency	2457MHz	Polarization	Vertical

No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2381.400	49.30	3.04	52.34	74.00	-21.66	peak			
2		2381.400	36.14	3.04	39.18	54.00	-14.82	AVG			
3	Χ	2458.400	103.75	3.16	106.91	74.00	32.91	peak			No Limit
4	*	2458.400	101.28	3.16	104.44	54.00	50.44	AVG			No Limit
5		2483.500	56.23	3.20	59.43	74.00	-14.57	peak			
6		2483.500	49.41	3.20	52.61	54.00	-1.39	AVG			

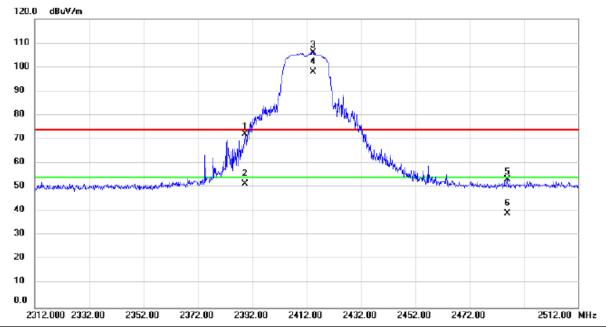
Page 35 of 88


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

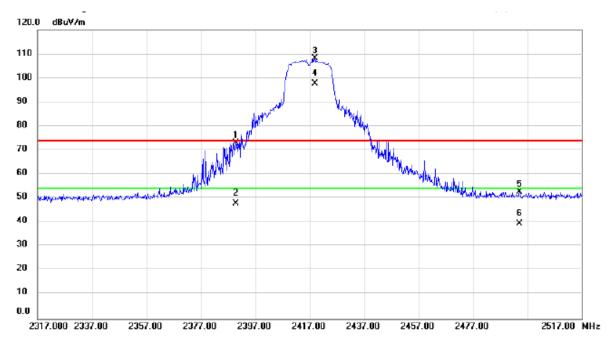
Test Mode	IEEE 802.11b	Test Date	2024/2/4
Test Frequency	2462MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2389.000	49.65	3.04	52.69	74.00	-21.31	peak			
2		2389.000	36.09	3.04	39.13	54.00	-14.87	AVG			
3	Х	2460.400	103.48	3.17	106.65	74.00	32.65	peak			No Limit
4	*	2460.400	101.10	3.17	104.27	54.00	50.27	AVG			No Limit
5		2488.000	57.98	3.22	61.20	74.00	-12.80	peak			
6		2488.000	50.48	3.22	53.70	54.00	-0.30	AVG			


REMARKS:

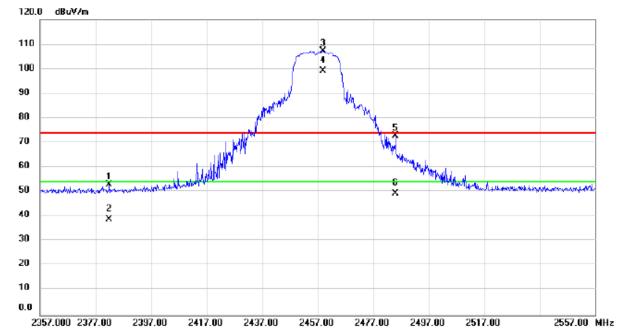
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/2/4
Test Frequency	2412MHz	Polarization	Vertical


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2389.400	69.06	3.04	72.10	74.00	-1.90	peak			
2		2389.400	48.28	3.04	51.32	54.00	-2.68	AVG			
3	Х	2414.400	103.04	3.09	106.13	74.00	32.13	peak			No Limit
4	*	2414.400	94.93	3.09	98.02	54.00	44.02	AVG			No Limit
5		2486.000	50.11	3.22	53.33	74.00	-20.67	peak			
6		2486.000	35.92	3.22	39.14	54.00	-14.86	AVG			

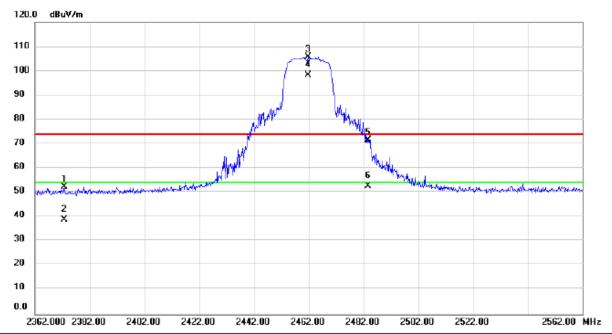
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/2/4
Test Frequency	2417MHz	Polarization	Vertical


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2390.000	69.88	3.04	72.92	74.00	-1.08	peak			
2		2390.000	44.67	3.04	47.71	54.00	-6.29	AVG			
3	Х	2419.000	105.00	3.10	108.10	74.00	34.10	peak			No Limit
4	*	2419.000	94.45	3.10	97.55	54.00	43.55	AVG			No Limit
5		2494.200	49.55	3.22	52.77	74.00	-21.23	peak			
6		2494.200	36.16	3.22	39.38	54.00	-14.62	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

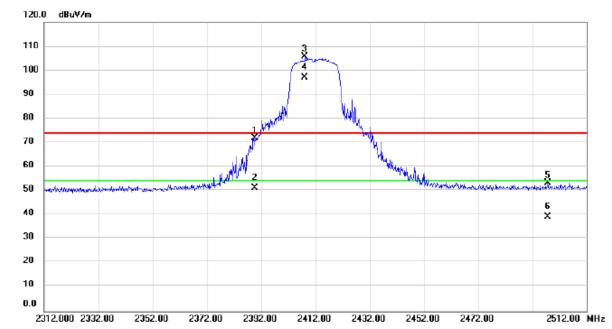
Test Mode	IEEE 802.11g	Test Date	2024/2/4
Test Frequency	2457MHz	Polarization	Vertical


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		2382.000	49.84	3.04	52.88	74.00	-21.12	peak			
2		2382.000	35.87	3.04	38.91	54.00	-15.09	AVG			
3	Х	2459.000	104.15	3.16	107.31	74.00	33.31	peak			No Limit
4	*	2459.000	96.04	3.16	99.20	54.00	45.20	AVG			No Limit
5		2485.200	69.43	3.22	72.65	74.00	-1.35	peak			
6		2485.200	46.09	3.22	49.31	54.00	-4.69	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

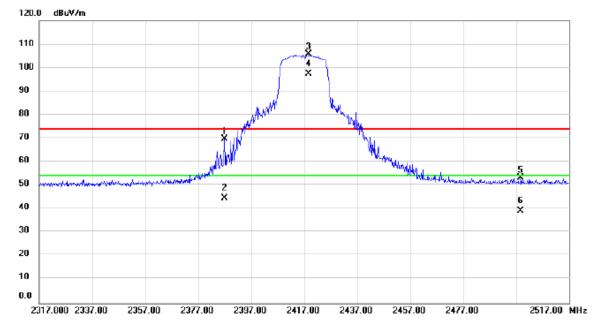
Test Mode	IEEE 802.11g	Test Date	2024/2/4
Test Frequency	2462MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2372.800	49.46	3.03	52.49	74.00	-21.51	peak			
2		2372.800	35.74	3.03	38.77	54.00	-15.23	AVG			
3	Х	2461.800	102.66	3.17	105.83	74.00	31.83	peak			No Limit
4	*	2461.800	94.95	3.17	98.12	54.00	44.12	AVG			No Limit
5		2483.800	68.42	3.20	71.62	74.00	-2.38	peak			
6		2483.800	49.50	3.20	52.70	54.00	-1.30	AVG			


Page 40 of 88

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

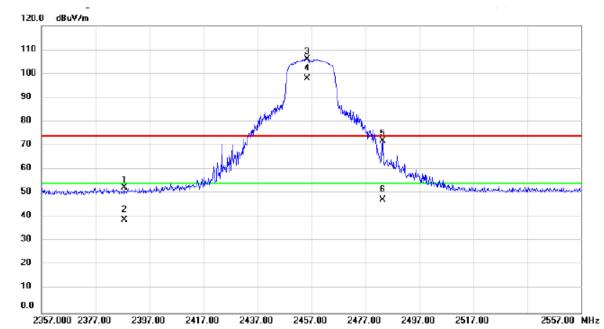
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2412MHz	Polarization	Vertical


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2389.800	68.91	3.04	71.95	74.00	-2.05	peak			
2		2389.800	47.98	3.04	51.02	54.00	-2.98	AVG			
3	Х	2408.200	102.81	3.08	105.89	74.00	31.89	peak			No Limit
4	*	2408.200	93.93	3.08	97.01	54.00	43.01	AVG			No Limit
5		2497.800	50.06	3.24	53.30	74.00	-20.70	peak			
6		2497.800	35.93	3.24	39.17	54.00	-14.83	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

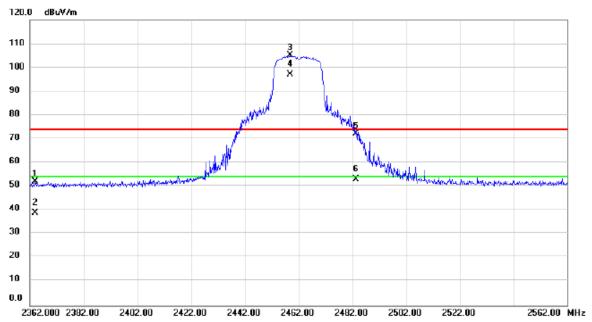
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2417MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2387.000	66.80	3.04	69.84	74.00	-4.16	peak			
2		2387.000	41.40	3.04	44.44	54.00	-9.56	AVG			
3	X	2418.800	102.60	3.10	105.70	74.00	31.70	peak			No Limit
4	*	2418.800	94.37	3.10	97.47	54.00	43.47	AVG			No Limit
5		2498.800	49.88	3.24	53.12	74.00	-20.88	peak			
6		2498.800	35.97	3.24	39.21	54.00	-14.79	AVG			


Page 42 of 88

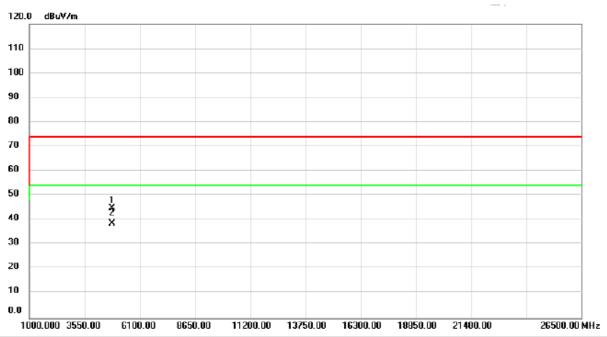
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2457MHz	Polarization	Vertical


No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2387.800	49.46	3.04	52.50	74.00	-21.50	peak			
2		2387.800	35.74	3.04	38.78	54.00	-15.22	AVG			
3	X	2455.400	102.92	3.17	106.09	74.00	32.09	peak			No Limit
4	*	2455.400	94.87	3.17	98.04	54.00	44.04	AVG			No Limit
5		2483.600	68.60	3.20	71.80	74.00	-2.20	peak			
6		2483.600	43.95	3.20	47.15	54.00	-6.85	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

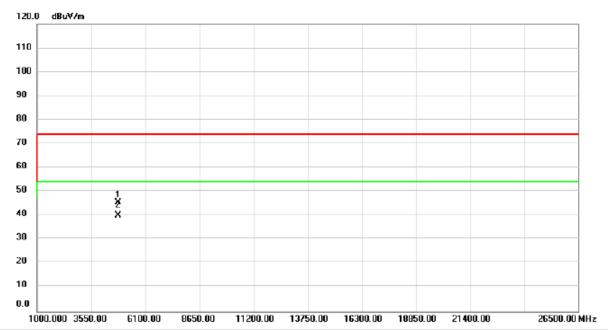
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2462MHz	Polarization	Vertical


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2364.000	48.92	3.00	51.92	74.00	-22.08	peak			
2		2364.000	35.73	3.00	38.73	54.00	-15.27	AVG			
3	Х	2459.000	101.89	3.16	105.05	74.00	31.05	peak			No Limit
4	*	2459.000	93.75	3.16	96.91	54.00	42.91	AVG			No Limit
5		2483.500	68.86	3.20	72.06	74.00	-1.94	peak			
6		2483.500	49.62	3.20	52.82	54.00	-1.18	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

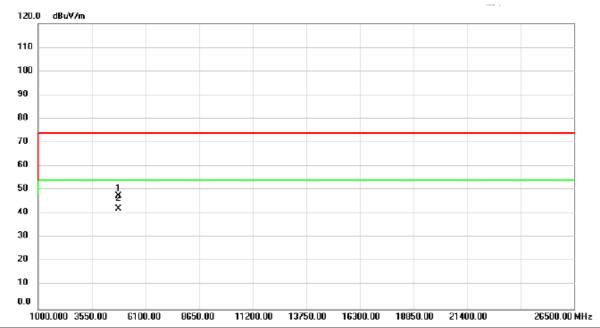
Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2412MHz	Polarization	Vertical

No.	Mk.	Freq.		Correct Factor	Measure- ment		Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	4	825.000	45.36	-0.63	44.73	74.00	-29.27	peak			
2	* 4	825.000	39.29	-0.63	38.66	54.00	-15.34	AVG			


Page 45 of 88

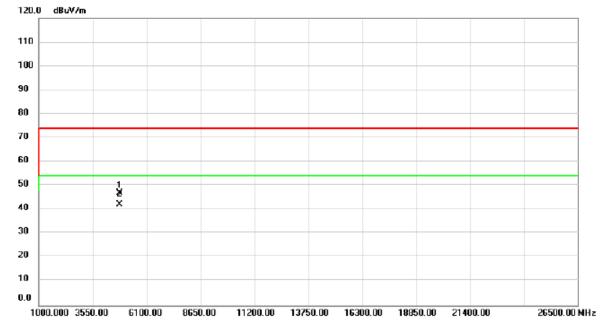
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2412MHz	Polarization	Horizontal


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	4	825.000	46.01	-0.63	45.38	74.00	-28.62	peak			
2	* 4	825.000	40.80	-0.63	40.17	54.00	-13.83	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2417MHz	Polarization	Vertical


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4825.000	48.28	-0.63	47.65	74.00	-26.35	peak			
2	*	4825.000	42.71	-0.63	42.08	54.00	-11.92	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2417MHz	Polarization	Horizontal

No. N	Λk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	48	25.000	47.60	-0.63	46.97	74.00	-27.03	peak			
2 *	48	25.000	42.80	-0.63	42.17	54.00	-11.83	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5	
Test Frequency	2437MHz	Polarization	Vertical	
120.0 dBuV/m				
110				
100				
90				
80				
70				
60				
50 1 8				
30				
20				
10				
0.0	0.00 000 00 41200 00 40	TO 00 10200 00 10000 00 01	200000	
1000.000 3550.00 610	0.00 8650.00 11200.00 13	75 0.00 16 300.00 1885 0.00 214	100.00 26500.00 MI	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∨	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	4	4876.000	47.90	-0.48	47.42	74.00	-26.58	peak			
2	*	4876.000	43.26	-0.48	42.78	54.00	-11.22	AVG			

Page 49 of 88

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2437MHz	Polarization	Horizontal


No.	Mk	. Freq.			Measure- ment		Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4876.000	48.87	-0.48	48.39	74.00	-25.61	peak			
2	*	4876.000	44.46	-0.48	43.98	54.00	-10.02	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2457MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4901.500	46.01	-0.41	45.60	74.00	-28.40	peak			
2	*	4901.500	39.83	-0.41	39.42	54.00	-14.58	AVG			

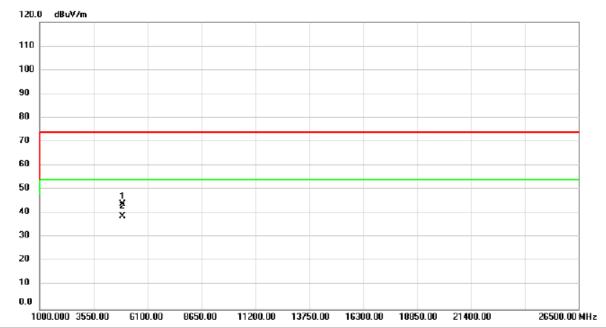
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2457MHz	Polarization	Horizontal

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4901.500	45.27	-0.41	44.86	74.00	-29.14	peak			
2	*	4901.500	39.74	-0.41	39.33	54.00	-14.67	AVG			

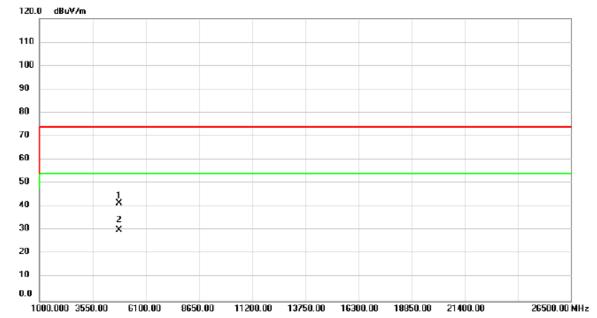
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5		
Test Frequency	2462MHz	Polarization	Vertical		
120.0 dBuV/m					
120.0 GBGY7III					
110					
100					
100					
90					
80					
00					


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	1927.000	45.62	-0.34	45.28	74.00	-28.72	peak			
2	* 4	1927.000	39.12	-0.34	38.78	54.00	-15.22	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11b	Test Date	2024/2/5
Test Frequency	2462MHz	Polarization	Horizontal


No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4927.000	44.36	-0.34	44.02	74.00	-29.98	peak			
2	*	4927.000	39.27	-0.34	38.93	54.00	-15.07	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/2/5		
Test Frequency	2412MHz	Polarization	Vertical		


No.	Mi	k. Freq.			Measure- ment		Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4824.000	42.29	-0.64	41.65	74.00	-32.35	peak			
2	*	4824.000	30.87	-0.64	30.23	54.00	-23.77	AVG			

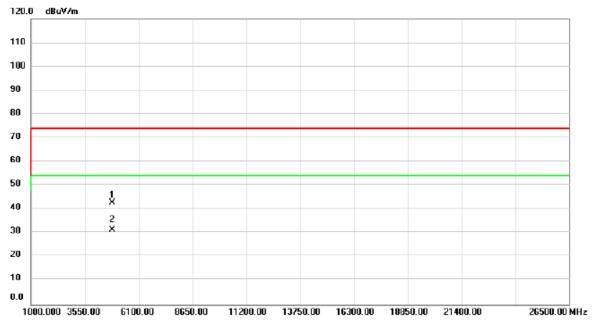
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2412MHz	Polarization	Horizontal

No.	Mk	. Freq.			Measure- ment		Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4824.000	41.87	-0.64	41.23	74.00	-32.77	peak			
2	*	4824.000	30.43	-0.64	29.79	54.00	-24.21	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

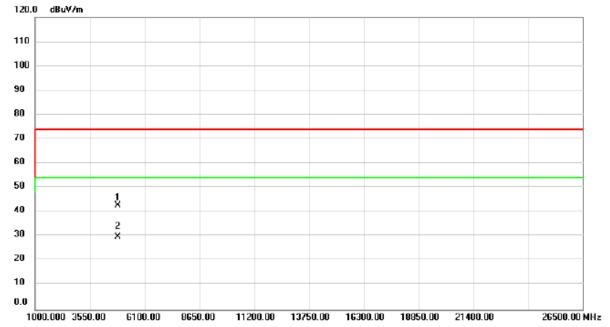
Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2417MHz	Polarization	Vertical


No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	48	825.000	43.73	-0.63	43.10	74.00	-30.90	peak			
2	* 48	825.000	31.88	-0.63	31.25	54.00	-22.75	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2417MHz	Polarization	Horizontal

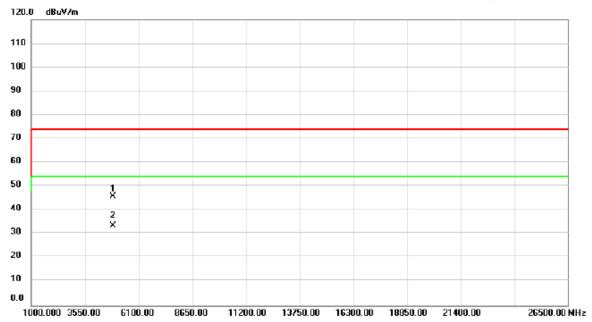
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
	MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4850.500	43.44	-0.56	42.88	74.00	-31.12	peak			
2 *	4850.500	31.80	-0.56	31.24	54.00	-22.76	AVG			


Page 58 of 88

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

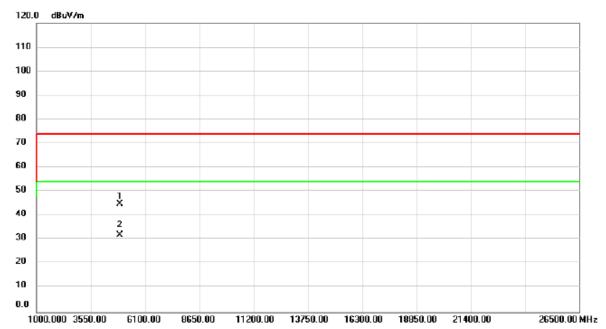
Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2437MHz	Polarization	Vertical

No.	Mk.	Freq.			Measure- ment		Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	1874.000	43.34	-0.49	42.85	74.00	-31.15	peak			
2	* 4	1874.000	30.28	-0.49	29.79	54.00	-24.21	AVG			


Page 59 of 88

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2437MHz	Polarization	Horizontal


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4876.000	46.24	-0.48	45.76	74.00	-28.24	peak			
2	*	4876.000	33.83	-0.48	33.35	54.00	-20.65	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2457MHz	Polarization	Vertical

No. N	Лk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	49	914.000	45.12	-0.37	44.75	74.00	-29.25	peak			
2 *	49	914.000	32.22	-0.37	31.85	54.00	-22.15	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode			302.11g			est Date			2024/2/5	
Test Frequency		2457	MHz		Po	olarizatio	1	<u> </u>	Horizontal	
120.0 dBuY/m										
110										
100										
90										
80										
70										
60										
50	1 X									
40										
30	2 X									
20										
0.0										
1000.000 3550.00	6100.00	8650.00	11200.0	0 1375	0.00 1630	00.00 188	50.00 2140	00.00	26500.00 MH	
		orrect M actor	leasure-	Limit	Margin			Table legree		

2 *

MHz

4914.000

4914.000

(1) Measurement Value = Reading Level + Correct Factor.

dΒ

-0.37

-0.37

dBuV/m

42.86

30.88

dBuV/m

dB

74.00 -31.14

54.00 -23.12

Detector

peak

AVG

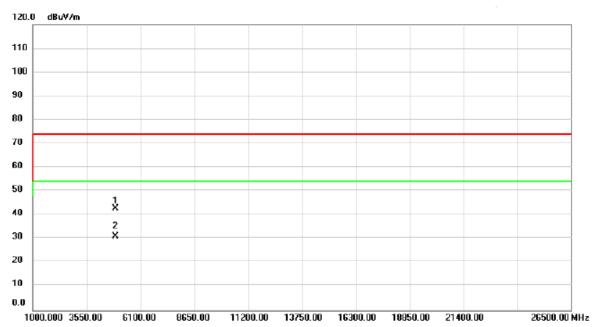
cm

degree

Comment

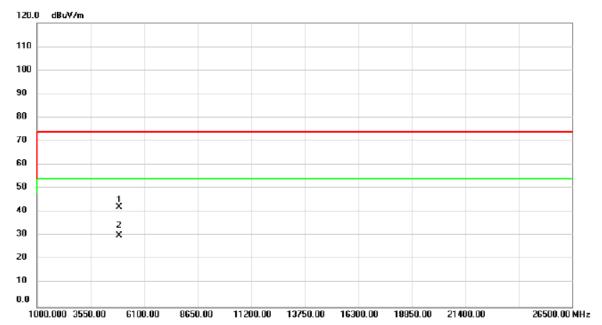
(2) Margin Level = Measurement Value - Limit Value.

dBuV


43.23

31.25

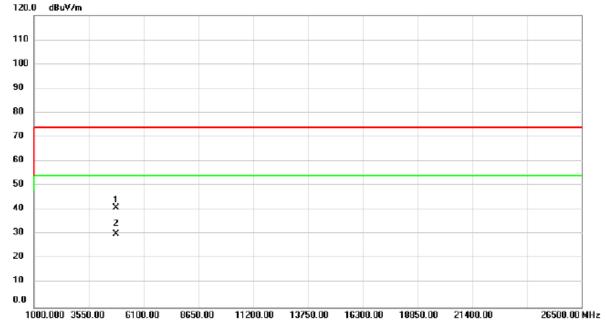
Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2462MHz	Polarization	Vertical


No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
	MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4924.000	43.12	-0.36	42.76	74.00	-31.24	peak			
2 *	4924.000	31.41	-0.36	31.05	54.00	-22.95	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

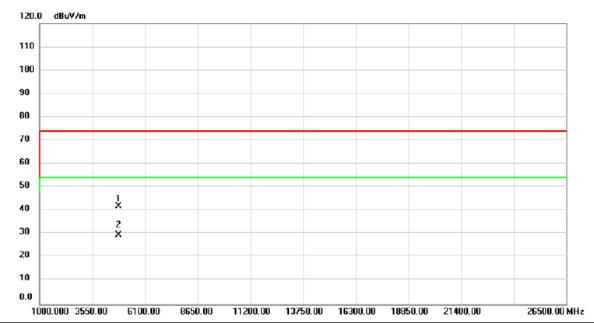
Test Mode	IEEE 802.11g	Test Date	2024/2/5
Test Frequency	2462MHz	Polarization	Horizontal

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4924.000	42.58	-0.36	42.22	74.00	-31.78	peak			
2	*	4924.000	30.58	-0.36	30.22	54.00	-23.78	AVG			


Page 64 of 88

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

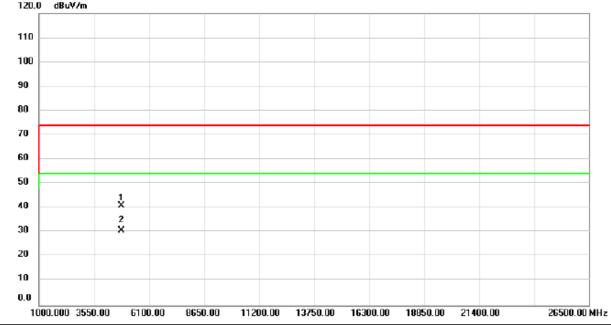
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2412MHz	Polarization	Vertical


No. M	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	48	824.000	41.71	-0.64	41.07	74.00	-32.93	peak			
2 '	48	824.000	30.75	-0.64	30.11	54.00	-23.89	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

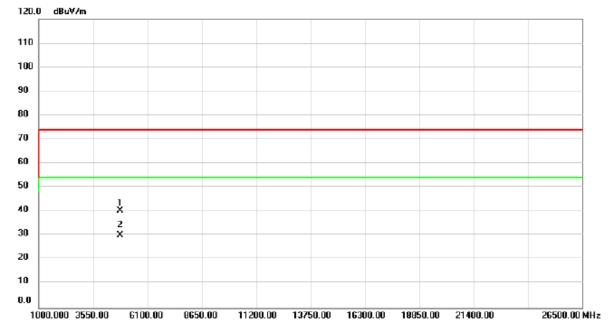
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4	
Test Frequency	2412MHz	Polarization	Horizontal	

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4824.000	42.60	-0.64	41.96	74.00	-32.04	peak			
2	*	4824.000	30.14	-0.64	29.50	54.00	-24.50	AVG			


Page 66 of 88

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2417MHz	Polarization	Vertical
120.0 dBuY/m			


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4834.000	41.50	-0.60	40.90	74.00	-33.10	peak			
2	*	4834.000	31.28	-0.60	30.68	54.00	-23.32	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

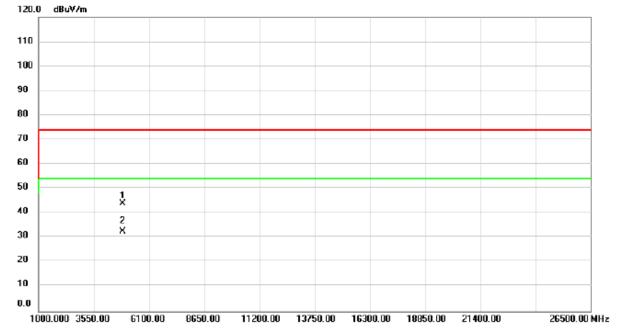
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2417MHz	Polarization	Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	1834.000	41.00	-0.60	40.40	74.00	-33.60	peak			
2	* 4	1834.000	30.76	-0.60	30.16	54.00	-23.84	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

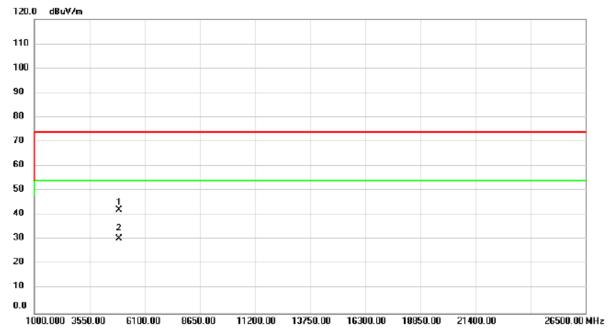
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4		
Test Frequency	2437MHz	Polarization	Vertical		
120.0 dBuV/m					
110					
100					
90					
80					
70					
60					
50 1					
40 2 X					
30					
20					
10					
0.0 1000.000 3550.00 G	100.00 8650.00 11200.00	13750.00 16300.00 18950.00	21400.00 26500.00 MI		

	No.	M	c. Freq.	Reading Level		Measure- ment	Limit	Margin		Antenna Height		
-			MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
	1		4876.000	46.31	-0.48	45.83	74.00	-28.17	peak			
	2	*	4876.000	34.17	-0.48	33.69	54.00	-20.31	AVG			


Page 69 of 88

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2437MHz	Polarization	Horizontal


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4876.000	44.48	-0.48	44.00	74.00	-30.00	peak			
2	*	4876.000	32.95	-0.48	32.47	54.00	-21.53	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

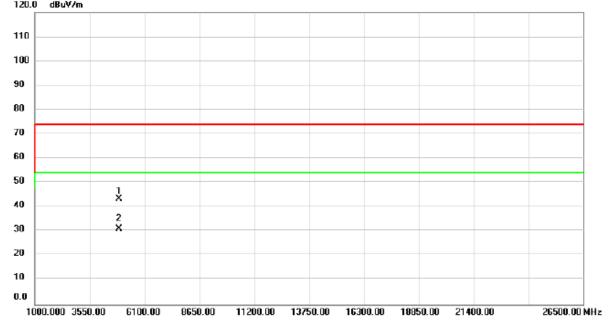
Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2457MHz	Polarization	Vertical

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	4914.000	42.55	-0.37	42.18	74.00	-31.82	peak			
2	* 4	4914.000	30.79	-0.37	30.42	54.00	-23.58	AVG			


Page 71 of 88

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2457MHz	Polarization	Horizontal


No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4914.000	43.45	-0.37	43.08	74.00	-30.92	peak			
2	*	4914.000	30.62	-0.37	30.25	54.00	-23.75	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11n(HT20)	Test Date	2024/2/4
Test Frequency	2462MHz	Polarization	Vertical
120.0 dBuV/m			

No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4927.000	43.56	-0.34	43.22	74.00	-30.78	peak			
2	*	4927.000	31.41	-0.34	31.07	54.00	-22.93	AVG			

Page 73 of 88

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

T	est Mode		IEEE 8	302.11n(l	HT20)		Test Date		2024/2/4
Tes	t Frequer	ncy	2	2462MHz		F	Polarizatio	n	Horizontal
120.0	dBuV/m								
110									
100									
90									
80									
70									
60									
50									
40		X X							
30		2 X							
20									
10									
0.0	00.000 3550	.00 6100	.00 9650.	00 1120	0.00 127	50.00 1630	00.00 1895	0.00 21400.00	26500.00 MHz
10	00.000 3550					au.uu 1630		ntenna Table	
Mk.	Freq.	Reading Level	Correct Factor	Measure ment	e- Limit	Margin		eight Degre	

74.00 -32.17

-23.50

54.00

peak

AVG

REMARKS:

1

2

4924.000

4924.000

(1) Measurement Value = Reading Level + Correct Factor.

-0.36

-0.36

41.83

30.50

(2) Margin Level = Measurement Value - Limit Value.

42.19

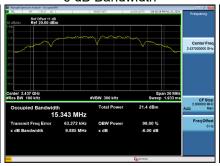
30.86

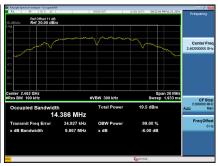
APPENDIX D BANDWIDTH

Project No.: 2312G166 Report Version: R00

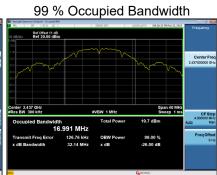
eTest certification Laboratory Inc.

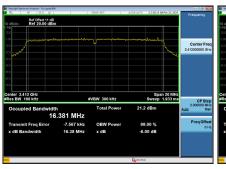
Page 75 of 88

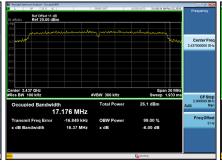


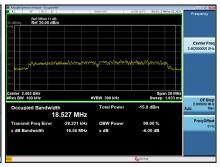

Test Mode	IEEE 802.11b
1001111040	1222 002.110

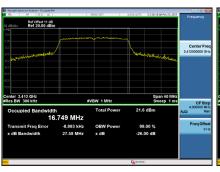
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
01	2412	9.843	13.743	0.5	Complies
06	2437	9.885	16.990	0.5	Complies
11	2462	9.867	14.723	0.5	Complies

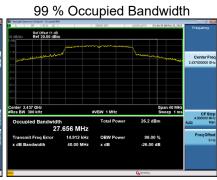


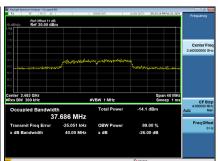


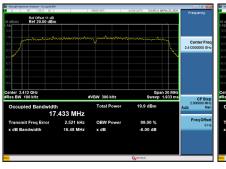


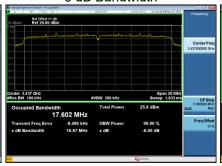

-	JEEE 000 44	
lTest Mode	IEEE 802.11g	
100t Wode	IILLE OUZ. 119	

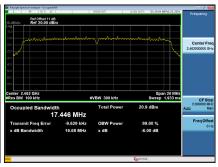

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
01	2412	16.381	16.747	0.5	Complies
06	2437	16.365	27.706	0.5	Complies
11	2462	16.561	37.686	0.5	Complies


CH01 CH06 CH11 6 dB Bandwidth

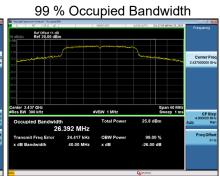


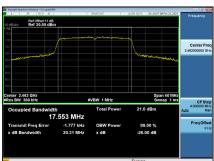





Test M	1ode	IEEE 802.11n (H	IT20)
I COL IV	louc		1120)


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
01	2412	16.475	17.539	0.5	Complies
06	2437	16.965	26.390	0.5	Complies
11	2462	16.675	17.555	0.5	Complies


CH01 CH06 CH11 6 dB Bandwidth



Page 78 of 88

APPENDIX E MAXIMUM OUTPUT POWER

Test Mode	IEEE 802.11b_ Ant. 1	Tested Date	2024/2/22
-----------	----------------------	-------------	-----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.07	0.00	21.07	30.00	1.0000	Complies
06	2437	22.58	0.00	22.58	30.00	1.0000	Complies
11	2462	21.58	0.00	21.58	30.00	1.0000	Complies

Test Mode IEEE 802.11b Ant. 2	ested Date	2024/2/22
-------------------------------	------------	-----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	20.63	0.00	20.63	30.00	1.0000	Complies
06	2437	22.46	0.00	22.46	30.00	1.0000	Complies
11	2462	20.93	0.00	20.93	30.00	1.0000	Complies

Test Mode	IEEE 802.11g_ Ant. 1	Tested Date	2024/2/22
-----------	----------------------	-------------	-----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.84	0.00	21.84	30.00	1.0000	Complies
06	2437	25.82	0.00	25.82	30.00	1.0000	Complies
11	2462	20.59	0.00	20.59	30.00	1.0000	Complies

Test Mode	IEEE 802.11g_ Ant. 2	Tested Date	2024/2/22
-----------	----------------------	-------------	-----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.57	0.00	21.57	30.00	1.0000	Complies
06	2437	25.87	0.00	25.87	30.00	1.0000	Complies
11	2462	21.19	0.00	21.19	30.00	1.0000	Complies

Test Mode IEEE 802.11n (HT20) _ Ant. 1 Tested Date 2024/2/22	Tested Date 2024/2/22
--	-----------------------

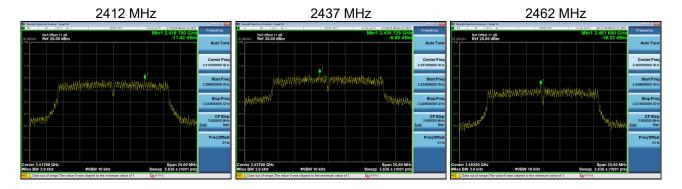
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	20.77	0.00	20.77	30.00	1.0000	Complies
06	2437	25.11	0.00	25.11	30.00	1.0000	Complies
11	2462	20.74	0.00	20.74	30.00	1.0000	Complies

Test Mode	IEEE 802.11n (HT20) _ Ant. 2	Tested Date	2024/2/22
-----------	------------------------------	-------------	-----------

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	21.15	0.00	21.15	30.00	1.0000	Complies
06	2437	24.26	0.00	24.26	30.00	1.0000	Complies
11	2462	20.84	0.00	20.84	30.00	1.0000	Complies

Page 81 of 88

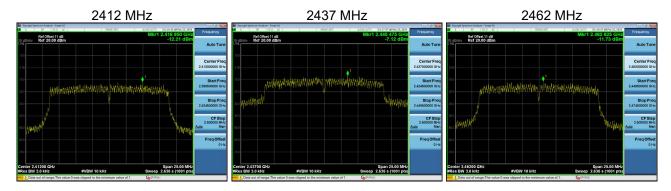

APPENDIX F POWER SPECTRAL DENSITY


	Test Mode	IEEE 802.11b	Ant 2
ı	rest ivioue		_HIII. Z

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-10.25	8.00	Pass
2437	-8.19	8.00	Pass
2462	-10.05	8.00	Pass

Test Mode	IEEE 802.11g Ant. 2
	-===

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-11.42	8.00	Pass
2437	-6.68	8.00	Pass
2462	-16.22	8.00	Pass



	Test Mode	IEEE 802.11n ((HT20)) Ant 2
ı	163t Mode		11120	<i>)</i> ////////////////////////////////////

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-12.21	8.00	Pass
2437	-7.12	8.00	Pass
2462	-11.73	8.00	Pass

APPENDIX G ANTENNA CONDUCTED SPURIOUS EMISSIONS