12. Radio Frequency Exposure #### 12.1 Applicable Standards The measurements shown in this test report were made in accordance with the procedures given in FCC Part 2 (Section 2.1091) Report No.: TEFQ2003008 ### 12.2 EUT Specification | Frequency band (Operating) | □ WLAN: 2412MHz ~ 2462MHz □ WLAN: 5150MHz ~ 5250MHz □ WLAN: 5250MHz ~ 5350MHz □ WLAN: 5470MHz ~ 5725MHz □ WLAN: 5725MHz ~ 5850MHz ☑ Bluetooth: 2402MHz ~ 2480MHz | |---|---| | Device category | ☐ Portable (<20cm separation)☑ Mobile (>20cm separation) | | Exposure classification | ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) | | Antenna diversity | Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity | | Evaluation applied | | | Remark: | | | <u>antenna gain</u> .)
2. DTS device is not s
compliance. | ducted output power is 8.89dBm (7.745mW) at 2480MHz (with 0dBi subject to routine RF evaluation; MPE estimate is used to justify the | | | location transmitters, no SAR consideration applied. The maximum 0 mW/cm² even if the calculation indicates that the power density | Cerpass Technology Corp. would be larger. T-FD-506-0 Ver 1.2 Page No. FCC ID. : SWX-UXGPRO : 40 of 42 Issued Date: Mar. 17, 2020 #### 12.3 Test Results No non-compliance noted. #### 12.4 Calculation Given $$E = \frac{\sqrt{30 \times P \times G}}{d}$$ & $S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain *d* = *Distance in meters* S = Power density in milliwatts / square centimeter Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields: $$S = \frac{30 \times P \times G}{3770d^2}$$ Changing to units of mW and cm, using: $$P(mW) = P(W) / 1000$$ and $d(cm) = d(m) / 100$ Yields $$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$ Equation 1 Where d = Distance in cm P = Power in mW G = Numeric antenna gain $S = Power density in mW / cm^2$ Issued Date: Mar. 17, 2020 Report No.: TEFQ2003008 Page No. : 41 of 42 FCC ID. : SWX-UXGPRO # CERPASS TECHNOLOGY CORP. ## 12.5 Maximum Permissible Exposure | Channel
Frequency
(MHz) | Max. Conducted output power (dBm) | Max. Tune up
power
(dBm) | Antenna
Gain
(dBi) | Distance
(cm) | Power Density
(mW/cm²) | Limit
(mW/cm²) | |-------------------------------|-----------------------------------|--------------------------------|--------------------------|------------------|---------------------------|-------------------| | 2402-2480 | 8.89 | 10.89 | 0 | 20 | 0.002 | 1 | Cerpass Technology Corp. T-FD-506-0 Ver 1.2 Issued Date : Mar. 17, 2020 Page No. : 42 of 42 FCC ID. : SWX-UXGPRO Report No.: TEFQ2003008