

FCC RF Test Report

APPLICANT	:	INMUSIC BRANDS INC
EQUIPMENT	:	6" Active Studio Monitor w DSP, BT, App
		8" Active Studio Monitor w DSP, BT, App
BRAND NAME	:	M-Audio
MODEL NAME	:	MA51, MA51***** , FORTY SIXTY, Forty Sixty,
		FORTY SIXTY********, Forty Sixty********.
		("*" can be "0-9", "A-Z", "a-z", blank, "-", "+" or
		any character, symbol, alphanumeric.)
		MA52, MA52*****, FORTY EIGHTY, Forty Eighty,
		FORTY EIGHTY********, Forty Eighty*********.
		("*" can be "0-9", "A-Z", "a-z", blank, "-", "+" or
		any character, symbol, alphanumeric.)
FCC ID	:	Y4O-MA52
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter
TEST DATE(S)	:	Jan. 26, 2024 ~ Feb. 05, 2024

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

RE	VISION	N HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	.6
	1.5	Modification of EUT	6
	1.6	Testing Location	.6
	1.7	Test Software	.7
	1.8	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	20
	3.4	20dB and 99% Bandwidth Measurement	22
	3.5	Output Power Measurement	33
	3.6	Conducted Band Edges Measurement	34
	3.7	Conducted Spurious Emission Measurement	41
	3.8	Radiated Band Edges and Spurious Emission Measurement	51
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	57
4	LIST	OF MEASURING EQUIPMENT	58
5	MEAS	SUREMENT UNCERTAINTY	59
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION	
AP	PENDI	X D. DUTY CYCLE PLOTS	
AP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3D1820A	Rev. 01	Initial issue of report	May 15, 2024

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1) Peak Output Power		≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	3.7 15.247(d) Conducted Spurious Emission		≤ 20dBc	Pass	-
3.8 15.247(d) Radia		Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 7.94 dB at 4804.00 MHz
3.9	3.9 15.207 AC Conducted Emission		15.207(a)	Pass	Under limit 6.65 dB at 0.41 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

INMUSIC BRANDS INC

200 Scenic View Drive, Suite 201, Cumberland, Rhode Island 02864, United States

1.2 Manufacturer

INMUSIC BRANDS INC

200 Scenic View Drive, Suite 201, Cumberland, Rhode Island 02864, United States

1.3 Product Feature of Equipment Under Test

	Product Feature					
Equipment	6" Active Studio Monitor w DSP, BT, App 8" Active Studio Monitor w DSP, BT, App					
Brand Name	M-Audio					
Model Name	MA51, MA51*****, FORTY SIXTY, Forty Sixty, FORTY SIXTY********, Forty Sixty*******. ("*" can be "0-9", "A-Z", "a-z", blank, "-", "+" or any character, symbol, alphanumeric.) MA52, MA52*****, FORTY EIGHTY, Forty Eighty, FORTY EIGHTY********, Forty Eighty********. ("*" can be "0-9", "A-Z", "a-z", blank, "-", "+" or any character, symbol, alphanumeric.)					
FCC ID	Y4O-MA52					
SN Code	Conducted: A42308263400001 for sample 1 Conduction: A42308263400001 for Sample 1 A42308263300001 for sample 2 Radiation: A42308263400001 for Sample 1 A42308263300001 for sample 2					
HW Version	N/A					
SW Version	N/A					
EUT Stage	Identical Prototype					

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two samples under test: sample 1 (MA52) and sample2 (MA51) with different size and some of parts. According to the difference, we choose sample 1 to perform full test and sample 2 to verify the worst case.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 5.96 dBm (0.0039 W) Bluetooth EDR (2Mbps) : 5.79 dBm (0.0038 W) Bluetooth EDR (3Mbps) : 5.65 dBm (0.0037 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.907MHz Bluetooth EDR (2Mbps) : 1.183MHz Bluetooth EDR (3Mbps) : 1.177MHz			
Antenna Type / Gain	FPC Antenna type with gain 2.4 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)						
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.				
	CO01-SZ TH01-SZ	CN1256	421272				
Test Firm	Sporton International Inc. (Shenzhen)						
	Province 518103 People's Republic of China						
Test Site Location							
Test Site Location	Province 518103 People'						

1.7 Test Software

lte	em Site		Manufacturer	Name	Version
	1.	03CH01-SZ	AUDIX	E3	6.2009-8-24
2	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

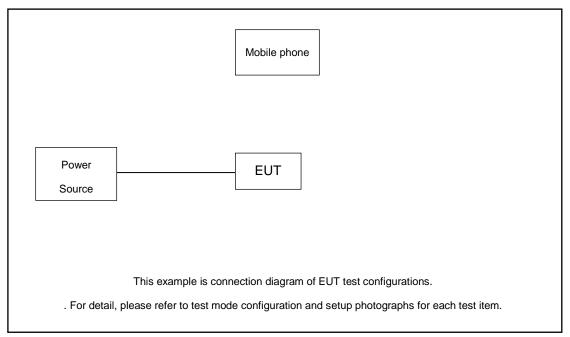
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

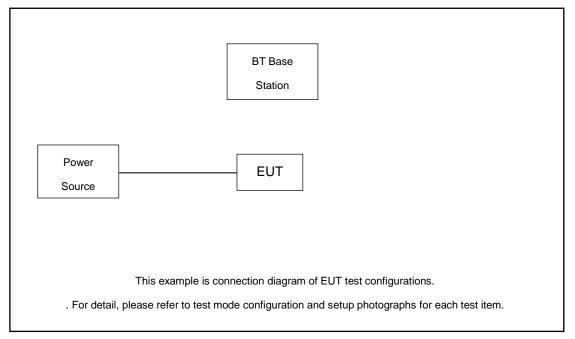
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

Summary table of Test Cases								
	Data Rate / Modulation							
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps					
	GFSK	π/4-DQPSK	8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
		Bluetooth BR 1Mbps GFSK						
Radiated	Mode 1: CH00_2402 MHz							
Test Cases	Mode 2: CH39_2441 MHz							
		Mode 3: CH78_2480 MHz						
AC	Mode 1 :BT Link with Mobil	e Phone(Play music) + Power	Cable 4 for Sample 1					
Emission	Conducted Mode 2 : BT Link with Mobile Phone(Play music) + Power Cable 4 for Sample 2 Emission Emission Emission Emission							
Remark:	Remark:							
1. For radiate	d test cases, the worst mode	data rate 1Mbps was reported	only, because this data rate					
	has the highest RF output power at preliminary tests, and no other significantly frequencies found in							

The following summary table is showing all test modes to demonstrate in compliance with the standard.


conducted spurious emission.

- 2. For Radiated Test Cases, The tests were performed with power cable 5.
- 3. The worst case of conducted emission is mode 1; only the test data of it was reported.



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Mobile phone	Huawei	MATA9	QISEVA-L09	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 2.30 dB and 10dB attenuator.

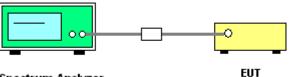
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 2.30 + 10 = 12.30 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

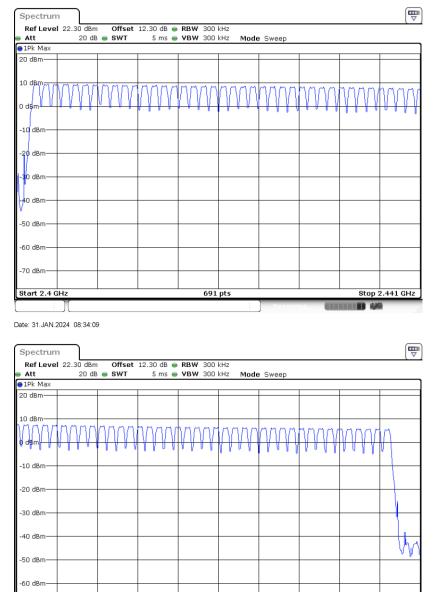

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

691 pts

Number of Hopping Channel Plot on Channel 00 - 78

Date: 31.JAN.2024 08:34:57

Start 2.441 GHz

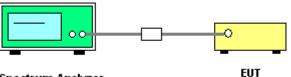
-70 dBm

Stop 2.4835 GHz

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

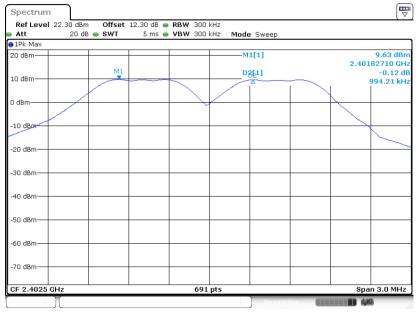
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

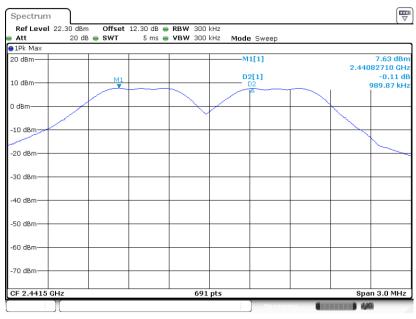
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

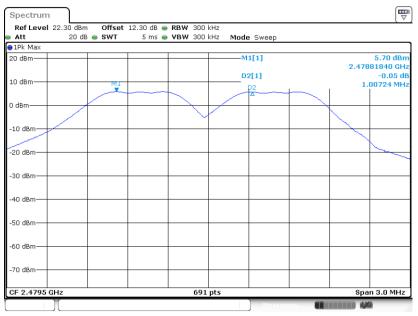
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

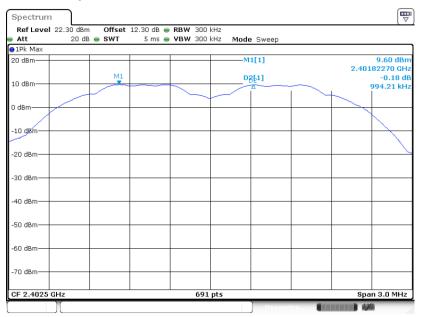

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 31.JAN.2024 08:30:54

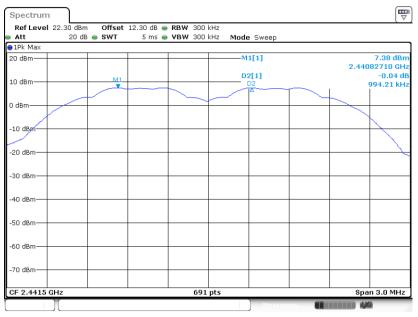
Channel Separation Plot on Channel 39 - 40

Date: 31.JAN.2024 09:00:45



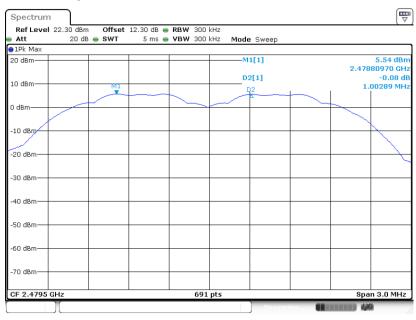
Channel Separation Plot on Channel 77 - 78

Date: 31.JAN.2024 08:52:03


<2Mbps>

Channel Separation Plot on Channel 00 - 01

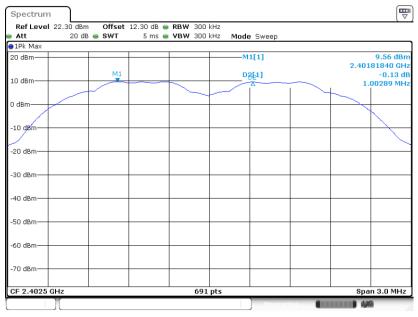
Date: 31.JAN.2024 09:22:55



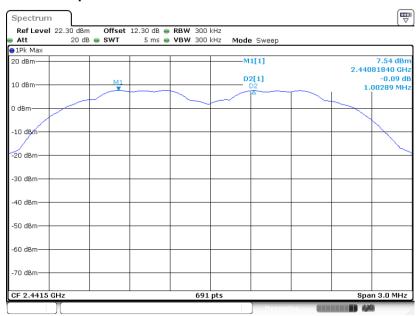
Channel Separation Plot on Channel 39 - 40

Date: 31.JAN.2024 09:28:12

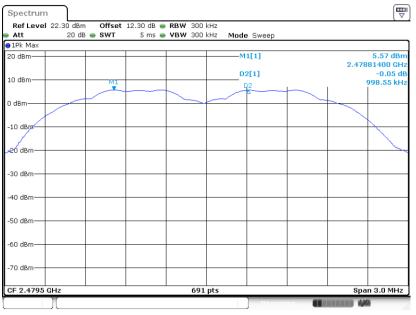
Channel Separation Plot on Channel 77 - 78



Date: 31.JAN.2024 09:30:29


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 31.JAN.2024 09:41:28

Channel Separation Plot on Channel 39 - 40

Date: 31.JAN.2024 09:45:10

Channel Separation Plot on Channel 77 - 78

Date: 31.JAN.2024 09:50:30

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

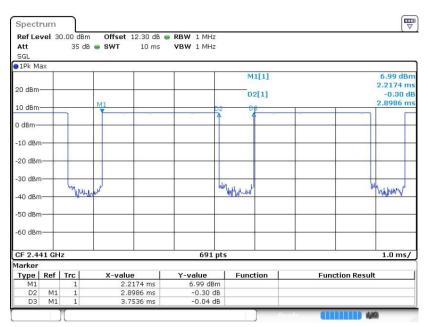
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

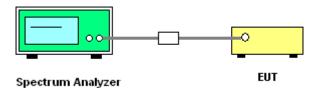
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

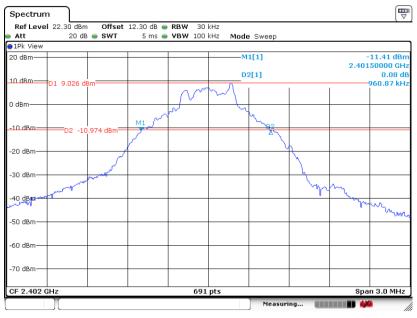

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak; Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

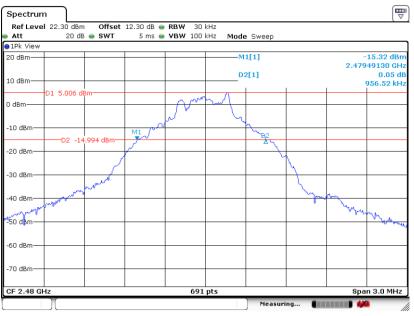
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

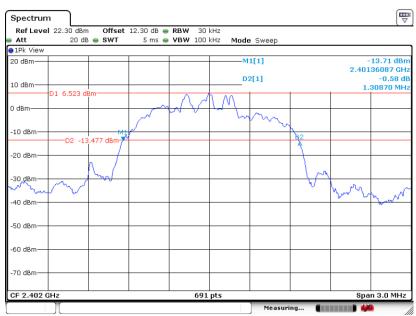
<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 31.JAN.2024 08:25:11

20 dB Bandwidth Plot on Channel 39

Date: 31.JAN.2024 08:56:32



20 dB Bandwidth Plot on Channel 78

Date: 31.JAN.2024 08:54:14

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 31.JAN.2024 09:20:37

20 dB Bandwidth Plot on Channel 39

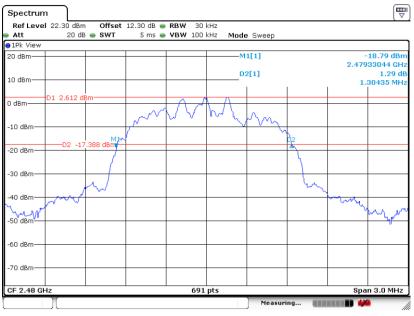
Date: 31.JAN.2024 09:24:08

20 dB Bandwidth Plot on Channel 78

Date: 31.JAN.2024 09:33:22

<3Mbps>

20 dB Bandwidth Plot on Channel 00

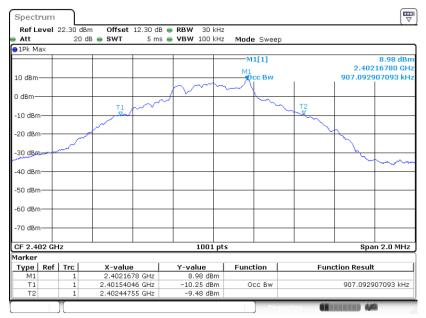

Date: 31.JAN.2024 09:39:27

20 dB Bandwidth Plot on Channel 39

Date: 31.JAN.2024 09:42:14

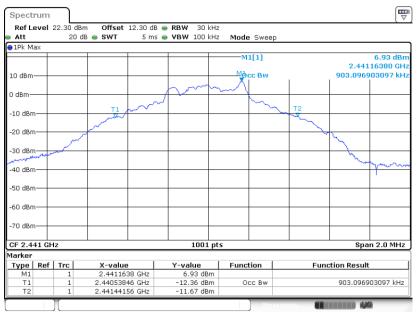
20 dB Bandwidth Plot on Channel 78

Date: 31.JAN.2024 09:46:54



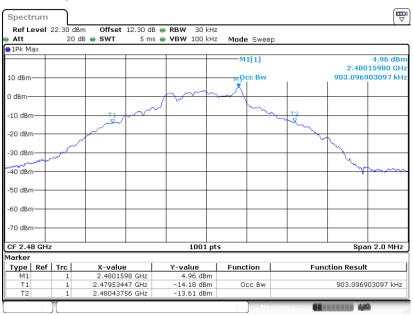
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

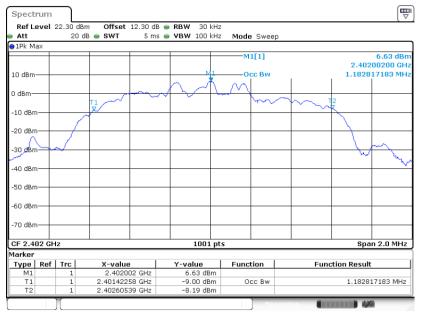
Date: 31.JAN.2024 08:21:58



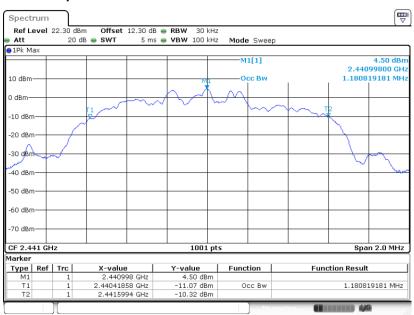
99% Occupied Bandwidth Plot on Channel 39

Date: 31.JAN.2024 08:56:18

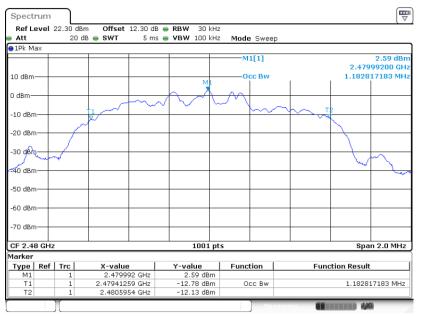
99% Occupied Bandwidth Plot on Channel 78



Date: 31.JAN.2024 08:52:37

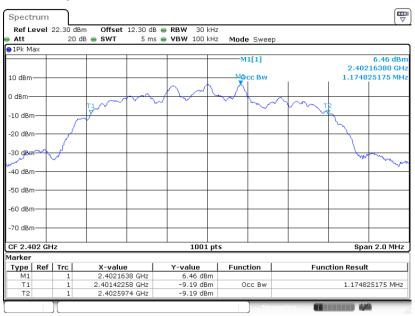

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 31.JAN.2024 09:19:12

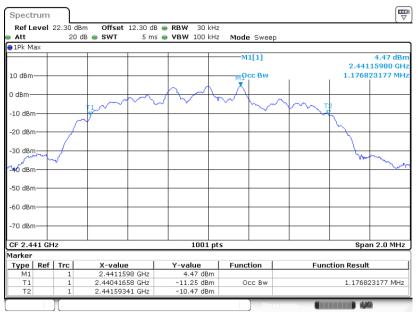
99% Occupied Bandwidth Plot on Channel 39

Date: 31.JAN.2024 09:23:55



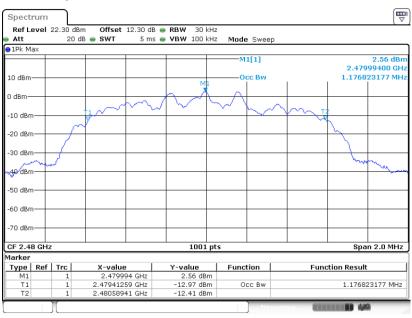
99% Occupied Bandwidth Plot on Channel 78

Date: 31.JAN.2024 09:32:17


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 31.JAN.2024 09:38:48



99% Occupied Bandwidth Plot on Channel 39

Date: 31.JAN.2024 09:42:03

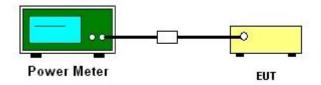
Date: 31.JAN.2024 09:45:56

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

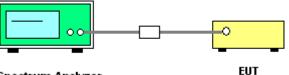
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

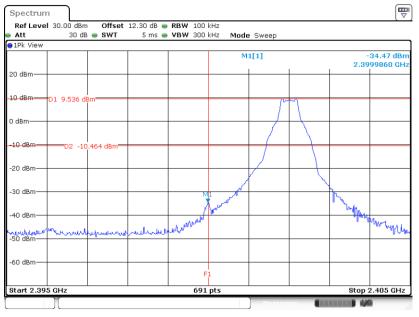

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

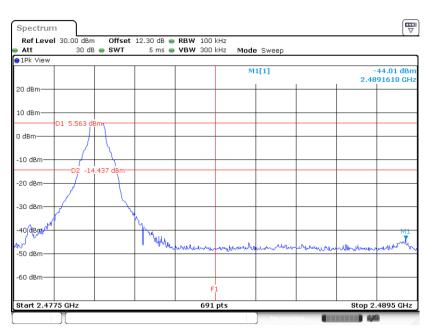
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

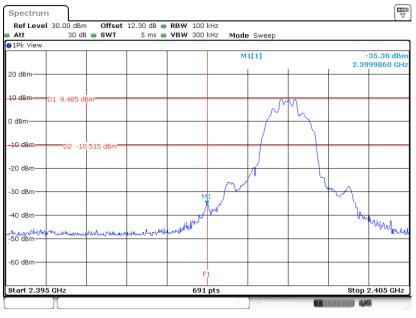
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

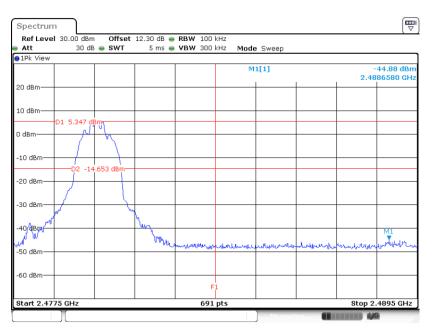
Low Band Edge Plot on Channel 00

Date: 31.JAN.2024 08:28:39

High Band Edge Plot on Channel 78



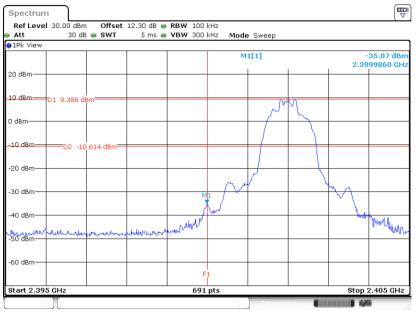
Date: 31.JAN.2024 08:53:55


<2Mbps>

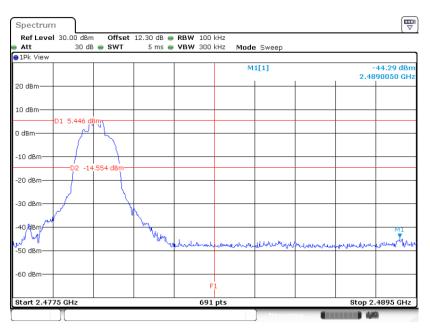
Low Band Edge Plot on Channel 00

Date: 31.JAN.2024 09:20:19

High Band Edge Plot on Channel 78



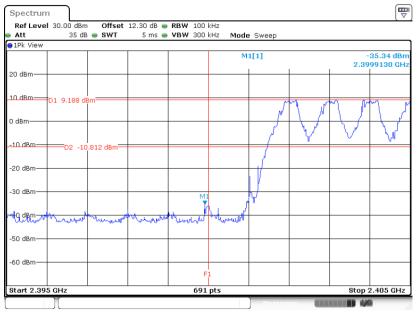
Date: 31.JAN.2024 09:33:11


<3Mbps>

Low Band Edge Plot on Channel 00

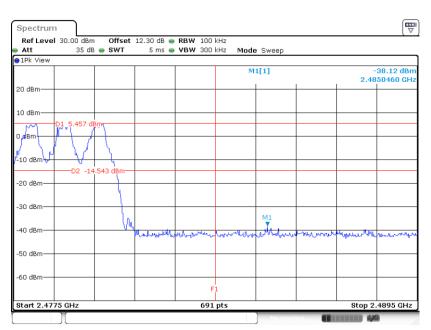
Date: 31.JAN.2024 09:39:16

High Band Edge Plot on Channel 78



Date: 31.JAN.2024 09:46:42

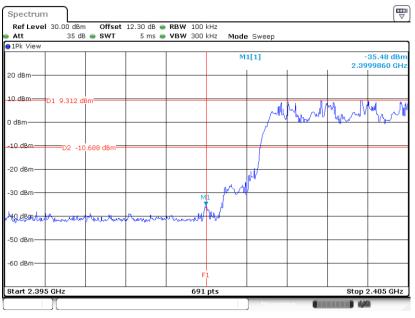
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

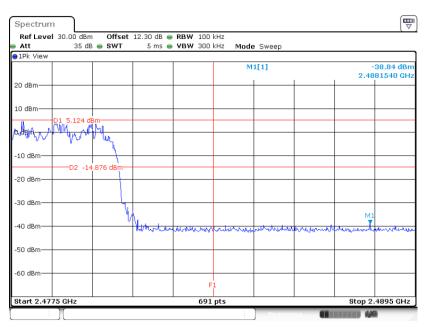
Hopping Mode Low Band Edge Plot

Date: 31.JAN.2024 08:42:03

Hopping Mode High Band Edge Plot



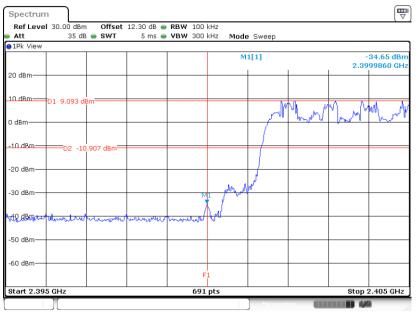
Date: 31.JAN.2024 08:44:18


<2Mbps>

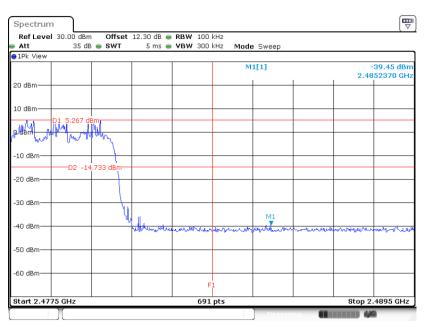
Hopping Mode Low Band Edge Plot

Date: 31.JAN.2024 09:05:34

Hopping Mode High Band Edge Plot



Date: 31.JAN.2024 09:07:34


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 31.JAN.2024 09:36:47

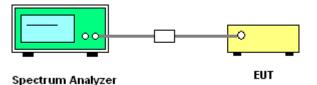
Hopping Mode High Band Edge Plot

Date: 31.JAN.2024 09:38:11

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

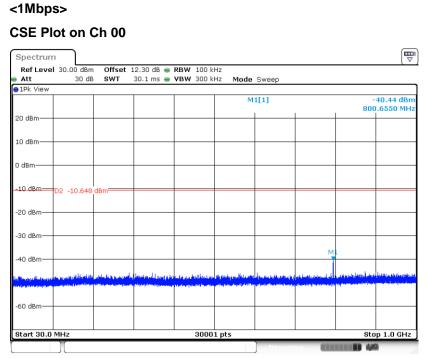
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

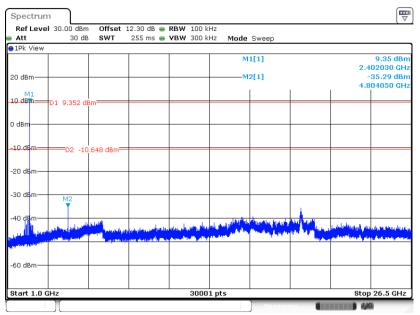
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: Y4O-MA52

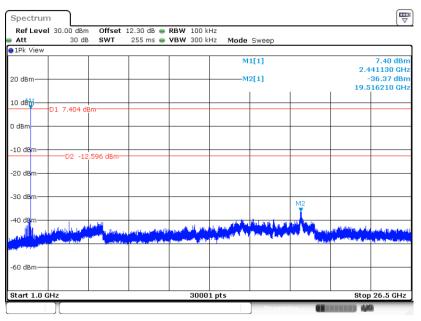


3.7.5 Test Result of Conducted Spurious Emission

Date: 31.JAN.2024 08:29:38

CSE Plot on Ch 00

Date: 31.JAN.2024 08:29:11



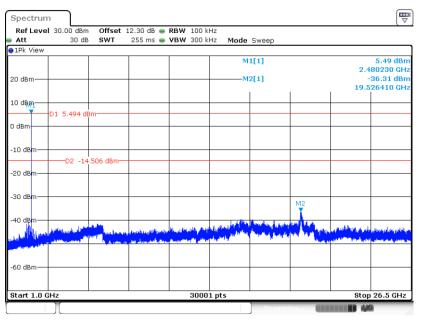
CSE Plot on Ch 39

Spectrum Ref Level	' 30.00 dBm	Offset	12.30 dB 👄	PBW 100 k	·H7				
Att	30 dB		30.1 ms 👄			Sweep			
1Pk View									
					M	1[1]			-41.23 dBm 3.5880 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D2 -12.631	dBm							
-20 dBm									
-30 dBm									
-40 dBm								и <u>1</u>	
kana padhallantiya	to a state of the state of the	e in e la catal		athoretal prov		and the state of the	المراجع المرجع ا مرجع المرجع ا	a frakterister	مى بىرى ئى القەرىر مەر مەربىيە مەربىيە بىرىتىم
-60 dBm									
-00 00111									
Start 30.0	MHz	1		3000	1 pts		1	St	op 1.0 GHz
	Υ					Measur			10

Date: 31.JAN.2024 08:58:15

CSE Plot on Ch 39

Date: 31.JAN.2024 08:57:45

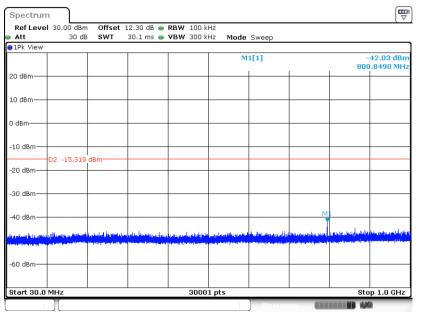


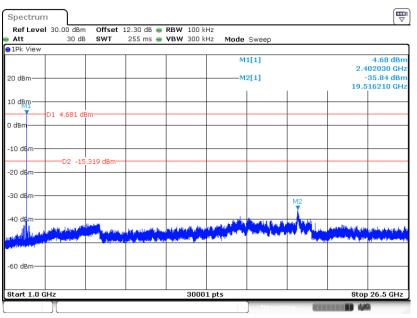
CSE Plot on Ch 78

Spectrum									
Ref Level			12.30 dB 👄						
Att	30 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					M	1[1]			-41.84 dBn 6.6510 MH:
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm)2 -14.506	dBm-							
-30 dBm									
-40 dBm								M1	
and the second second	Interest of the second	hadddidof _a adad Tarristogoriaa	and a bin strand or bler	ulpobeconsettlare	بالمراجعة منظوماتها منه المراجعة منظوماتها	Atale Ilurates		ni, alimmetini	
-60 dBm									
-oo ubiii									
Start 30.0 M	1Hz			3000	1 pts	I	I	St	op 1.0 GHz
) (<i>4</i> 4

Date: 31.JAN.2024 08:55:11

CSE Plot on Ch 78


Date: 31.JAN.2024 08:54:43

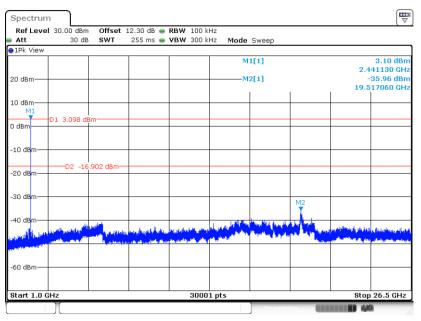

<2Mbps>

CSE Plot on Ch 00

Date: 31.JAN.2024 09:21:41

CSE Plot on Ch 00

Date: 31.JAN.2024 09:21:17



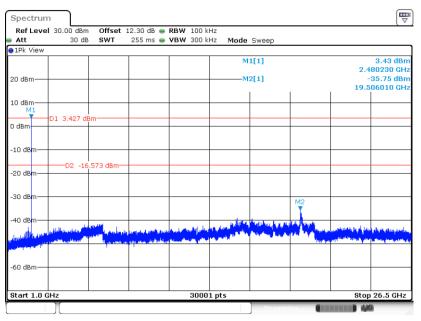
CSE Plot on Ch 39

Spectrum Ref Level	30.00 dBm	Offset	12.30 dB 👄	RBW 100 k	Hz				(\(\neq \)
Att	30 dE	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
∋1Pk View									
					M	1[1]			-42.39 dBm 3.5560 MHz
20 dBm									
10 dBm									
D dBm									
-10 dBm									
-20 dBm	D2 -16.902	dBm							
-30 dBm									
-40 dBm								M1 Y	
distant start	الديعة أبراعه الم	New New Y, Line	بدارين إيرابين		Instal alter bit data bi	Losol at Maria April	i kan di kana di kan	A a shakes	استعمال ومعاقدها
. I see the second second]						
-60 dBm									
Start 30.0 f	MHz			3000	1 pts			St	op 1.0 GHz
atart 30.0 I				3000	1 pcs			at	op 1.0 GH2

Date: 31.JAN.2024 09:25:15

CSE Plot on Ch 39

Date: 31.JAN.2024 09:24:51

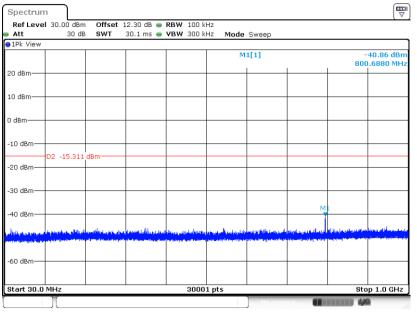


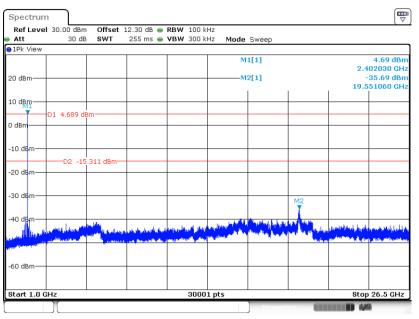
CSE Plot on Ch 78

Spectrum Ref Level	- I 30.00 dBm	Offset	12.30 dB 👄	RBW 100	Hz				(\(\neq \)
Att	30 dB	SWT	30.1 ms 👄	VBW 300	Hz Mode	Sweep			
1Pk View			_						
					м	1[1]			-43.08 dBm 6.6180 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D2 -16.573	dBm							
-30 dBm									
-40 dBm								M1	
tina an dal pand	an Andrika I (m)	Alike de salad	and the second state of	admanatic batty for	a and the second second	and the state is a philosophic strength in	المراجع المحالية		
-60 dBm									
oo abiii									
Start 30.0	MHz	I		3000	1 pts	I	I	St	pp 1.0 GHz
	1								6

Date: 31.JAN.2024 09:34:12

CSE Plot on Ch 78


Date: 31.JAN.2024 09:33:47

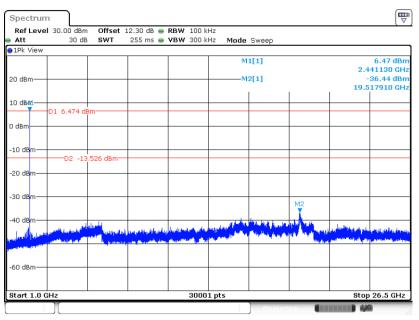

<3Mbps>

CSE Plot on Ch 00

Date: 31.JAN.2024 09:40:16

CSE Plot on Ch 00

Date: 31.JAN.2024 09:39:51



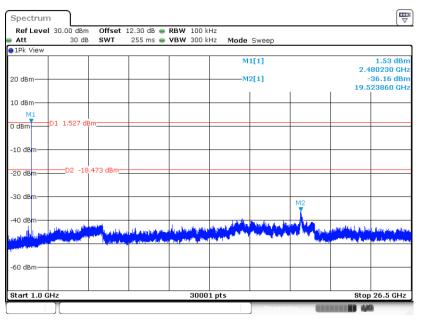
CSE Plot on Ch 39

Ref Level	30.00 dBm	Offset	12.30 dB 👄	RBW 100	(Hz				
Att	30 dB	SWT	30.1 ms 👄	VBW 300	KHZ Mode	Sweep			
1Pk View									
					M	1[1]			-42.04 dBm 3.8470 MHz
20 dBm									3.8470 MHz
10 dBm									
0 dBm									
-10 dBm	02 -13.526	dBm							
-20 dBm									
-30 dBm									
-40 dBm								M1 T	
	فياللم معموما المري	listen (parton)	hanne and the boost	and the second	allower direction	mannelle	here is the procession	La usenad	and the state of a state of
			a management of the second		and Indiana Indiana				
-60 dBm									
Start 30.0 M	MHz			3000	1 pts			St	op 1.0 GHz

Date: 31.JAN.2024 09:43:04

CSE Plot on Ch 39

Date: 31.JAN.2024 09:42:39



CSE Plot on Ch 78

Spectrum Ref Level	30.00 dBm	Offset	12.30 dB 👄	RBW 100	(Hz				(\(\neq \)
Att	30 dB		30.1 ms 👄			Sweep			
1Pk View									
					M	1[1]			-43.81 dBm 6.8450 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBmC	02 -18.473	dBm							
-30 dBm									
-40 dBm								141	
dia di mana	وليان ورور الا	it asked as	al pallitical address of the	ajdaa ang Kankol	داراله ایرانی از از ا	and the local particular to	المراجع والمراجع	and the second but	All High Advancement
60 d0 m									
-60 dBm									
Start 30.0 M	1Hz			3000	1 pts	I	I	St	op 1.0 GHz
)(and the second second	100

Date: 31.JAN.2024 09:48:52

CSE Plot on Ch 78

Date: 31.JAN.2024 09:48:24

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

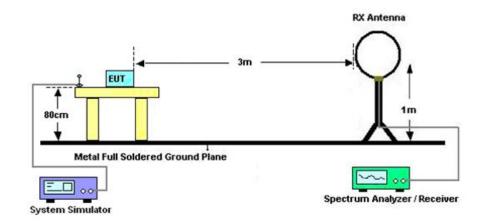
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

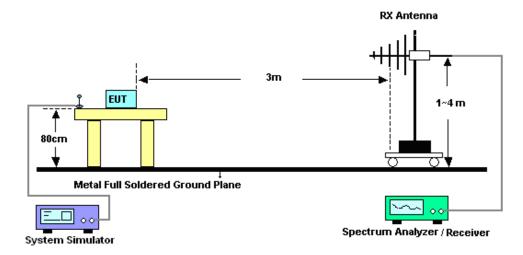
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

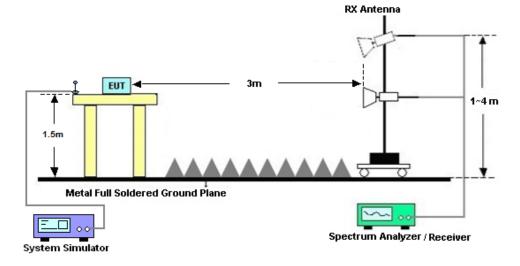
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: Y4O-MA52 Page Number : 53 of 59 Report Issued Date : May 15, 2024 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

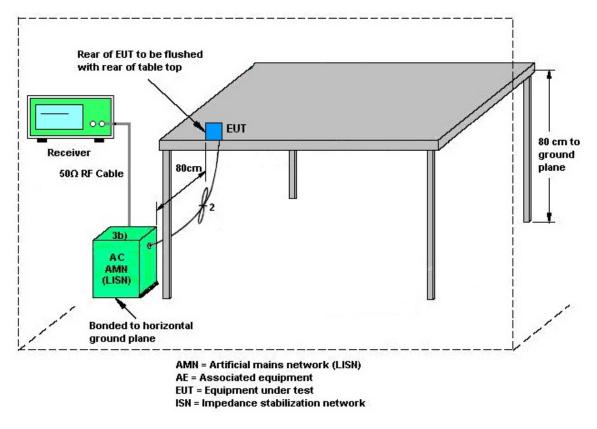
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver&SA	Agilent	N9038A	MY522601 85	20Hz~26.5GHz	Dec. 27, 2023	Jan. 26, 2024~ Feb. 05, 2024	Dec. 26, 2024	Radiation (03CH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 07, 2023	Jan. 26, 2024~ Feb. 05, 2024	Jul. 06, 2024	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Jan. 26, 2024~ Feb. 05, 2024	Jul. 27, 2024	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Oct. 24, 2023	Jan. 26, 2024~ Feb. 05, 2024	Oct. 23, 2025	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 08, 2023	Jan. 26, 2024~ Feb. 05, 2024	Jul. 07, 2024	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 08,2023	Jan. 26, 2024~ Feb. 05, 2024	Apr. 07,2024	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 04, 2023	Jan. 26, 2024~ Feb. 05, 2024	Apr. 03,2024	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 18,2023	Jan. 26, 2024~ Feb. 05, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	KEYSIGHT	83017A	MY532701 05	0.5GHz~26.5Ghz	Oct. 18,2023	Jan. 26, 2024~ Feb. 05, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 07, 2023	Jan. 26, 2024~ Feb. 05, 2024	Jul. 06, 2024	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	Oct. 18,2023	Jan. 26, 2024~ Feb. 05, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Jan. 26, 2024~ Feb. 05, 2024	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Jan. 26, 2024~ Feb. 05, 2024	NCR	Radiation (03CH01-SZ)
laser range finder	Dingxin Yi	D-40	#01	NA	Oct. 19,2023	Jan. 26, 2024~ Feb. 05, 2024	Oct. 18, 2024	Radiation (03CH01-SZ)
Thermo meter	Anymetre	JR593	#2	- 10℃ ~ 50℃ 10%RH ~ 99%RH	Apr. 12, 2023	Jan. 26, 2024~ Feb. 05, 2024	Apr. 11, 2024	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Jan. 31, 2024	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Jan. 31, 2024	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Jan. 31, 2024	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2023	Jan. 31, 2024	Jul. 06, 2024	Conduction (CO01-SZ)
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Jan. 31, 2024	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 29, 2023	Jan. 31, 2024	Dec. 28, 2024	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Aug. 21, 2023	Jan. 31, 2024	Aug. 20, 2024	Conducted (TH01-SZ)
Thermo meter	Anymetre	JR593	#7	- 10℃ ~ 50℃ 10%RH~99%RH	Apr. 08, 2023	Jan. 31, 2024	Apr. 07, 2024	Conducted (TH01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	±0.1 MHz
Conducted Power	±1.34 dB
Conducted Power Spectral Density	±1.32 dB
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7 dB
of 95% (U = 2Uc(y))	2.7 08

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.8 dB
013378(0 - 200(y))	

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.0 dB
--	--------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	4.3 dB
of 95% (U = 2Uc(y))	4.5 UD

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR3D1820A

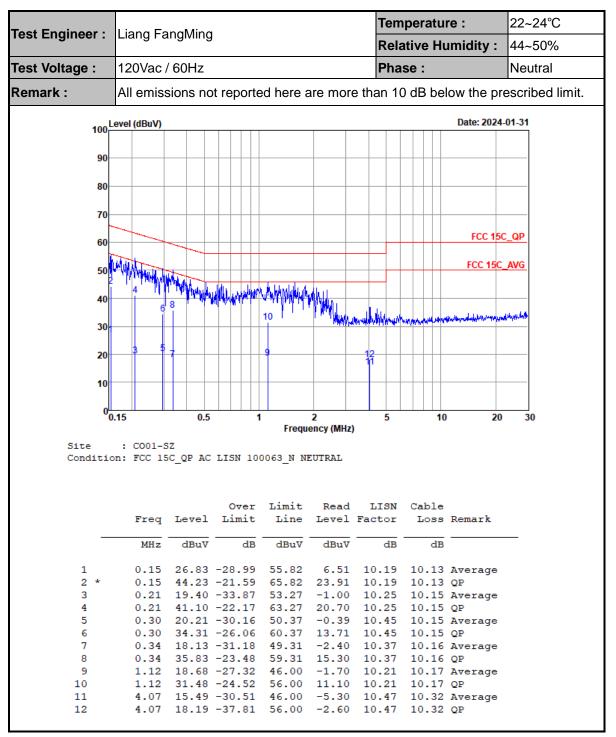
Appendix A. Test Result of Conducted Test Items

est Eng	gineer:			C	Chen Ran		Temperature:	2	21~25	°(9	
est Da	te:			2	024/1/31		Relative Humidity:	ł	51~54		
			<u>20</u>)dB and	1 99% Occi		<u>SULTS DATA</u> Ith and Hopping C	channel Separatio	<u>n</u>		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail		
DH	1Mbps	1	0	2402	0.961	0.907	0.994	0.6406	Pass		
DH	1Mbps	1	39	2441	0.983	0.903	0.990	0.6551	Pass		
DH	1Mbps	1	78	2480	0.957	0.903	1.007	0.6377	Pass		
2DH	2Mbps	1	0	2402	1.309	1.183	0.994	0.8725	Pass		
2DH	2Mbps	1	39	2441	1.304	1.181	0.994	0.8696	Pass		
2DH	2Mbps	1	78	2480	1.313	1.183	1.003	0.8754	Pass		
3DH	3Mbps	1	0	2402	1.300	1.175	1.003	0.8667	Pass		
3DH	3Mbps	1	39	2441	1.300	1.177	1.003	0.8667	Pass		
3DH	3Mbps	1	78	2480	1.304	1.177	0.999	0.8696	Pass		

<u>TEST RESULTS DATA</u> <u>Dwell Time</u>											
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail					
Nomal	79	106.67	2.90	0.31	0.4	Pass					
AFH	20	53.33	2.90	0.15	0.4	Pass					

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>											
DH	CH.	NTX	Peak Power (dBm)	Power Level	Power Limit (dBm)	Test Result					
	0	1	5.96	4	20.97	Pass					
DH5	39	1	4.05	4	20.97	Pass					
	78	1	1.88	4	20.97	Pass					
	0	1	5.79	4	20.97	Pass					
2DH5	39	1	3.95	4	20.97	Pass					
	78	1	1.81	4	20.97	Pass					
	0	1	5.65	4	20.97	Pass					
3DH5	39	1	3.89	4	20.97	Pass					
	78	1	1.75	4	20.97	Pass					

				Av	<u>ST RESULTS DATA</u> erage Power Table (Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	5.60	1.12	
DH5	39	1	3.80	1.12	
	78	1	1.40	1.12	
	0	1	3.60	1.14	
2DH5	39	1	1.50	1.14	
	78	1	-0.70	1.14	
	0	1	3.60	1.12	
3DH5	39	1	1.50	1.12	
	78	1	-0.70	1.12	


TEST RESULTS DATA Number of Hopping Frequency									
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail						
79	20	> 15	Pass						

Appendix B. AC Conducted Emission Test Results

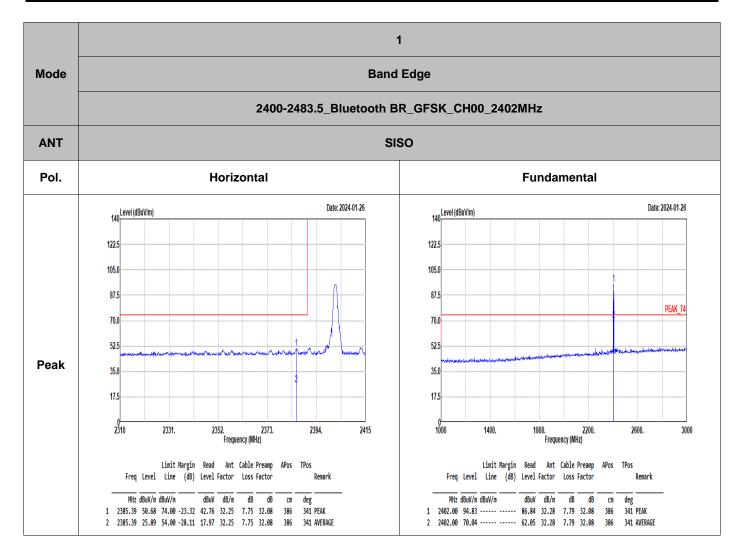

Toot Engineer .		naMina				Tem	nperatu	ire :	22~24°C	
Test Engineer :	Liang Fa	ngiviing				Rela	ative H	umidity :	44~50%	
Test Voltage :	120Vac /	[/] 60Hz				Pha	ise :		Line	
Remark :	All emiss	sions no	t reporte	d here a	are mor	e than 1	0 dB be	low the pr	escribed limit.	
	Level (dBuV)							Date: 2024-	01-31	
100										
90										
80)									
70)									
								FCC 15C	_QP	
60								FCC 15C	ANG	
50	2 4		Applant and					FUU TOU	AVG	
40		11 5 MA	18	201	is Madate	Rolling And				
30)		14 16		(MPP 1		holdenseether	mandumentary	برارمليه إ	
20	1 3	791	47	10						
20			13 15	19						
10										
C	0.15	0.5	1		2	5	10) 20	30	
	0.15		1		2 ency (MHz)	-	10) 20	30	
Site	0.15 : CO01-5 ion: FCC 15	5Z		Frequ	ency (MHz)	-	10) 20	30	
Site	: CO01-5	5Z		Frequ	ency (MHz)	-	10) 20	30	
Site	: CO01-5	5Z	LISN 100	Frequ	ency (MHz))	Cable) 20	30	
Site	: CO01-! ion: FCC 1!	5Z	LISN 100 Over	Frequ D063_L L: Limit	ency (MHz) INE Read)	Cable) 20 Remark	30	
Site	: CO01-! ion: FCC 1!	3Z 5C QP AC	LISN 100 Over	Frequ D063_L L: Limit	ency (MHz) INE Read) LISN Factor	Cable		30	
Site Conditi - 1	: COO1-S ion: FCC 19 Freq MHz 0.16	Level dBuV 21.62	LISN 100 Over Limit dB -33.63	Frequ D063_L L: Limit Line dBuV 55.25	Read Level dBuV 1.20	LISN Factor dB 10.28	Cable Loss dB 10.14	Remark 	30	
Site Conditi - 1 2	: C001-5 ion: FCC 19 Freq MHz 0.16 0.16	52 50 QP AC Level dBuV 21.62 44.72	LISN 100 Over Limit dB -33.63 -20.53	Frequ 0063_L L: Limit Line dBuV 55.25 65.25	Read Level dBuV 1.20 24.30	LISN Factor dB 10.28 10.28	Cable Loss dB 10.14 10.14	Remark Average QP	30	
Site Conditi - 1	: C001-5 ion: FCC 19 Freq MHz 0.16 0.16 0.21	52 50 QP AC Level dBuV 21.62 44.72 20.30	UISN 100 Over Limit dB -33.63 -20.53 -33.10	Frequ 0063_L L: Limit Line dBuV 55.25 65.25 53.40	Read Level dBuV 1.20 24.30 -0.30	LISN Factor dB 10.28 10.28	Cable Loss dB 10.14 10.14 10.15	Remark Average QP Average	30	
Site Conditi 1 2 3	: C001-5 ion: FCC 19 Freq MHz 0.16 0.16 0.21 0.21	52 5C QP AC Level dBuV 21.62 44.72 20.30 43.20 40.99	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65	Frequ 0063_L L: Limit Line 	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40	LISN Factor dB 10.28 10.28 10.45 10.45 10.45	Cable Loss dB 10.14 10.14 10.15 10.15	Remark Average QP Average	30	
Site Conditi 1 2 3 4 5 * 6	: C001-5 ion: FCC 19 Freq MHz 0.16 0.16 0.21 0.21 0.21 0.41 0.41	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15	Frequ 0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90	LISN Factor dB 10.28 10.45 10.45 10.45 10.43 10.43	Cable Loss dB 10.14 10.14 10.15 10.15 10.16 10.16	Remark Average QP Average QP Average QP	30	
Site Conditi 1 2 3 4 5 * 6 7	: C001-5 ion: FCC 15 Freq MHz 0.16 0.21 0.21 0.21 0.41 0.41 0.43	52 5C QP AC Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89	Frequ 0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80	LISN Factor dB 10.28 10.45 10.45 10.45 10.43 10.43 10.39	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average	30	
Site Conditi 1 2 3 4 5 * 6 7 8	: CO01-3 ion: FCC 19 Freq MHz 0.16 0.21 0.21 0.21 0.41 0.41 0.43 0.43	5Z 5C QP AC Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09	Frequ D063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24 57.24	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60	LISN Factor dB 10.28 10.45 10.45 10.45 10.43 10.43 10.39 10.39	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16	Average QP Average QP Average QP Average QP	30	
Site Conditi 1 2 3 4 5 * 6 7 8 9	: CO01-3 ion: FCC 19 Freq MHz 0.16 0.16 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.46	Eevel Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52	Frequ D063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24 57.24 46.71	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70	LISN Factor dB 10.28 10.45 10.45 10.45 10.43 10.43 10.39 10.39 10.33	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average	30	
Site Conditi 1 2 3 4 5 * 6 7 8 9 10	: CO01-3 ion: FCC 19 Freq MHz 0.16 0.21 0.21 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.46 0.46	Eevel Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92	Frequ D063_L L: Limit Line dBuV 55.25 53.40 63.40 47.64 57.64 47.24 57.24 46.71 56.71	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30	LISN Factor dB 10.28 10.28 10.45 10.45 10.43 10.43 10.43 10.39 10.39 10.33	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP	30	
Site Conditi 1 2 3 4 5 * 6 7 8 9 10 11	: C001-3 ion: FCC 19 Freq MHz 0.16 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.43	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55	UISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77	Frequ D063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24 57.24 46.71 56.71 46.32	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30 1.10	LISN Factor dB 10.28 10.45 10.45 10.43 10.43 10.39 10.39 10.33 10.33 10.29	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average		
Site Conditi 1 2 3 4 5 * 6 7 8 9 10 11 12	: C001-3 ion: FCC 19 Freq MHz 0.16 0.16 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.43 0.43	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77 -23.47	Frequ D063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 47.24 57.24 46.71 56.71 46.32 56.32	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30 1.10 12.40	LISN Factor dB 10.28 10.45 10.45 10.43 10.43 10.39 10.39 10.33 10.33 10.29 10.29	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP		
Site Conditi 1 2 3 4 5 * 6 7 8 9 10 11	: C001-3 ion: FCC 19 Freq MHz 0.16 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.43	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85 15.45	UISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77	Frequ D0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 57.24 47.24 46.71 56.71 46.32 56.32 46.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 1.70 13.30 1.10 12.40 -4.90	LISN Factor dB 10.28 10.45 10.45 10.43 10.43 10.39 10.39 10.33 10.33 10.29 10.29 10.29 10.19	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP		
Site Conditi 1 2 3 4 5 * 6 7 8 9 10 11 12 13	: C001-5 ion: FCC 19 Freq MHz 0.16 0.16 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.46 0.46 0.48 0.48 0.57	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 33.79 21.55 32.85 15.45 31.15	UISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77 -23.47 -30.55	Freque D0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24 46.71 56.71 46.32 56.32 46.00 56.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30 1.70 1.10 12.40 -4.90 10.80	LISN Factor dB 10.28 10.45 10.45 10.43 10.43 10.39 10.39 10.33 10.33 10.29 10.29 10.29 10.19	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP	30	
Site Conditi 1 2 3 4 5 * 6 7 8 9 10 11 12 13 14	: C001-5 ion: FCC 15 Freq MHz 0.16 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.46 0.46 0.46 0.46 0.48 0.48 0.57 0.57	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85 15.45 31.15 14.69	UISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.52 -22.92 -24.55 -24.85	Freque D0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24 57.24 46.71 56.71 46.32 56.32 46.00 56.00 46.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30 1.10 12.40 -4.90 10.80 -5.30	LISN Factor dB 10.28 10.45 10.45 10.43 10.43 10.39 10.39 10.33 10.33 10.29 10.29 10.29 10.19 9.83	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Site Conditi 1 2 3 4 5 * 6 7 8 9 10 11 12 13 14 15	: C001-5 ion: FCC 15 Freq MHz 0.16 0.21 0.21 0.21 0.41 0.43 0.43 0.43 0.43 0.43 0.43 0.46 0.48 0.48 0.48 0.57 0.57 0.57 0.70 0.70	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85 15.45 31.15 14.69 29.49	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77 -23.47 -30.55 -24.85 -31.31 -26.51	Freque D0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24 57.24 46.71 56.71 46.32 56.32 46.00 56.00 46.00 56.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30 1.10 12.40 -4.90 10.80 -5.30 9.50	LISN Factor dB 10.28 10.45 10.45 10.43 10.43 10.39 10.39 10.33 10.33 10.29 10.29 10.29 10.19 10.19 9.83	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP	30	
Site Conditi 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16	: C001-5 ion: FCC 15 Freq MHz 0.16 0.21 0.21 0.21 0.41 0.43 0.43 0.43 0.43 0.43 0.43 0.46 0.48 0.48 0.48 0.57 0.57 0.57 0.70 0.70	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85 15.45 31.15 14.69 29.49 17.95	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77 -23.47 -30.55 -24.85 -31.31 -26.51	Freque D063_L L: Limit Line dBuV 55.25 53.40 63.40 47.64 57.64 47.24 57.24 46.71 56.71 46.32 56.32 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30 1.10 12.40 -4.90 10.80 -5.30 9.50 -2.50	LISN Factor dB 10.28 10.45 10.45 10.45 10.43 10.39 10.39 10.33 10.29 10.19 10.19 10.19 9.83 9.83 10.29	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Site Conditi 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17	: CO01-3 ion: FCC 13 Freq MHz 0.16 0.16 0.21 0.21 0.21 0.41 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.48 0.48 0.57 0.57 0.57 0.70 0.70 0.70 0.83	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85 31.15 15.45 31.15 14.69 29.49 17.95 35.15	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77 -23.47 -30.55 -24.85 -31.31 -26.51 -28.05	Freque D063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 57.64 47.24 57.24 46.71 56.71 46.32 56.32 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 13.60 1.70 13.30 1.10 12.40 -4.90 10.80 -5.30 9.50 -2.50 14.70	LISN Factor dB 10.28 10.45 10.45 10.45 10.43 10.39 10.39 10.33 10.33 10.29 10.29 10.19 9.83 9.83 10.29 10.29 10.29	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Site Conditi 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18	: CO01-3 ion: FCC 19 Freq MHz 0.16 0.21 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.44 0.44	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85 15.45 31.15 14.69 29.49 17.95 35.15 17.74 35.24	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77 -23.47 -30.55 -24.85 -31.31 -26.51 -26.51 -26.51 -26.51 -26.55 -21.85 -22.85 -22.85 -20.76 -20.76 -20.85 -20.76 -20.	Freque D0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 47.64 47.24 57.64 47.24 46.71 56.71 46.32 56.32 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 1.70 13.30 1.10 12.40 -4.90 10.80 -5.30 9.50 9.50 -2.50 14.70 -2.60 14.90	LISN Factor dB 10.28 10.28 10.45 10.45 10.43 10.43 10.39 10.39 10.33 10.33 10.29 10.19 10.19 10.19 9.83 9.83 10.29 10.29 10.29 10.29 10.29 10.29	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Site Conditi 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	: CO01-3 ion: FCC 19 Freq MHz 0.16 0.21 0.21 0.21 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.44 0.44	Level dBuV 21.62 44.72 20.30 43.20 40.99 46.49 24.35 34.15 22.19 33.79 21.55 32.85 15.45 31.15 14.69 29.49 17.95 35.15 17.74 35.24	LISN 100 Over Limit dB -33.63 -20.53 -33.10 -20.20 -6.65 -11.15 -22.89 -23.09 -24.52 -22.92 -24.77 -30.55 -24.85 -31.31 -26.51 -28.05 -20.85 -28.26	Freque D0063_L L: Limit Line dBuV 55.25 65.25 53.40 63.40 47.64 47.64 47.24 57.64 47.24 46.71 56.71 46.32 56.32 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 1.20 24.30 -0.30 22.60 20.40 25.90 3.80 1.70 13.30 1.10 12.40 -4.90 10.80 -5.30 9.50 9.50 -2.50 14.70 -2.60 14.90	LISN Factor dB 10.28 10.28 10.45 10.45 10.43 10.43 10.39 10.33 10.33 10.33 10.29 10.19 10.19 10.19 9.83 9.83 10.29 10.29 10.29 10.29 10.29 10.29	Cable Loss dB 10.14 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.18 10.18	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP		

Note:

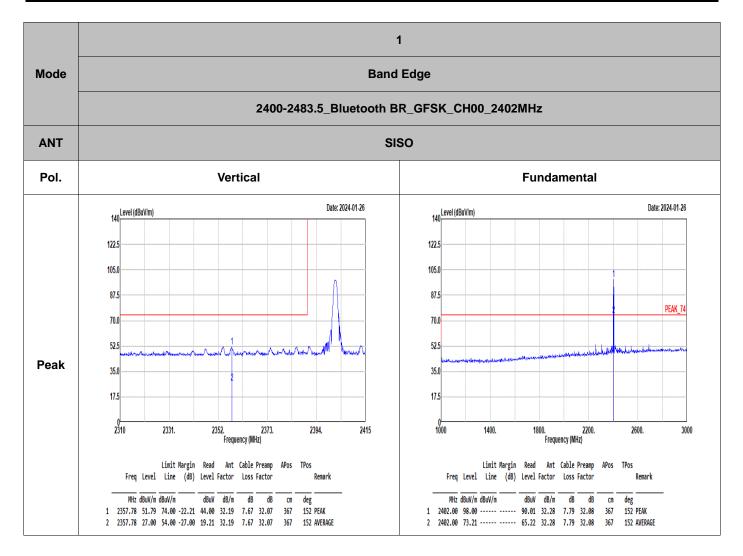
- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C Radiated Spurious Emission Test Data

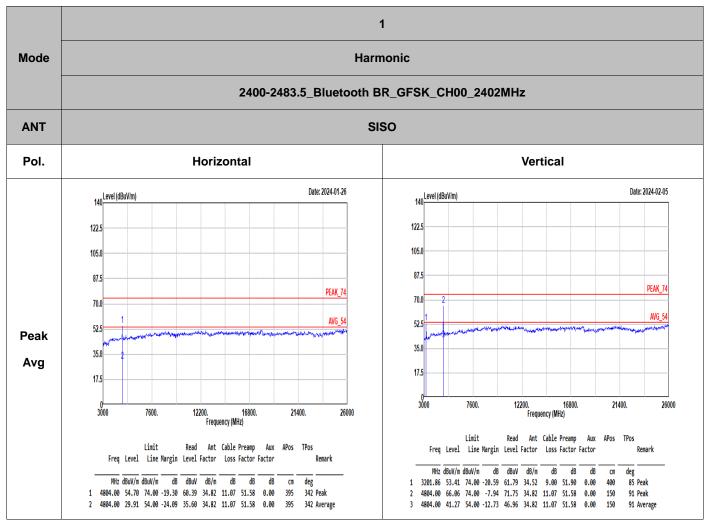
Test Engineer :	Zhaohui Liang	Relative Humidity :	48~49%
Test Engineer.		Temperature :	24-25 ℃

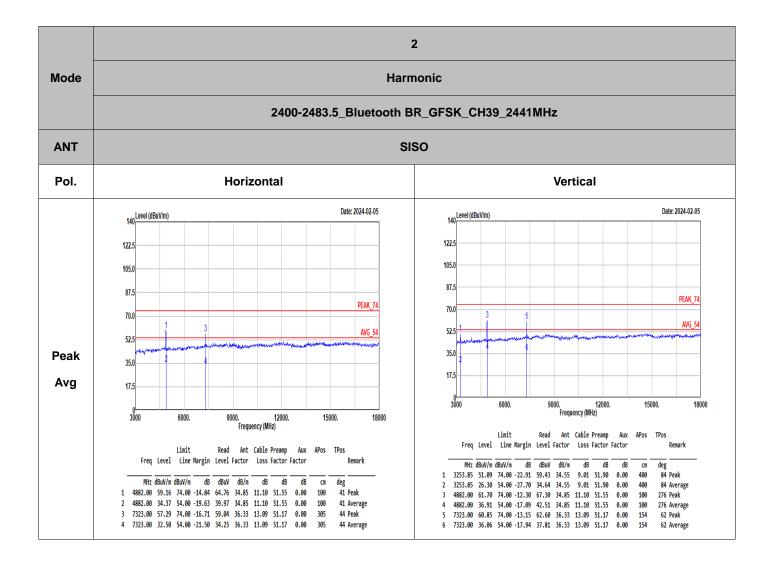

Radiated Spurious Emission Test Modes

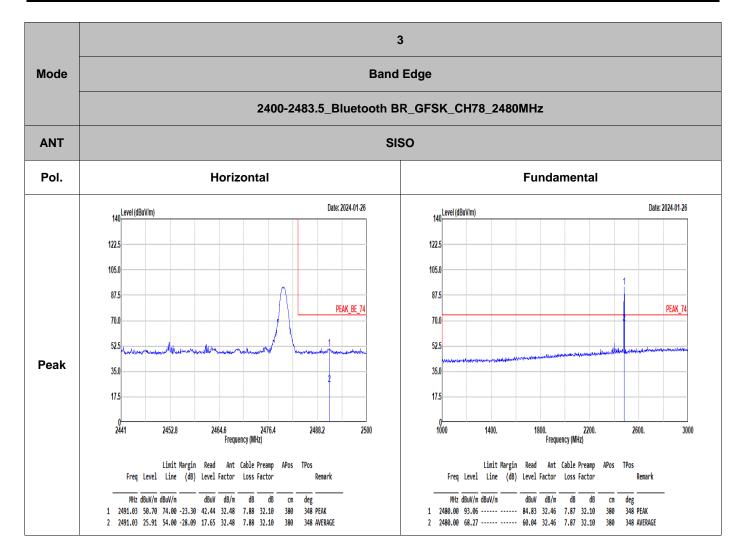
Mode	Band (MHz)	Sample	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	1	Bluetooth BR_GFSK	00	2402	1DH5	-	-
Mode 2	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1DH5	-	-
Mode 3	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	1DH5	-	-
Mode 4	2400-2483.5	1	Bluetooth BR_GFSK	00	2402	1DH5	-	LF
Mode 5	2400-2483.5	2	Bluetooth BR_GFSK	00	2402	1DH5	-	-


Summary of each worse mode

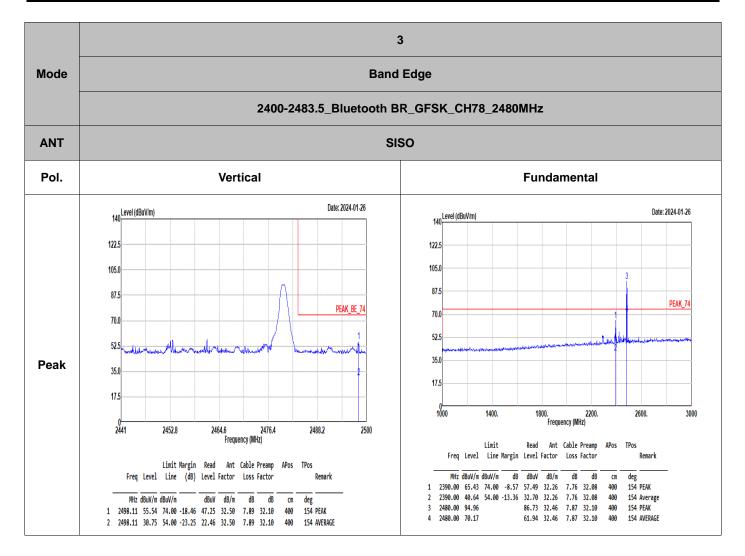
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	00	2357.78	51.79	74.00	-22.21	V	PEAK	Pass	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	66.06	74.00	-7.94	V	Peak	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	4882.00	61.70	74.00	-12.30	V	Peak	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2390.00	65.43	74.00	-8.57	V	PEAK	Pass	Band Edge
3	Bluetooth BR_GFSK	78	4960.00	59.39	74.00	-14.61	V	Peak	Pass	Harmonic
4	Bluetooth BR_GFSK	00	545.07	36.27	46.00	-9.73	V	Peak	Pass	LF
5	Bluetooth BR_GFSK	00	2373.21	57.59	74.00	-16.41	V	PEAK	Pass	Band Edge
5	Bluetooth BR_GFSK	00	4804.00	60.91	74.00	-13.09	V	Peak	Pass	Harmonic

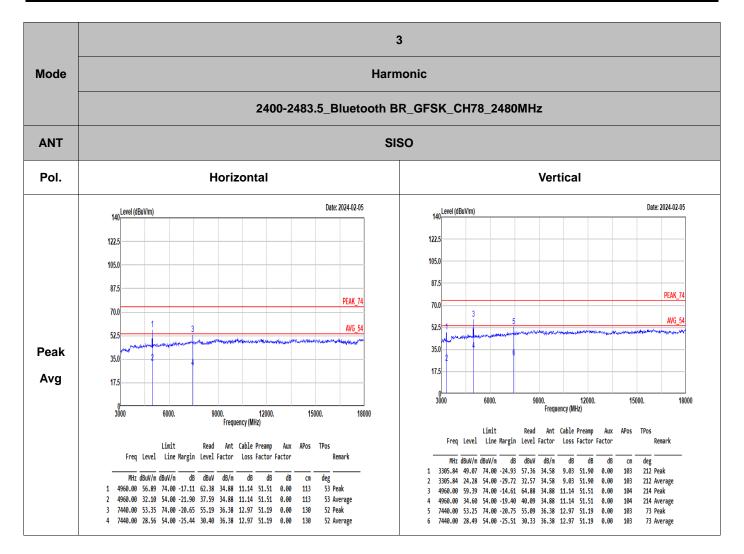


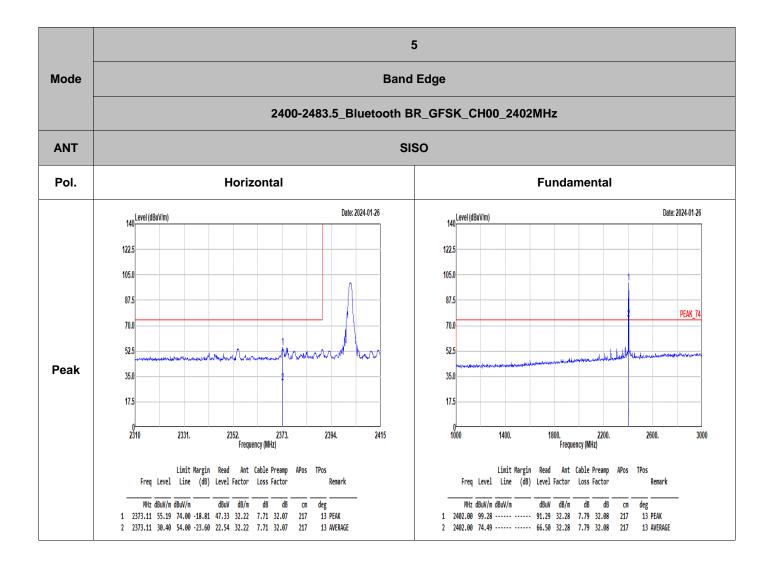


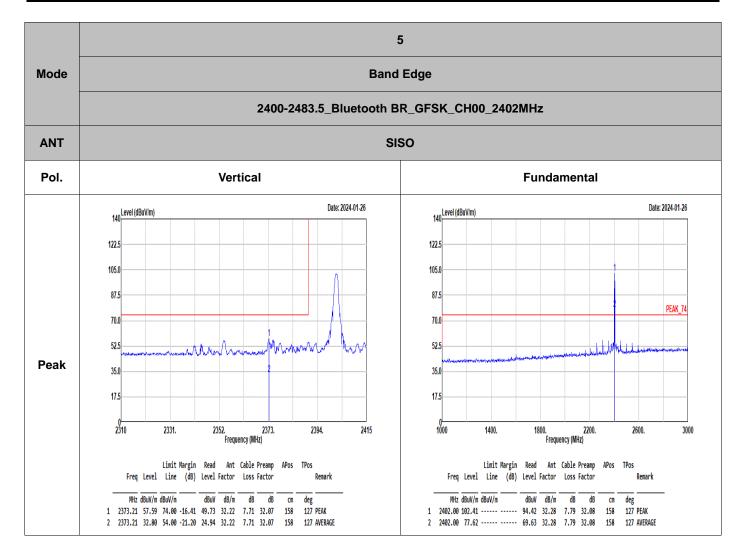


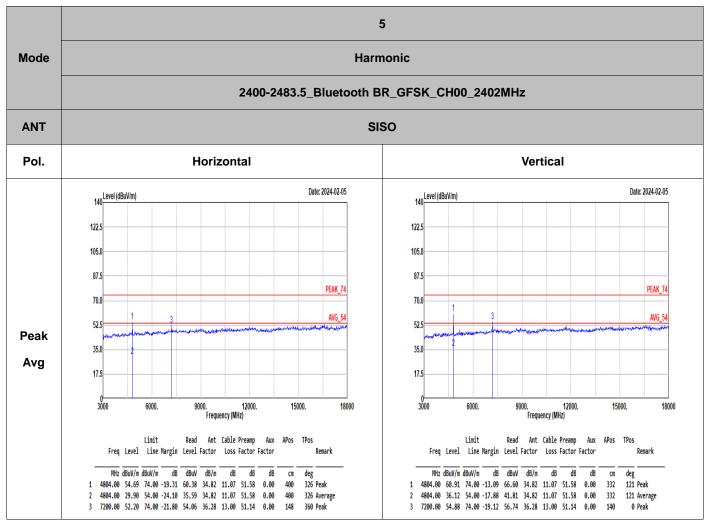
Note: 3201.86MHz is harmonics emission which fall in the non-restricted bands, the limit is 20 dB below the highest emission level within the authorized band, test result is PASS.

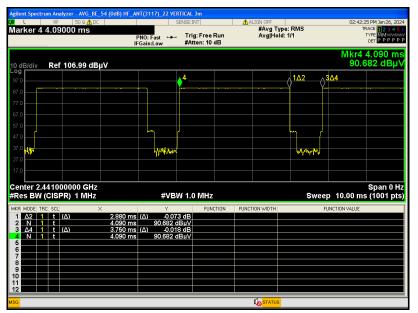










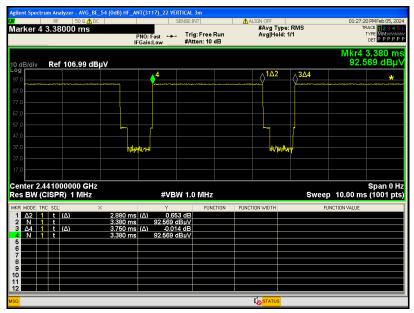

Note: 7200MHz is harmonics emission which fall in the non-restricted bands, the limit is 20 dB below the highest emission level within the authorized band, test result is PASS.

Appendix D. Duty Cycle Plots

For Sample 1:

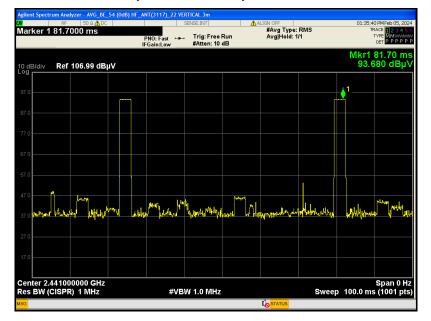
DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39



Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.



For Sample 2:

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 4. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 5. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 6. DH5 has the highest duty cycle worst case and is reported.