

CFR 47 FCC PART 15 SUBPART E

CERTIFICATION TEST REPORT

For

Tablet

MODEL NUMBER: VT-TABLET-5082G

FCC ID: 2AAGE5081G6

REPORT NUMBER: 4789999654.1-11

ISSUE DATE: September 18, 2021

Prepared for

Chengdu Vantron Technology Co., Ltd. No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Report

#4789999654.1-

11

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	09/18/2021	Initial Issue	

Note: This is a spot check report base on 4789999654.1-4 which is issued by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch on September 15, 2021. The old version EUT had already applied for FCC ID (2AAGE5081GB486), the new version and old version are the same except to except for one less the LTE module, so we only follow the KDB KDB484596 D01 to add the spot check in this report. For other data, please refer to the original report 4789999654.1-4.

Parent Serial Number SI07, FCC ID: 2AAGE5081GB486

Test Report	802.11 2.4GHz	BLE (DTS)	Bluetooth DSS	802.11 5G WIFI	
Тезттероп	WIFI (DTS)			UNII	
	Report	Report	Report	Report	
old version	#4789999654.1-	#4789999654.1-	#4789999654.1-	#4789999654.1-	
	3	1	2	4	

Report

#4789999654.1-

9

Report

4789999654.1-

8

Variant Serial Number SI07A FCC ID: 2AAGE5081G6

Report

#4789999654.1-

10

new version

	Summary of Test Results			
Clause	Test Items	FCC Rules	Test Results	
1	Conducted Output Power	FCC 15.407 (a)	PASS	
2	Radiated Bandedge and Spurious Emission Spot Check	FCC 15.407 (b) FCC 15.209 FCC 15.205	PASS	
3	Antenna Requirement	FCC 15.203	PASS	

Note:

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >when <Accuracy Method> decision rule is applied.

Test worst case of Conducted Output Power Spot Check					
Test Mode Frequency (MHz) Result[dBm] original report Result[dBm] Deviation(d		Deviation(dB)			
а	5200	16.35	16.43	-0.08	
n HT20	5200	17.95	18.09	-0.14	
n HT40	5230	15.89	15.97	-0.08	
ac VHT20	5200	16.33	16.39	-0.06	
ac VHT40	5190	15.93	16.06	-0.13	
ac VHT80	5210	14.72	14.93	-0.21	

The worst case of Radiated Bandedge and Spurious Emission Spot Check					
Test Mode	Test Item	Frequency (MHz)	Result[dBuV/m]	original report Result[dBuV/m]	Deviation(dB)
11a	Band Edge	5150	69.75	70.38	-0.63
11n20	RSE	11807	51.31	52.12	-0.81

Note: Comparison of two models, upper deviation is within 3 dB range and all test results are under FCC Technical limits.

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	8
4	.1.	MEASURING INSTRUMENT CALIBRATION	8
4	.2.	MEASUREMENT UNCERTAINTY	8
5.	EQI	JIPMENT UNDER TEST	9
5	.1.	DESCRIPTION OF EUT	9
5	.2.	MAXIMUM OUTPUT POWER1	0
5	.3.	CHANNEL LIST1	0
5	.4.	TEST CHANNEL CONFIGURATION1	1
5	.5.	DESCRIPTION OF AVAILABLE ANTENNAS1	2
5	.6.	THE WORSE CASE POWER SETTING PARAMETER1	3
5	.7.	THE WORSE CASE CONFIGURATIONS1	4
5	.8.	DESCRIPTION OF TEST SETUP1	5
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED1	6
6. 7.		ASURING INSTRUMENT AND SOFTWARE USED1	
7.			8
7 . 7	AN T . 1.	TENNA PORT TEST RESULTS1	8 8
7. 7 8.	AN <i>.1.</i> RA [TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2	8 8 2 8
7. 7 8.	AN <i>1.</i> RAI <i>.1.</i> 8.1.	TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2 1. 802.11a SISO MODE 2	8 8 2 8
7 . 7 8 . 8	AN <i>1.</i> RAI <i>1.</i> 8.1. UNI	TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2 1 802.11a SISO MODE 2 I-1 BAND 2	8 8 2 8 8 8
7 . 7 8 . 8	AN <i>: 1.</i> <i>: 1.</i> <i>: 1.</i> <i>: 8.1.</i> <i>: UNI</i> <i>: 2.</i> <i>: 8.2.</i>	TENNA PORT TEST RESULTS1CONDUCTED OUTPUT POWER1DIATED TEST RESULTS2RESTRICTED BANDEDGE21. 802.11a SISO MODE2I-1 BAND2SPURIOUS EMISSIONS (1 GHz ~ 7 GHz)31. 802.11n HT20 MIMO MODE3	8 8 2 8 8 8 8 8 8 0 0
7. 7 8. 8	AN <i>7.1.</i> 8.1. UNI 2.2. 8.2. UNI	TENNA PORT TEST RESULTS1CONDUCTED OUTPUT POWER1DIATED TEST RESULTS2RESTRICTED BANDEDGE21. 802.11a SISO MODE2I-1 BAND2SPURIOUS EMISSIONS (1 GHz ~ 7 GHz)31. 802.11n HT20 MIMO MODE3I-3 BAND3	8 8 8 8 8 8 8 8 0 0 0
7. 7 8. 8	AN <i>: 1.</i> <i>: 1.</i> <i>: 1.</i> <i>: 8.1.</i> <i>: UNI</i> <i>: 2.</i> <i>: 8.2.</i>	TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2 1. 802.11a SISO MODE 2 I-1 BAND 2 SPURIOUS EMISSIONS (1 GHz ~ 7 GHz) 3 1. 802.11n HT20 MIMO MODE 3 I-3 BAND 3 SPURIOUS EMISSIONS (7 GHz ~ 18 GHz) 3	8 8 8 8 8 8 8 8 8 8
7 . 7 8 . 8 8	ANT .1. RAI .1. 8.1. UNI .2. 8.2. UNI .3.	TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2 1. 802.11a SISO MODE 2 I-1 BAND 2 SPURIOUS EMISSIONS (1 GHz ~ 7 GHz) 3 1. 802.11n HT20 MIMO MODE 3 I-3 BAND 3 SPURIOUS EMISSIONS (7 GHz ~ 18 GHz) 3 SPURIOUS EMISSIONS (7 GHz ~ 26 GHz) 3 SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3	8 8 2 888 000 22 4
7 . 7 8 . 8 8	ANT .1. 8.1. UNI .2. 8.2. UNI .3. 8.3.	TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2 1. 802.11a SISO MODE 2 I-1 BAND 2 SPURIOUS EMISSIONS (1 GHz ~ 7 GHz) 3 1. 802.11n HT20 MIMO MODE 3 I-3 BAND 3 SPURIOUS EMISSIONS (7 GHz ~ 18 GHz) 3 SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3 1. 802.11n HT20 MIMO MODE 3 SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3 1. 802.11n HT20 MIMO MODE 3	8 8 2 888 000 22 44
7 . 7 8 . 8 8 8 8	ANT .1. RAI 2.1. 8.1. UNI 2.2. 8.2. UNI 3.3. 8.3. .4.	TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2 1. 802.11a SISO MODE 2 I-1 BAND 2 SPURIOUS EMISSIONS (1 GHz ~ 7 GHz) 3 1. 802.11n HT20 MIMO MODE 3 SPURIOUS EMISSIONS (7 GHz ~ 18 GHz) 3 SPURIOUS EMISSIONS (7 GHz ~ 26 GHz) 3 1. 802.11n HT20 MIMO MODE 3 SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3 SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3 SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3 SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3	8 8 2 888 000 22 44 6
7. 7 8. 8 8 8 8 8 8 8 8 8 8	ANT .1. RAI 2.1. 8.1. UNI 2.2. 8.2. UNI .3. 8.3. .4. 8.4. .5.	TENNA PORT TEST RESULTS 1 CONDUCTED OUTPUT POWER 1 DIATED TEST RESULTS 2 RESTRICTED BANDEDGE 2 1. 802.11a SISO MODE 2 I-1 BAND 2 SPURIOUS EMISSIONS (1 GHz ~ 7 GHz) 3 1. 802.11n HT20 MIMO MODE 3 I-3 BAND 3 SPURIOUS EMISSIONS (7 GHz ~ 18 GHz) 3 1. 802.11n HT20 MIMO MODE 3 SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 3 1. 802.11n HT20 MIMO MODE 3 SPURIOUS EMISSIONS (18 GHz ~ 40 GHz) 3 1. 802.11n HT20 MIMO MODE 3 SPURIOUS EMISSIONS (26 GHz ~ 40 GHz) 3 1. 802.11n HT40 MIMO MODE 3 SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 3	8 8 2 888 000 22 44 66 8

9.	ANTENNA REQUIREMENTS	43	;
----	----------------------	----	---

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Chengdu Vantron Technology Co., Ltd.
Address:	No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China

Manufacturer Information

Company Name:	Chengdu Vantron Technology Co., Ltd.
Address:	No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China

EUT Information

EUT Name:	Tablet
Model:	VT-TABLET-5082G
Brand:	VANTRON
Sample Received Date:	June 23, 2021
Sample Status:	Normal
Sample ID:	4030518
Date of Tested:	June 23, 2021~ July 02,2021

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART E	PASS

Prepared By:

Jacky Jiang

Checked By:

Shawn Wen

Laboratory Leader

Sherny les

Jacky Jiang **Engineer Project Associate**

Approved By:

Sephenbus

Stephen Guo Laboratory Manager

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0089 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, CFR 47 FCC Part 2, CFR 47 FCC Part 15, KDB 789033 D02 v02r01, KDB414788 D01 Radiated Test Site v01r01.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and proved to be in compliance with VCCL the
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)		
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Tablet
Model	VT-TABLET-5082G
Radio Technology	WLAN (IEEE 802.11a20/n HT20/n HT40/ac VHT20/VHT 40/VHT 80)
Operation	UNII-1: 5150 ~ 5250 MHz
frequency	UNII-3: 5725 ~ 5850 MHz
Modulation	IEEE 802.11a20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac VHT20: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac VHT40: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac VHT80: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)
Rated Input	DC 5 V
Li-ion Battery	3.8 V, 8000 mAh, 30.4Wh

5.2. MAXIMUM OUTPUT POWER

<u>UNII-1 BAND</u>

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)
a 20		16.35
n HT20		17.95
n HT40	5150 ~ 5250	15.89
ac VHT20		16.33
ac VHT40		15.93
ac VHT80		14.72

UNII-3 BAND

IEEE Std. 802.11	Frequency (MHz)	Max Power (dBm)
a 20		14.66
n HT20		17.69
n HT40	5725 ~ 5850	13.73
ac VHT20		14.48
ac VHT40		13.73
ac VHT80		12.82

5.3. CHANNEL LIST

UNI	I-1	UNII-1		UNII-1			
(For Bandwidth = 20 MHz)		(For Bandwidth = 40 MHz)		h = 20 MHz) (For Bandwid		(For Bandwid	th = 80 MHz)
Channel	Frequency (MHz)	Channel Frequency (MHz)		Channel	Frequency (MHz)		
36	5180	38	5190	42	5210		
40	5200	46	5230				
44	5220						
48	5240						

UNI (For Bandwidt					II-3 lth = 80 MHz)
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

UNII-1 Test Channel Configuration				
IEEE Std.	Test Channel Number	Frequency		
802.11a	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz		
802.11n HT20	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz		
802.11n HT40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz		
802.11ac VHT20	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz		
802.11ac VHT40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz		
802.11ac VHT80	CH 42(Low Channel)	5210 MHz		

UNII-3 Test Channel Configuration			
IEEE Std.	Test Channel Number	Frequency	
802.11a	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz	
802.11n HT20	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz	
802.11n HT40	CH 151(Low Channel), CH 159(High Channel)	5755MHz, 5795MHz	
802.11ac VHT20	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz	
802.11ac VHT40	CH 151(Low Channel), CH 159(High Channel)	5755 MHz, 5795 MHz	
802.11ac VHT80	CH 155(Low Channel)	5775 MHz	

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna No.	Frequency Band	Antenna Type	Max Antenna Gain (dBi)
1	UNII1& UNII3	Integral antenna	1.4
2	UNII1& UNII3	Integral antenna	2.4

Note: Directional gain= 10 log[$(10^{G1/20} + 10^{G2/20})^2/N_{ANT}$] dBi=4.92 dBi. N_{ANT} : Antenna numbers

Note: The value of the antenna gain was declared by customer.

IEE Std. 802.11	Transmit and Receive Mode	Description
802.11a	⊠2TX, 2RX	ANT 1 or ANT 2 can be used as transmitting/receiving antenna.
802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11ac VHT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11ac VHT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11ac VHT80	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter		
Test Software	RFTestTool	

UNII-1				
Mode	Rate	Channel	Soft set value ANT1	
		36	default	
11a	6M	40	default	
		48	default	
		36	default	
11n HT20	MCS0	40	default	
		48	default	
11n HT40	MCS0	38	default	
1111 1140		46	default	
		36	default	
11ac VHT20	MCS0	40	default	
		48	default	
11ac VHT40	MCS0	38	default	
	10000	46	default	
11ac VHT80	MCS0	42	default	

UNII-1

UNII-3							
			Soft				
Mode	Rate	Channel	set				
NICCE	Nale	Channel	value				
			ANT1				
		149	default				
11a	6M	157	default				
		165	default				
		149	default				
11n HT20	MCS0	157	default				
		165	default				
11n UT20	MCS0	151	default				
11n HT20	NIC30	159	default				
		149	default				
11ac VHT20	MCS0	157	default				
		165	default				
	MCS0	151	default				
11ac VHT40	IVICSU	159	default				
11ac VHT80	MCS0	155	default				

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.7. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.6.

Worst case Data Rates declared by the customer:

IEEE 802.11a / SISO – BPSK / 6 Mbps IEEE 802.11n HT20 / MIMO – BPSK / MCS0 IEEE 802.11n HT40 / MIMO – BPSK / MCS0 IEEE 802.11ac VHT20 / MIMO – BPSK / MCS0 IEEE 802.11ac VHT40 / MIMO – BPSK / MCS0 IEEE 802.11ac VHT80 / MIMO – BPSK / MCS0

For Radiated test of 802.11a the antenna with higher output power was selected to be test.

802.11ac&n SISO mode and MIMO mode have the same power setting, so only the worst case power mode(MIMO) will be record in the report.

Since 802.11ac VHT20/VHT40 mode are different from 802.11n HT20/HT40 only in control messages, so all the tests (except conducted output power and power spectral density) were performed on the worst case (802.11ac VHT20/802.11ac VHT40) mode between these 4 modes and only the worst data was recorded in this report.

The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, so we only chose the worst case mode CDD for final testing.

5.8. DESCRIPTION OF TEST SETUP

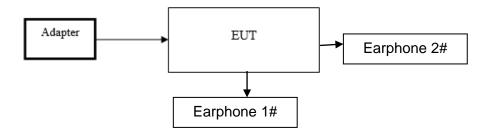
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
/	/	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	Туре С	/	1.0	/

ACCESSORIES


Item	Accessory	Brand Name	Model Name	Description
1	Power adapter	HUAWEI	HW-100225C00	5V2A
2	Earphone 1#	/	/	/
3	Earphone 2#	/	/	/
4	TF Card	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

For Conducted Emission Test for AC Power Port test:

6. MEASURING INSTRUMENT AND SOFTWARE USED

		Rac	liated	l Emissi	ons				
Equipment	Manufacturer	Model	No.	Seria	al No.	La	st Cal.	D	ue Date
MXE EMI Receiver	KESIGHT	N903	8A	MY564	400036	Nov.	12, 2020	Nov	. 11, 2021
Hybrid Log Periodic Antenna	TDK	HLP-30	03C	130	960	Aug.	11, 2018	Aug	10, 2021
Preamplifier	HP	8447	'D	2944A	09099	Nov.	12, 2020	Nov	11, 2021
EMI Measurement Receiver	R&S	ESR	26	101	377	Nov.	12, 2020	Nov	11, 2021
Horn Antenna	TDK	HRN-0	118	130	939	Sept.	17, 2018	Sept	. 17, 2021
Preamplifier	TDK	PA-02-0	0118		-305- 067	Nov.	20, 2020	Nov	19, 2021
Horn Antenna	Schwarzbeck	BBHAS	9170	#6	91	Aug.	11, 2018	Aug.	11, 2021
Preamplifier	TDK	PA-02	2-2	000	-307- 003	Nov.	12, 2020	Nov	11, 2021
Preamplifier	TDK	PA-02	2-3		-308- 002	Nov.	12, 2020	Nov	11, 2021
Loop antenna	Schwarzbeck	1519)B	000	800	Jan.	17, 2019	Jan	.17,2022
Preamplifier	TDK	PA-02- 300			-302- 050	Nov.	12, 2020	Nov	11, 2021
Preamplifier	Mini-Circuits	ZX60-8 S+		SUP01	201941	Nov.	20, 2020	Nov	19, 2021
Highpass Filter	Wainwright	WHKX 5850-6 1800-4	500-	2	4	Nov.	12, 2020	Nov	. 11, 2021
Band Reject Filter	Wainwright	WRCJ 5695-5 5850-5 40S	725- 880-	2	4	Nov.	12, 2020	Nov	. 11, 2021
Band Reject Filter	Wainwright	WRCJ 5120-5 5350-5 60S	150- 380-	2	2	Nov.	12, 2020	Nov	. 11, 2021
Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS			1	Nov.	12, 2020	Nov	. 11, 2021
Software									
[Description			Manufa	cturer	Ν	lame	V	'ersion
Test Software	for Radiated E	missions	3	Fara	ad	ΕZ	Z-EMC	Ver	. UL-3A1
	Tonsend RF Test System								
Equipment Manufacturer Model No. Serial No. Last Cal.				Due. Date					

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Wideband Radio Communication Test		R&S		C	MW5	00	155523		Nov.2	0,2020) Nov.	19,2021
PXA Signal Analyz	zer	Keysigl	nt	Ν	9030)A	MY554105	512	Nov.2	0,2020) Nov.	19,2021
MXG Vector Sign Generator	al	Keysigl	nt	N	5182	2B	MY562002	284	Nov.2	0,2020) Nov.	19,2021
MXG Vector Sign Generator	al	Keysigl	nt	N	5172	2B	MY562003	301	Nov.2	0,2020) Nov.	19,2021
DC power supply	/	Keysigl	nt	E	3642	2A	MY551591	755159130 Nov.2		4,2020	Nov.	23,2021
Temperature & Hum Chamber	idity	SANMO	OD	DD SG-80-CC-		CC-2	2088	Nov.20,202		0,2020) Nov.	19,2021
				So	oftwa	are						
Description		Manut	factu	rer		Name				Version		
Tonsend SRD Test	System	Ton	send	1	JS	S1120-3 RF Test System		2.6.77.0518				
			Ot	her I	nstr	ume	nts					
Equipment	Manut	acturer	Мо	del N	No.	Se	erial No.		Last C	al.	Nex	t Cal.
Dual Channel Power Meter	Key	sight	N1912A		MY	55416024	No	v. 20,	2020	Nov. 1	9, 2021	
Power Sensor	Key	sight	USB Wideband Power Sensor		nd r	ΜY	25100022	No	v. 20,	2020	Nov. 1	9, 2021

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>

CFR 47 FCC Part15, Subpart E						
Test Item	Limit	Frequency Range (MHz)				
Conducted	 Outdoor Access Point: 1 W (30 dBm) Indoor Access Point: 1 W (30 dBm) Fixed Point-To-Point Access Points: 1 W (30 dBm) Client Devices: 250 mW (24 dBm) 	5150 ~ 5250				
Output Power	Shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	5250 ~ 5350 5470 ~ 5725				
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850				

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep):

(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode. (vii) If transmit duty cycle < 98 %, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."

(viii) Trace average at least 100 traces in power averaging (rms) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

Method PM (Measurement using an RF average power meter):

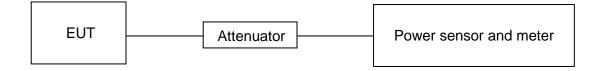
(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:

a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.


(iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5 °C	Relative Humidity	69.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	5180	14.89	<=23.98	PASS
	Ant2	5180	16.05	<=23.98	PASS
	Ant1	5200	15.14	<=23.98	PASS
	Ant2	5200	16.35	<=23.98	PASS
	Ant1	5240	15.36	<=23.98	PASS
11A	Ant2	5240	16.34	<=23.98	PASS
IIA	Ant1	5745	14.38	<=30	PASS
	Ant2	5745	14.55	<=30	PASS
	Ant1	5785	14.36	<=30	PASS
	Ant2	5785	14.63	<=30	PASS
	Ant1	5825	14.66	<=30	PASS
	Ant2	5825	14.42	<=30	PASS
	total	5180	17.71	<=23.98	PASS
	total	5200	17.95	<=23.98	PASS
11N20MIMO	total	5240	17.87	<=23.98	PASS
	total	5745	17.61	<=30	PASS
	total	5785	17.69	<=30	PASS
	total	5825	16.96	<=30	PASS
	total	5190	15.44	<=23.98	PASS
11N40MIMO	total	5230	15.89	<=23.98	PASS
	total	5755	13.42	<=30	PASS
	total	5795	13.73	<=30	PASS
	total	5180	15.98	<=23.98	PASS
	total	5200	16.33	<=23.98	PASS
11AC20MIMO	total	5240	16.06	<=23.98	PASS
TACZUMINO	total	5745	14.10	<=30	PASS
	total	5785	14.48	<=30	PASS
	total	5825	14.14	<=30	PASS
	total	5190	15.93	<=23.98	PASS
11AC40MIMO	total	5230	15.57	<=23.98	PASS
	total	5755	13.73	<=30	PASS
	total	5795	13.72	<=30	PASS
11AC80MIMO	total	5210	14.72	<=23.98	PASS
	total	5775	12.82	<=30	PASS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	Test worst case results of Spot Check							
Test Mode	Antenna	Frequency (MHz)	Result[dBm]	original report Result[dBm]	Deviation(dB)			
а	Ant2	5200	16.35	16.43	-0.08			
n HT20	total	5200	17.95	18.09	-0.14			
n HT40	total	5230	15.89	15.97	-0.08			
ac VHT20	total	5200	16.33	16.39	-0.06			
ac VHT40	total	5190	15.93	16.06	-0.13			
ac VHT80	total	5210	14.72	14.93	-0.21			

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Refer to CFR 47 FCC §15.205, §15.209 and §15.407 (b).

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz						
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	t (dBuV/m) at 3 m				
		Quasi-Peak				
30 - 88	100	40				
88 - 216	150	43.5				
216 - 960	200	46				
Above 960	500	54				
Above 1000	500	Peak	Average			
Above 1000	500	74	54			

FCC Emissions radiated outside of the specified frequency bands below 30 MHz						
Frequency (MHz)	Field strength (microvolts/meter) Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b) and ISED RSS-247 6.2.

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)							
Frequency Range	EIRP Limit	Field Strength Limit					
(MHz)		(dBuV/m) at 3 m					
5150~5250 MHz							
5250~5350 MHz	PK: -27 (dBm/MHz)	PK:68.2(dBµV/m)					
5470~5725 MHz							
	PK: -27 (dBm/MHz) *1	PK: 68.2(dBµV/m) *1					
5725~5850 MHz	PK: 10 (dBm/MHz) *2	PK: 105.2 (dBµV/m) *2					
5725~5650 WIFIZ	PK: 15.6 (dBm/MHz) *3	PK: 110.8(dBµV/m) *3					
	PK: 27 (dBm/MHz) *4	PK: 122.2 (dBµV/m) *4					

Note:

*1 beyond 75 MHz or more above of the band edge.

*2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

*3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

*4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

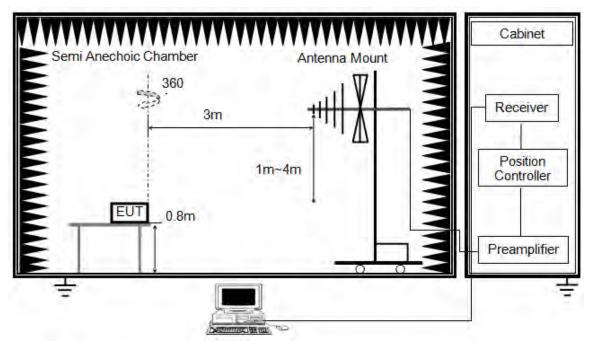
RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.


5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

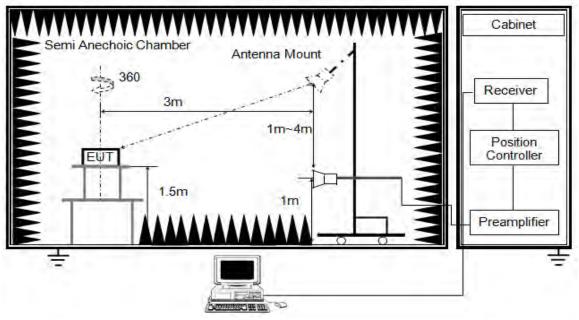
Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

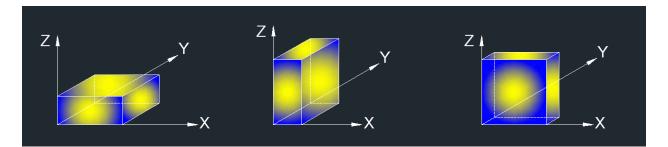
The setting of the spectrum analyser

RBW	1 MHz
IVRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.G.3 ~ II.G.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (1-4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

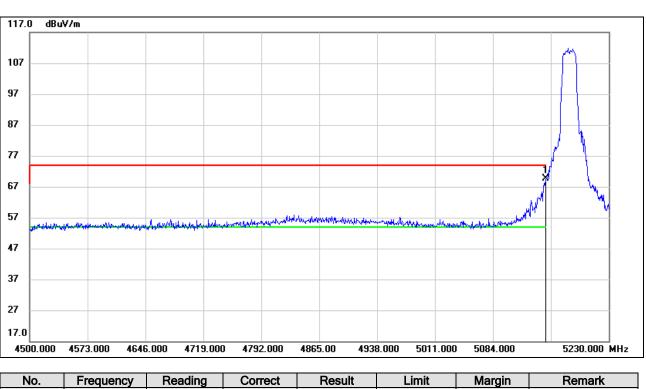
TEST ENVIRONMENT

Temperature	24.4 °C	Relative Humidity	49.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Test worst case results of Spot Check								
Test Mode				original report Result[dBuV/m]	Deviation(dB)			
11a	Band Edge	5150	69.75	70.38	-0.63			
11n20	RSE	11807	51.31	52.12	-0.81			

Note: Comparison of two models, upper deviation is within 3 dB range and all test results are under FCC Technical limits.



8.1. RESTRICTED BANDEDGE

8.1.1. 802.11a SISO MODE

UNII-1 BAND

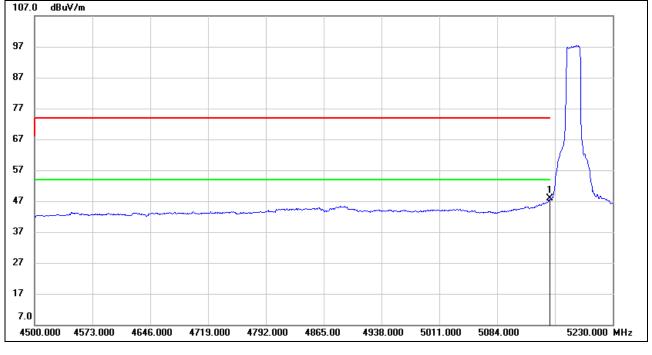
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.FrequencyReadingCorrectResultLimitMarginRemark(MHz)(dBuV)(dB/m)(dBuV/m)(dBuV/m)(dB)15150.00028.5641.1969.7574.00-4.25peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

5. All the polarities (vertical and horizontal) had been tested, only the worst data was recorded in the report.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	6.70	41.19	47.89	54.00	-6.11	AVG

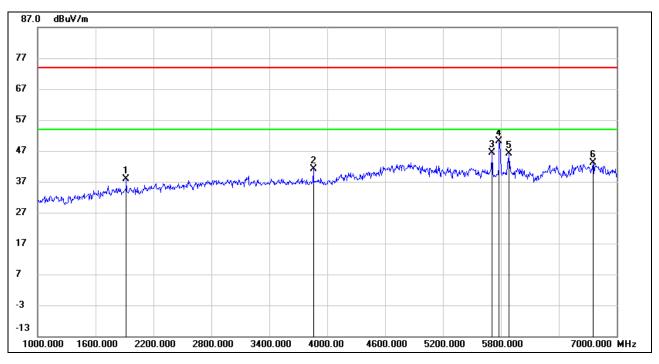
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

4. For the transmitting duration, please refer to clause 7.1.

5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



8.2. SPURIOUS EMISSIONS (1 GHz ~ 7 GHz)

8.2.1. 802.11n HT20 MIMO MODE

UNII-3 BAND

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1918.000	47.92	-10.13	37.79	74.00	-36.21	peak
2	3856.000	44.59	-3.36	41.23	74.00	-32.77	peak
3	5710.000	44.02	2.48	46.50	74.00	-27.50	peak
4	5782.000	47.56	2.50	50.06	74.00	-23.94	peak
5	5884.000	43.18	2.84	46.02	74.00	-27.98	peak
6	6754.000	37.65	5.56	43.21	74.00	-30.79	peak

Note: 1. Measurement = Reading Level + Correct Factor.

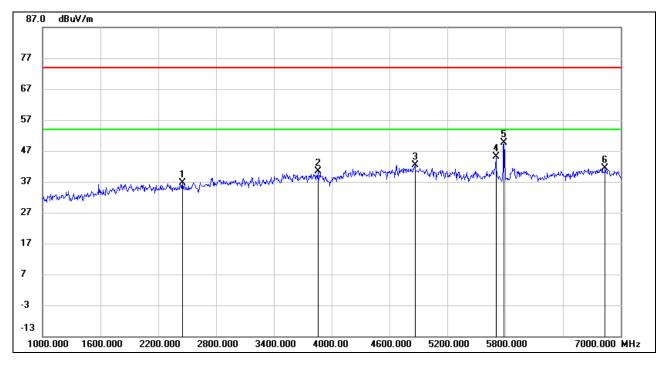
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.


7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Owing to the highest peak level of unwanted emission out of the restricted bands complies with the lowest limit(54dBuV/m), so all the test point was deemed to comply with the limits list in the standard.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2452.000	44.96	-8.31	36.65	74.00	-37.35	peak
2	3856.000	43.68	-3.36	40.32	74.00	-33.68	peak
3	4864.000	41.76	0.69	42.45	74.00	-31.55	peak
4	5704.000	42.72	2.48	45.20	74.00	-28.80	peak
5	5788.000	47.06	2.50	49.56	74.00	-24.44	peak
6	6838.000	35.64	5.69	41.33	74.00	-32.67	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

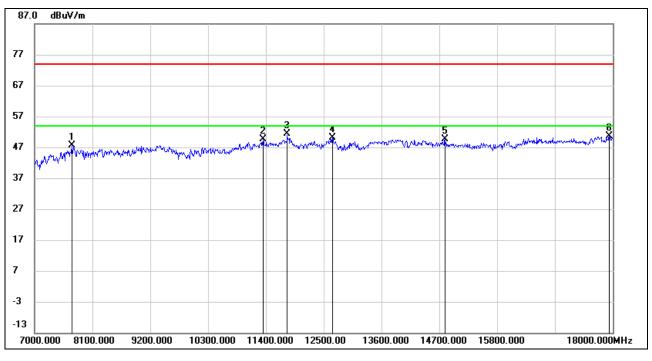
4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Owing to the highest peak level of unwanted emission out of the restricted bands complies with the lowest limit(54dBuV/m), so all the test point was deemed to comply with the limits list in the standard.



8.3. SPURIOUS EMISSIONS (7 GHz ~ 18 GHz)

8.3.1. 802.11n HT20 MIMO MODE

UNII-3 BAND

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7704.000	39.65	7.87	47.52	74.00	-26.48	peak
2	11345.000	35.47	14.06	49.53	74.00	-24.47	peak
3	11807.000	35.70	15.61	51.31	74.00	-22.69	peak
4	12665.000	34.79	15.41	50.20	74.00	-23.80	peak
5	14810.000	32.72	16.80	49.52	74.00	-24.48	peak
6	17934.000	27.85	22.69	50.54	74.00	-23.46	peak

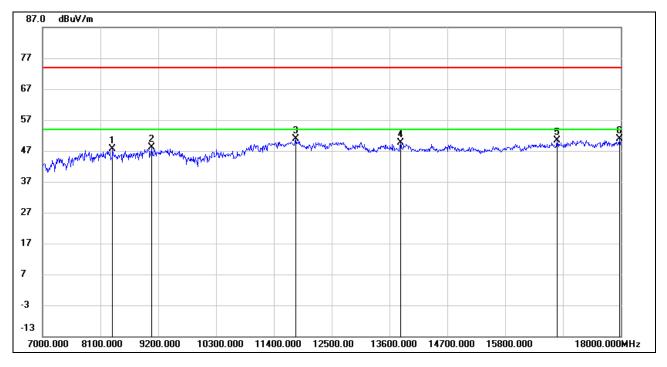
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.


6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Owing to the highest peak level of unwanted emission out of the restricted bands complies with the lowest limit(54dBuV/m), so all the test point was deemed to comply with the limits list in the standard.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8331.000	38.85	8.85	47.70	74.00	-26.30	peak
2	9079.000	38.02	10.10	48.12	74.00	-25.88	peak
3	11818.000	35.31	15.58	50.89	74.00	-23.11	peak
4	13809.000	32.59	16.95	49.54	74.00	-24.46	peak
5	16790.000	30.53	19.73	50.26	74.00	-23.74	peak
6	17978.000	28.10	22.68	50.78	74.00	-23.22	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

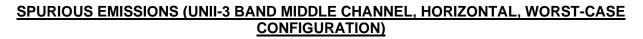
3. Peak: Peak detector.

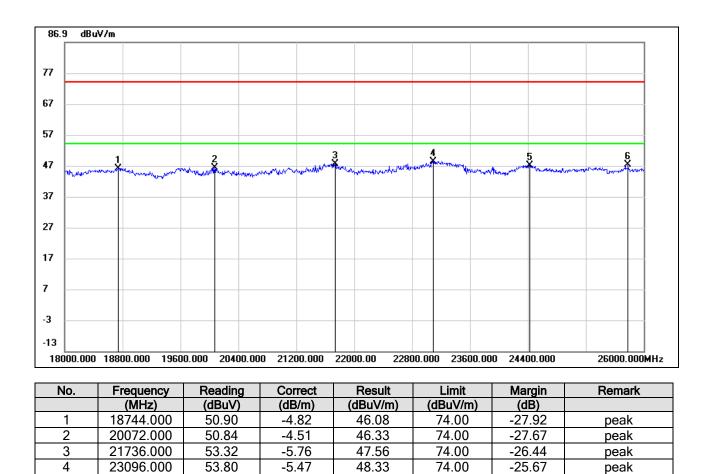
4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.


8. Owing to the highest peak level of unwanted emission out of the restricted bands


complies with the lowest limit(54dBuV/m), so all the test point was deemed to comply with the limits list in the standard.

8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1. 802.11n HT20 MIMO MODE

Note: 1. Measurement = Reading Level + Correct Factor.

50.04

48.73

-2.90

-1.49

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

47.14

47.24

74.00

74.00

-26.86

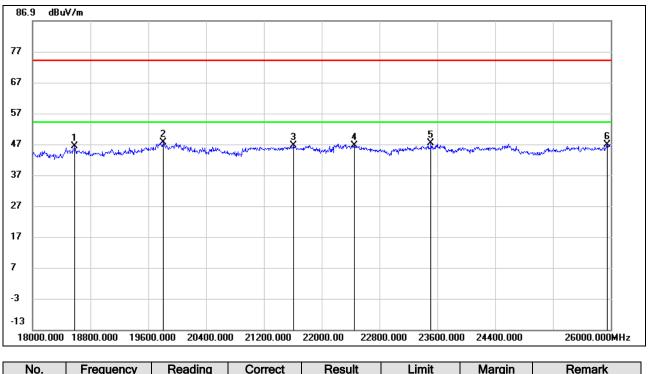
-26.76

peak

peak

3. Peak: Peak detector.

24424.000


25784.000

5

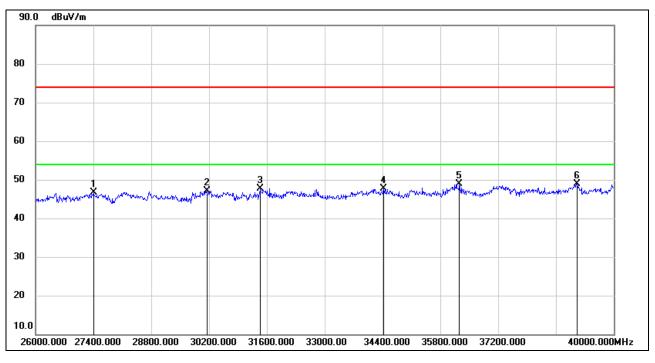
6

SPURIOUS EMISSIONS (MIDDLE CHANNEL, VERTICAL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18584.000	50.69	-4.53	46.16	74.00	-27.84	peak
2	19808.000	51.83	-4.34	47.49	74.00	-26.51	peak
3	21608.000	52.23	-5.76	46.47	74.00	-27.53	peak
4	22448.000	52.27	-5.86	46.41	74.00	-27.59	peak
5	23512.000	52.01	-4.76	47.25	74.00	-26.75	peak
6	25952.000	49.10	-2.25	46.85	74.00	-27.15	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

Note: All the channels and modes antennas had been tested, but only the worst data was recorded in the report.

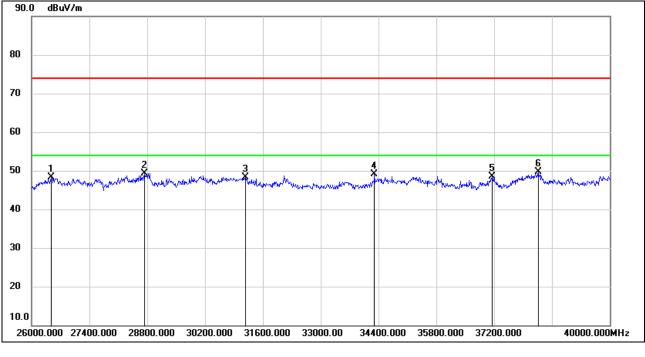
8.5. SPURIOUS EMISSIONS (26 GHz ~ 40 GHz)

8.5.1. 802.11n HT40 MIMO MODE

SPURIOUS EMISSIONS (UNII-3 BAND MIDDLE CHANNEL, HORIZONTAL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	27400.000	50.42	-3.79	46.63	74.00	-27.37	peak
2	30144.000	48.46	-1.30	47.16	74.00	-26.84	peak
3	31432.000	48.75	-1.10	47.65	74.00	-26.35	peak
4	34428.000	46.70	0.99	47.69	74.00	-26.31	peak
5	36262.000	45.60	3.28	48.88	74.00	-25.12	peak
6	39118.000	44.69	4.24	48.93	74.00	-25.07	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

SPURIOUS EMISSIONS (MIDDLE CHANNEL, VERTICAL, WORST-CASE CONFIGURATION)

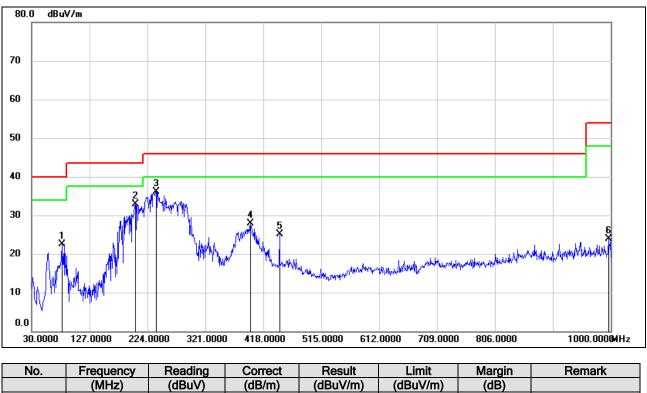
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	26476.000	53.03	-4.78	48.25	74.00	-25.75	peak
2	28730.000	50.01	-0.69	49.32	74.00	-24.68	peak
3	31180.000	49.09	-0.79	48.30	74.00	-25.70	peak
4	34302.000	47.95	1.10	49.05	74.00	-24.95	peak
5	37158.000	45.34	3.17	48.51	74.00	-25.49	peak
6	38278.000	45.82	3.82	49.64	74.00	-24.36	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All the channels and modes antennas had been tested, but only the worst data was recorded in the report.

8.6. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.6.1. 802.11n HT20 MIMO MODE

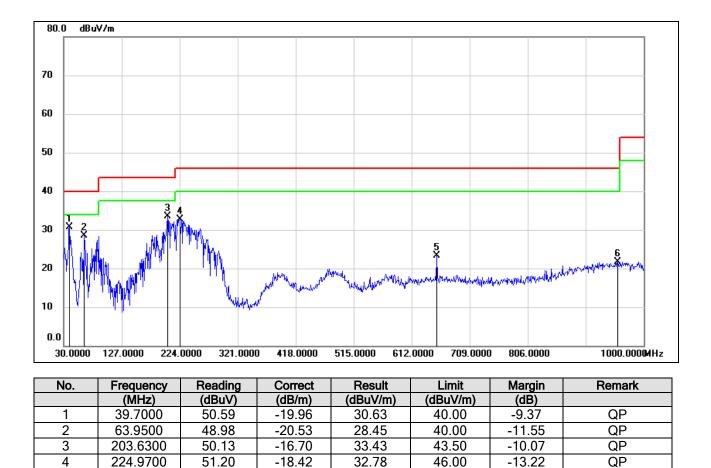
SPURIOUS EMISSIONS (UNII-3 BAND MIDDLE CHANNEL, HORIZONTAL, WORST-CASE CONFIGURATION)

NO.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	80.4400	43.97	-21.38	22.59	40.00	-17.41	QP
2	203.6300	49.64	-16.70	32.94	43.50	-10.56	QP
3	238.5500	55.29	-19.10	36.19	46.00	-9.81	QP
4	396.6600	41.29	-13.41	27.88	46.00	-18.12	QP
5	445.1600	37.60	-12.53	25.07	46.00	-20.93	QP
6	996.1200	28.02	-4.20	23.82	54.00	-30.18	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.


5

6

653.7100

956.3500

SPURIOUS EMISSIONS (UNII-3 BAND MIDDLE CHANNEL, VERTICAL, WORST-CASE CONFIGURATION)

Note: 1. Result Level = Read Level + Correct Factor.

32.16

26.29

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

23.24

21.80

46.00

46.00

-22.76

-24.20

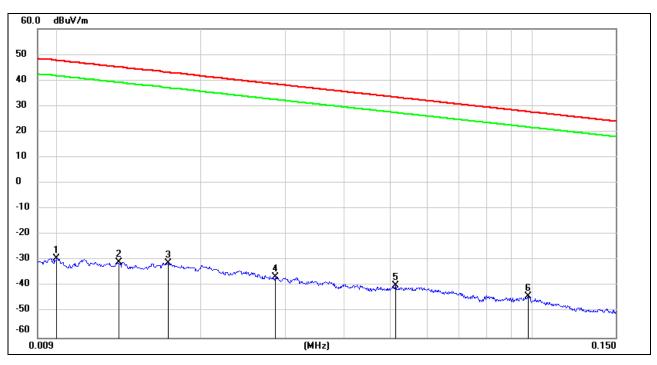
QP

QP

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

-8.92

-4.49


Note: All the channels and modes antennas had been tested, but only the worst data was recorded in the report.

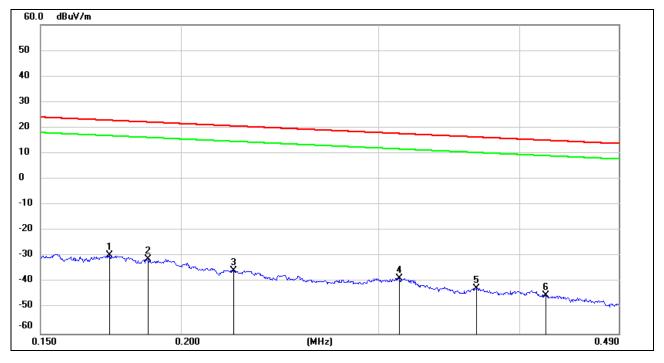
8.7. SPURIOUS EMISSIONS BELOW 30 MHz

8.7.1. 802.11n HT20 MIMO MODE

SPURIOUS EMISSIONS (UNII-3 BAND MIDDLE CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz~ 150 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	72.22	-101.40	-29.18	47.60	-76.78	peak
2	0.0134	70.73	-101.39	-30.66	45.06	-75.72	peak
3	0.0170	70.29	-101.36	-31.07	42.99	-74.06	peak
4	0.0286	64.96	-101.38	-36.42	38.47	-74.89	peak
5	0.0514	61.68	-101.48	-39.80	33.38	-73.18	peak
6	0.0981	57.77	-101.78	-44.01	27.77	-71.78	peak

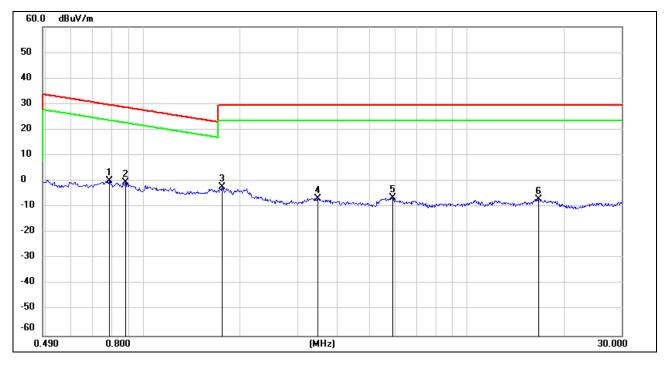

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1728	72.00	-101.67	-29.67	22.86	-52.53	peak
2	0.1869	70.54	-101.70	-31.16	22.17	-53.33	peak
3	0.2227	66.15	-101.75	-35.60	20.65	-56.25	peak
4	0.3129	63.44	-101.87	-38.43	17.69	-56.12	peak
5	0.3662	59.58	-101.93	-42.35	16.33	-58.68	peak
6	0.4223	56.90	-101.98	-45.08	15.09	-60.17	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.7861	62.33	-62.14	0.19	29.69	-29.50	peak
2	0.8820	61.68	-62.19	-0.51	28.69	-29.20	peak
3	1.7580	59.58	-61.93	-2.35	29.54	-31.89	peak
4	3.4704	54.85	-61.46	-6.61	29.54	-36.15	peak
5	5.9198	54.93	-61.36	-6.43	29.54	-35.97	peak
6	16.6021	54.02	-60.96	-6.94	29.54	-36.48	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the channels and modes antennas had been tested, but only the worst data was recorded in the report.

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT