	TEST REPO	ORT					
FCC ID	2A8T7KING8						
Test Report No:	TCT221205E007						
Date of issue:	Dec. 28, 2022						
Testing laboratory: :	SHENZHEN TONGCE TE	STING LAB					
Testing location/ address:		Factory, Renshan Industrial District, Shenzhen, Guangd c of China					
Applicant's name: :	Shenzhen Kingbolen Elect	trics Technology Co., Ltd.					
Address:	B1020-1028 Yousong Tec Longhua Dist., Shenzhen,	hnology Building, 1st Dongl 518109 China	nuan Rd.,				
Manufacturer's name :	Shenzhen Kingbolen Elect	rics Technology Co., Ltd.					
Address:	B1020-1028 Yousong Technology Building, 1st Donghuan Rd., Longhua Dist., Shenzhen, 518109 China						
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013						
Product Name::	Automotive Diagnostic Too	bl					
Trade Mark:	KINGBOLEN						
Model/Type reference :	K8						
Rating(s):	Adapter Information: Model: PSYB00502500 Input: AC 100-240V, 50/60Hz, 0.6A Max Output: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC 7.6V						
Date of receipt of test item							
Date (s) of performance of test:	Dec. 05, 2022 - Dec. 28, 2	022	(S				
Tested by (+signature) :	Rleo LIU	Preo Un ronge					
Check by (+signature) :	Beryl ZHAO	Bayl 200 TC	TING				
Approved by (+signature):	Tomsin	Tomsin 45	84				

TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	
1.3. Operation Frequency	3
2. Test Result Summary	4
3. General Information	5
3.1. Test environment and mode	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	6
4.1. Facilities	6
4.2. Location	6
4.3. Measurement Uncertainty	6
5. Test Results and Measurement Data	7
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power1	2
5.4. 20dB Occupy Bandwidth1	
5.5. Carrier Frequencies Separation1	
5.6. Hopping Channel Number1	5
5.7. Dwell Time1	6
5.8. Pseudorandom Frequency Hopping Sequence1	7
5.9. Conducted Band Edge Measurement1	8
5.10.Conducted Spurious Emission Measurement1	9
5.11.Radiated Spurious Emission Measurement	0
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Automotive Diagnostic Tool		$(\mathbf{c}^{\mathbf{t}})$
Model/Type reference:	К8		
Sample Number:	TCT221205E007-0101		
Bluetooth Version:	V5.0 (This report is for BDR+EDR)	No.	
Operation Frequency:	2402MHz~2480MHz		
Transfer Rate:	1/2/3 Mbits/s		
Number of Channel:	79		
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology:	FHSS		
Antenna Type:	Internal Antenna		
Antenna Gain:	2.35dBi		
Rating(s):	Adapter Information: Model: PSYB00502500 Input: AC 100-240V, 50/60Hz, 0.6A Max Output: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC 7.6V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
<u>()</u> 1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		- (
Remark: modulatic	Channel 0, 3 on mode.	39 & 78 ha	ave been te	sted for G	FSK, π/4-D	QPSK, 8	DPSK

Report No.: TCT221205E007

Page 3 of 97

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 97

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	25.3 °C	25.3 °C				
Humidity:	56 % RH	56 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:						
Software Information:	Engineer Mode					
Power Level:	Default					
Test Mode:						
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations						
above the ground plane of 3 polarities were performed.	8m & 1.5m for the measure 8m chamber. Measurements i During the test, each emissio ing, investigated all operating	n both horizontal and vertical n was maximized by: having				

axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	/	/	/	/

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU		
1	Conducted Emission	± 3.10 dB		
2	RF power, conducted	± 0.12 dB		
3	Spurious emissions, conducted	± 0.11 dB		
4	All emissions, radiated(<1 GHz)	± 4.56 dB		
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB		
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB		

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

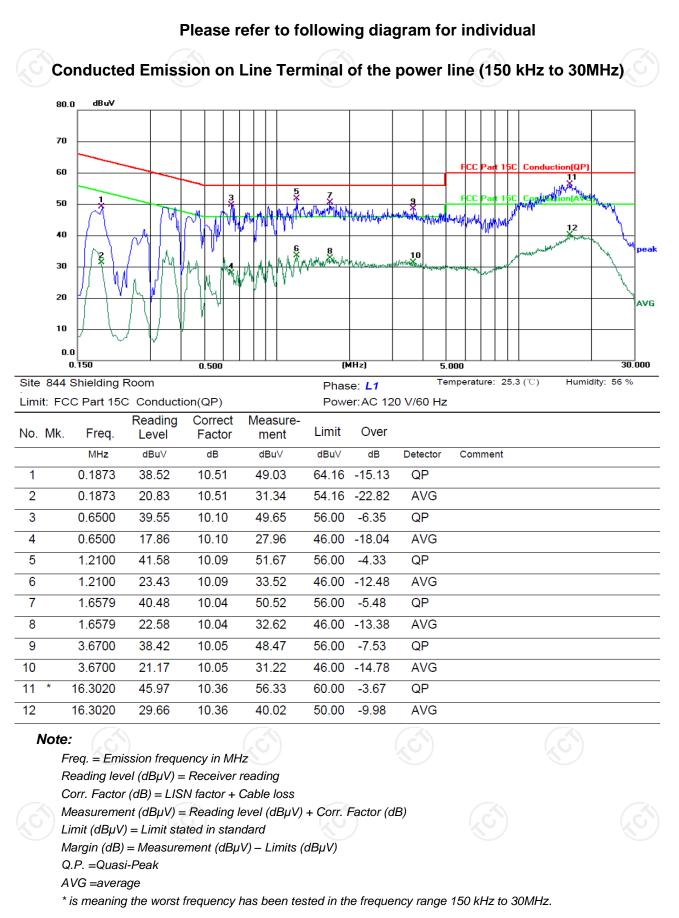
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

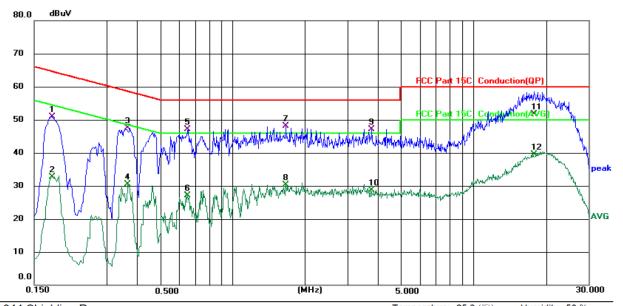
E.U.T Antenna:

The Bluetooth antenna is internal antenna which permanently attached, and the best case gain of the antenna is 2.35dBi.

5.2. Conducted Emission

5.2.1. Test Specification


			(
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference	e Plane					
Test Setup:	Filter AC power Filter AC power Filter AC power Filter AC power EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test Mode:	Charging + Transmittir	ng Mode					
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 						
	 photographs). 3. Both sides of A.C. conducted interference emission, the relative the interface cables 	line are checken nce. In order to fi e positions of equ must be changed	ed for maximur nd the maximur lipment and all of according to				
Test Result:	photographs). 3. Both sides of A.C. conducted interferen emission, the relativ	line are checken nce. In order to fi e positions of equ must be changed	ed for maximur nd the maximur lipment and all of according to				


5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)							
(Equipment	Manufacturer	Model	Serial Number	Calibration Due			
	EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023			
	Line Impedance Stabilisation Schwarzbeck Newtork(LISN)		NSLK 8126	8126453	Feb. 24, 2023			
	Line-5	ТСТ	CE-05	/	Jul. 03, 2024			
Q	EMI Test Software	Shurple Technology	EZ-EMC	1	1 68			

5.2.3. Test data

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844	Shielding	Room			Phase	e: N	Tem	perature: 25.3 (℃)	Humidity: 56 %
Limit: FO	Limit: FCC Part 15C Conduction(QP)					Power:AC 120 V/60 Hz			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.1779	40.40	10.51	50.91	64.58	-13.67	QP		
2	0.1779	22.27	10.51	32.78	54.58	-21.80	AVG		
3	0.3659	37.21	10.21	47.42	58.59	-11.17	QP		
4	0.3659	20.20	10.21	30.41	48.59	-18.18	AVG		
5	0.6508	37.10	10.10	47.20	56.00	-8.80	QP		
6	0.6508	17.07	10.10	27.17	46.00	-18.83	AVG		
7 *	1.6700	38.05	10.04	48.09	56.00	-7.91	QP		
8	1.6700	20.19	10.04	30.23	46.00	-15.77	AVG		
9	3.7900	37.07	10.05	47.12	56.00	-8.88	QP		
10	3.7900	18.56	10.05	28.61	46.00	-17.39	AVG		
11	17.8580	41.41	10.39	51.80	60.00	-8.20	QP		
12	17.8580	29.03	10.39	39.42	50.00	-10.58	AVG		
			/			/			

Note1:

Freq. = Emission frequency in MHz

TCT通测检测 TCT通测检测

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and GFSK) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	\bigcirc 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	N/A		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 		
Test Result:	PASS		

5.4.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	KDB 558074 D01 v05r02	
Limit:	Frequency hopping systems shall have hopping char carrier frequencies separated by a minimum of 25 kH the 20 dB bandwidth of the hopping channel, whicher is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separate by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater tha 125 mW.	
Test Setup:	Spectrum Analyzer EUT	
Test Mode:	Hopping mode	
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 	

5.5.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1

Page 14 of 97

5.6. Hopping Channel Number

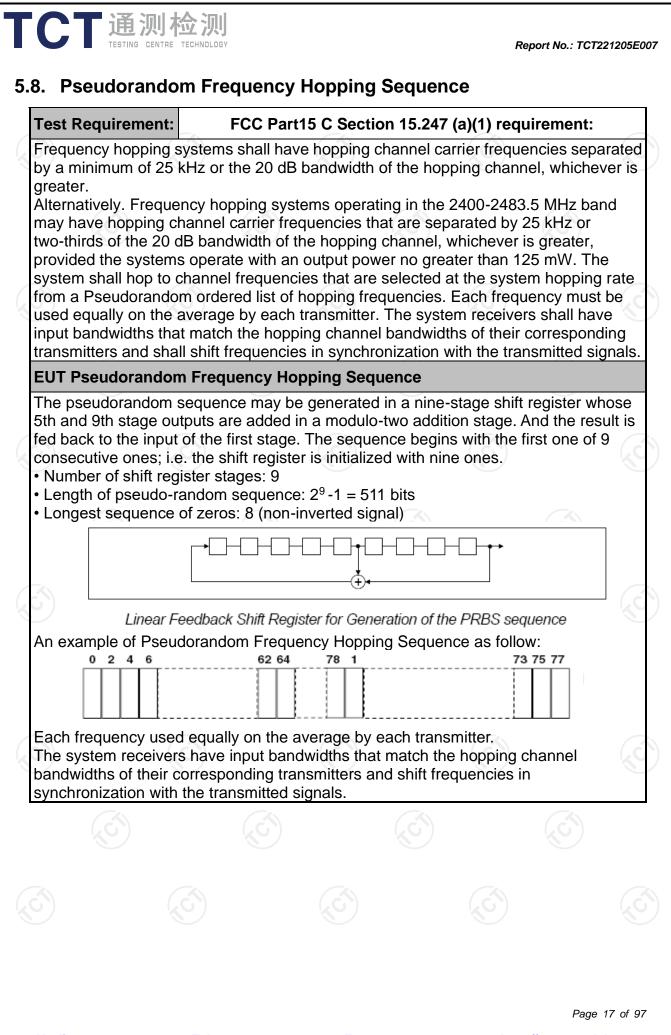
5.6.1. Test Specification

FCC Part15 C Section 15.247 (a)(1) KDB 558074 D01 v05r02 Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. Spectrum Analyzer
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
band shall use at least 15 channels.
Spectrum Analyzer
Hopping mode
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/
(\mathbf{G})	(.c)		G	(G)

5.7.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
1	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
	Combiner Box	Ascentest	AT890-RFB		

Page 16 of 97

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

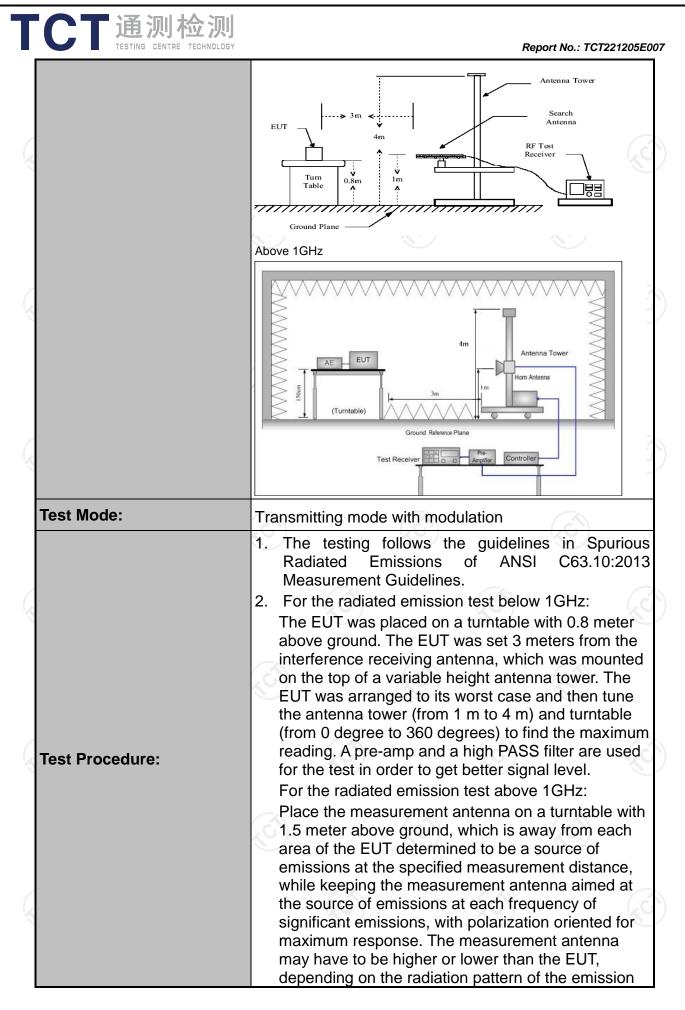
Equipment	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1
(\mathcal{L})			<u>, ()</u>	(\mathcal{O})

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 		
Test Result:	PASS		

5.10.2. Test Instruments


Equipment	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Sectior	n 15.209			K
Test Method:	ANSI C63.10):2013				
Frequency Range:	9 kHz to 25 (GHz	3			ii ii
Measurement Distance:	3 m		9		R.)
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector	RBW	VBW		Remark
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz	Quasi-pea Quasi-pea		1kHz 30kHz		si-peak Value si-peak Value
	30MHz-1GHz Above 1GHz	Quasi-pea Peak	1MHz	300KHz 3MHz	P	si-peak Value eak Value
		Peak	1MHz	10Hz	Ave	erage Value
	Frequen		Field Stro (microvolts	/meter)		asurement nce (meters)
	0.009-0.4	1	2400/F(l 24000/F(<u>300</u> 30
	1.705-3		30			30
	30-88		100			3
Limit:	88-216		150 200		-(<u>k</u> ć	3 3
Linit.	Above 9		500			3
	Above 1GHz		500 5000	(meter 3 3	rs)	Average Peak
Test setup:	For radiated emis	stance = 3m	d Plane		Comput	
S) (S)	× C	S)	(,	Ś		
						Page 20 of S

Page 21 of 97

	receiving the max measurement ant maximizes the en antenna elevation restricted to a ran above the ground 3. Set to the maxin EUT transmit cor 4. Use the following (1) Span shall w emission bei (2) Set RBW=12 for f>1GHz ; Sweep = au = max hold (3) For average	spectrum analyzer setting ide enough to fully capture ng measured; 0 kHz for f < 1 GHz, RBW VBW≥RBW; to; Detector function = pea for peak measurement: use duty c actor method per	or at which shall be so 4 m e. nable the gs: e the =1MHz ak; Trace ycle
	15.35(c). Dut On time =N1 Where N1 is length of typ Average Em Level + 20*I	y cycle = On time/100 milli *L1+N2*L2++Nn-1*LNn- s number of type 1 pulses, be 1 pulses, etc. hission Level = Peak Emiss og(Duty cycle) eading: Antenna Factor + C	1+Nn*Li L1 is sion
Test results:	15.35(c). Dut On time =N1 Where N1 is length of typ Average Em Level + 20*I Corrected Re	*L1+N2*L2++Nn-1*LNn- s number of type 1 pulses, be 1 pulses, etc. hission Level = Peak Emiss og(Duty cycle)	1+Nn*L L1 is sion Cable
Test results:	15.35(c). Dut On time =N1 Where N1 is length of typ Average Em Level + 20*l Corrected Re Loss + Read	*L1+N2*L2++Nn-1*LNn- s number of type 1 pulses, oe 1 pulses, etc. hission Level = Peak Emiss og(Duty cycle) eading: Antenna Factor + C	1+Nn*L L1 is sion Cable
Test results:	15.35(c). Dut On time =N1 Where N1 is length of typ Average Em Level + 20*l Corrected Re Loss + Read	*L1+N2*L2++Nn-1*LNn- s number of type 1 pulses, oe 1 pulses, etc. hission Level = Peak Emiss og(Duty cycle) eading: Antenna Factor + C	1+Nn*L L1 is sion Cable
Test results:	15.35(c). Dut On time =N1 Where N1 is length of typ Average Em Level + 20*l Corrected Re Loss + Read	*L1+N2*L2++Nn-1*LNn- s number of type 1 pulses, oe 1 pulses, etc. hission Level = Peak Emiss og(Duty cycle) eading: Antenna Factor + C	1+Nn*L L1 is sion Cable

5.11.2. Test Instruments

TCT 通测检测 TESTING CENTRE TECHNOLOGY

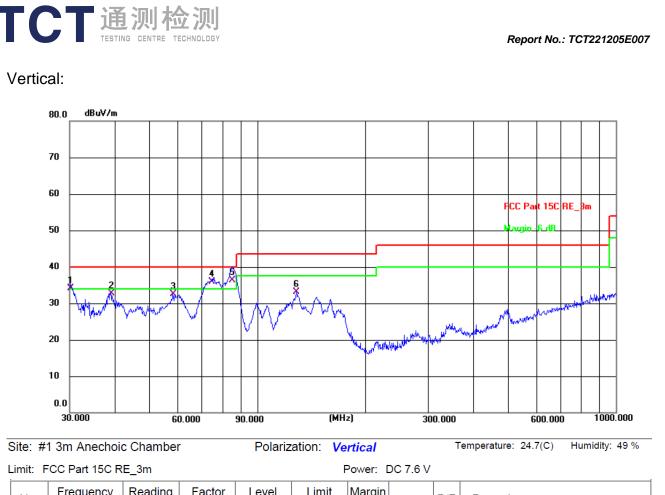
	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	1	1
Coaxial cable	SKET	RC-18G-N-M) /	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC	RG)	1

Page 23 of 97

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. Test Data

Please refer to following diagram for individual


. . ..

Polarization: Horizontal DO 7 01/

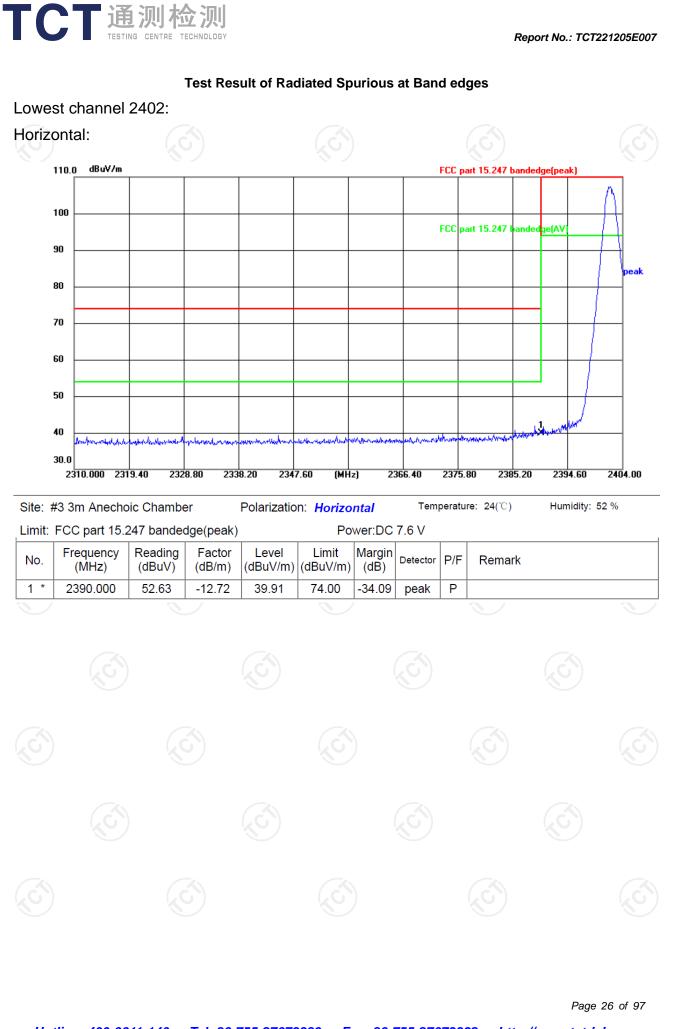
_

Limit: I	FCC Part 15C F	RE_3m				Power:	DC 7.6 \	/	,
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	77.0505	21.80	9.44	31.24	40.00	-8.76	QP	Р	
2	89.5899	24.99	8.56	33.55	43.50	-9.95	QP	Р	
3	108.6470	19.93	10.62	30.55	43.50	-12.95	QP	Р	
4	125.8863	19.17	11.91	31.08	43.50	-12.42	QP	Р	
5	269.4282	17.27	12.69	29.96	46.00	-16.04	QP	Ρ	
6	489.0268	15.24	18.23	33.47	46.00	-12.53	QP	Р	

Page 24 of 97

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1!	30.1053	21.70	12.42	34.12	40.00	-5.88	QP	Ρ	
2	39.0244	19.08	13.63	32.71	40.00	-7.29	QP	Ρ	
3	58.2029	20.08	12.41	32.49	40.00	-7.51	QP	Ρ	
4 !	74.6568	25.88	9.94	35.82	40.00	-4.18	QP	Ρ	
5 *	85.2980	27.62	8.68	36.30	40.00	-3.70	QP	Ρ	
6	128.5629	20.99	12.05	33.04	43.50	-10.46	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK,

Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and GFSK) was submitted only. 3. Freq. = Emission frequency in MHz

- Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
- Limit ($dB\mu V/m$) = Limit stated in standard

 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT221205E007 Vertical: 110.0 dBuV/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 b ge(AV anded 90 aak 80 70 60 50 40 whill the adores Anthe former معراه معادماته desident and 30.0 2310.000 2319.40 2328.80 2338.20 2347.60 (MHz) 2366.40 2375.80 2385.20 2394.60 2404.00 Temperature: 24(℃) Humidity: 52 % Site: #3 3m Anechoic Chamber Polarization: Vertical Limit: FCC part 15.247 bandedge(peak) Power:DC 7.6 V Frequency Reading Factor Level Limit Margin Detector P/F Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) peak 1 * 2390.000 52.43 -12.72 39.71 74.00 -34.29 Ρ Page 27 of 97 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT221205E007 Highest channel 2480: Horizontal: 110.0 dBuV/m 100 90 80 FCC part 15.247 bandedge(peak) 70 60 FCC part 15.247 bandedge(AV È 50 Whow outh which which M. Warman Mary Mary Mark rithe through my falm In work and a second designed and a second and a second and internet the stand program 40 30.0 2478.000 2480.70 2483.40 2486.10 2488.80 (MHz) 2494.20 2496.90 2499.60 2502.30 2505.00 Site: #3 3m Anechoic Chamber Temperature: 24(℃) Humidity: 52 % Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power:DC 7.6 V Frequency Reading Factor Level Limit Margin P/F Detector No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2483.500 68.12 -12.32 55.80 74.00 -18.20 Ρ 1 peak 2 * 2483.500 63.59 -12.32 51.27 54.00 -2.73 AVG Ρ Page 28 of 97

ertica	al:											
1	110.0 dBuV/m											
	m	v										
1	100	λ										_
ų	90	\square	_									
ε	во	$ \rangle$										
		$ \rangle$						FCC	part 15.247	andedge(pe	ak)	
7	70	+					_					\neg
e	50											
			<u>k</u>					FCC	part 15.247	andedge(AV		
5	50		X bran									-
				and the second of the second	mound	**	man	whenthe	hisphila decision	and whole and the	motherne	hi-wine
4	40											
3	30.0 2478.000 24	80.70 249	B3.40 24	86.10 24	88.80 (M	42)	2494.20	249	6.90 249	9.60 250)2.30	2505.
					-							
<u>م</u> . #							Те	mpera	ture: 24(℃)	Hur	nidity: 5	2 %
Ο. π	\$3 3m Anecho	oic Chamb	er	Polarizati	on: Vertic	al		mpord	24(0)			
	t3 3m Anecho FCC part 15.:					ower:D		mpore	1010 . 2 4(0)			
nit: I	FCC part 15. Frequency	247 bande Reading	edge(peak Factor) Level	P	ower:Do Margin						
nit: I o.	FCC part 15. Frequency (MHz)	247 bande Reading (dBuV)	edge(peak Factor (dB/m)) Level (dBuV/m)	P Limit (dBuV/m)	ower:D0 Margin (dB)	C 7.6 V Detector	P/F	Remark			
nit: o. 	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuV) 69.15	edge(peak Factor (dB/m) -12.32) Level (dBuV/m) 56.83	P Limit (dBuV/m) 74.00	ower:D0 Margin (dB) -17.17	C 7.6 V Detector peak	P/F P				
mit: o. 1	FCC part 15. Frequency (MHz) 2483.500 2483.500	247 bande Reading (dBuV) 69.15 64.35	edge(peak Factor (dB/m) -12.32 -12.32) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			Mode
nit: o. * te: A	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			Mode
nit: o. * te: A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			Mode
mit: o. t e : A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: o. * te: A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: I o. *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: I o. *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: o. * te: A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: I o. *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: I o. *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: o. * te: A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: I o. *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: I o. *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
mit: o. t e : A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
mit: o. t e : A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
mit: o. 1 2 *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
mit: o. 1 2 *	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			
nit: o. * te: A	FCC part 15. Frequency (MHz) 2483.500 2483.500 Measurements	247 bande Reading (dBuV) 69.15 64.35 s were cond	edge(peak Factor (dB/m) -12.32 -12.32 ducted in a) Level (dBuV/m) 56.83 52.03	P Limit (dBuV/m) 74.00 54.00	ower:D0 Margin (dB) -17.17 -1.97	C 7.6 V Detector peak AVG	P/F P P	Remark			

Above 1GHz

Modulation	Type: GF	SK							
Low channe	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.05		0.66	45.71		74	54	-8.29
7206	Н	35.08		9.50	44.58		74	54	-9.42
	Н							754	
(G		Û.	•)	()	.G`)		(G)	
4804	V	47.57		0.66	48.23		74	54	-5.77
7206	V	38.39		9.50	47.89		74	54	-6.11
	V								

Middle cha	nnel: 2441	MHz		N N) (((X
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	H	46.97		0.99	47.96	<u> </u>	74	54	-6.04
7323	KOĤ)	36.32	LX O	9.87	46.19	<u>, C 1</u> ,	74	54	-7.81
	H								
			1						
4882	V	47.17		0.99	48.16		74	54	-5.84
7323	V	37.34		9.87	47.21		74	54	-6.79
<u> </u>	V				//		K S.		

High chann	nel: 2480 N	/IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	45.94		1.33	47.27		74	54	-6.73
7440	Н	37.25		10.22	47.47		74	54	-6.53
	Н								
.C)		(G)		(.0			(.G)		(.c
4960	V	45.66		1.33	46.99		74	54	-7.01
7440	V	34.72		10.22	44.94		74	54	-9.06
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

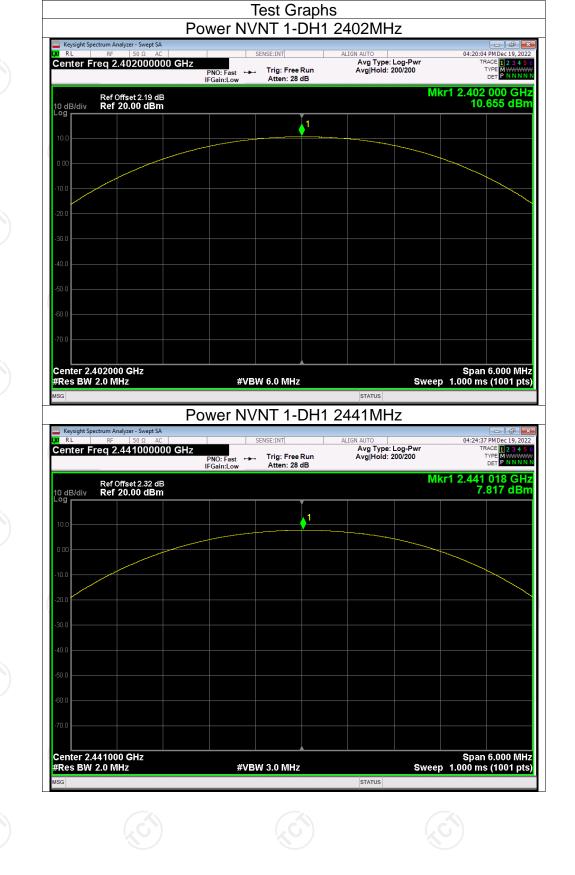
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

CT 通测检测 TESTING CENTRE TECHNOLOGY

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.


Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	10.66	30	Pass
NVNT	1-DH1	2441	7.82	30	Pass
NVNT	1-DH1	2480	6.34	30	Pass
NVNT	2-DH1	2402	10.60	21	Pass
NVNT	2-DH1	2441	7.13	21	Pass
NVNT	2-DH1	2480	5.60	21	Pass
NVNT 🔇	3-DH1	2402	10.57	21	Pass
NVNT	3-DH1	2441	7.15	21	Pass
NVNT	3-DH1	2480	5.52	21	Pass

Center 2.441000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz STATUS Page 32 of 97

TCT通测检测 TEGTING CENTRE TECHNOLOGY

04:27:36 PMDec 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Trig: Free Run Atten: 28 dB PNO: Fast ++++ IFGain:Low Mkr1 2.480 018 GHz 6.336 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log Center 2.480000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS Power NVNT 2-DH1 2402MHz Keysight Spectrum Analyzer - Swept SA 05:08:28 PM Dec 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN KI RL Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.402000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low Atten: 28 dB Mkr1 2.402 000 GHz 10.596 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log 1 Center 2.402000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS

Power NVNT 1-DH1 2480MHz

Avg Type: Log-Pwr Avg|Hold: 1000/1000

Report No.: TCT221205E007

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.480000000 GHz

KI RL

Page 33 of 97

05:06:34 PM Dec 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Trig: Free Run Atten: 28 dB PNO: Fast ++++ IFGain:Low Mkr1 2.440 994 GHz 7.125 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 dB/div Log 1 Center 2.441000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS Power NVNT 2-DH1 2480MHz Keysight Spectrum Analyzer - Swept SA 05:03:22 PM Dec 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN KI RL Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast ---- Trig: Free Run IFGain:Low Atten: 28 dB Mkr1 2.480 042 GHz 5.604 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log 1 Center 2.480000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS

Power NVNT 2-DH1 2441MHz

Avg Type: Log-Pwr Avg|Hold: 1000/1000

KI RL

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.441000000 GHz

Report No.: TCT221205E007

Page 34 of 97

05:11:00 PM Dec 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.402000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low Atten: 28 dB Mkr1 2.402 006 GHz 10.568 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log 1 Center 2.402000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS Power NVNT 3-DH1 2441MHz Keysight Spectrum Analyzer - Swept SA 05:13:05 PM Dec 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN KI RL Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.441000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low Atten: 28 dB Mkr1 2.441 024 GHz 7.147 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 dB/div Log Center 2.441000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS

Power NVNT 3-DH1 2402MHz

Report No.: TCT221205E007

Page 35 of 97

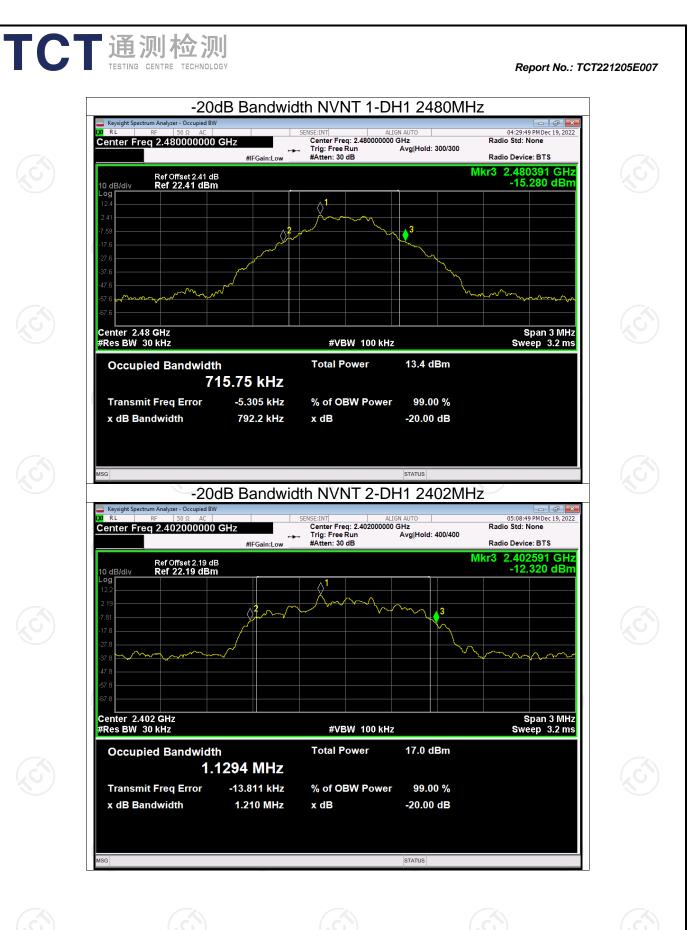
Keysight Spectrum Analyzer - Swept SA

KI RL

Keysight Spectrum / K RL RF Center Freq 2		Hz PNO: Fast ↔	NT 3-DH1	ALIGN AUTO Avg Type: Log-P Avg Hold: 1000/1	05:14:: wr 7 000	53 PM Dec 19, 2022 FACE 1 2 3 4 5 6 TYPE MWWWW DET PNNNNN	
Ref 10 dB/div Ref	Offset 2.41 dB f 20.00 dBm	IFGain:Low	Atten: 28 dB		Mkr1 2.480		
10.0			1				
-10.0							
-20.0							
-40.0							
-60.0							
-70.0 Center 2.4800	00 CH2				Spal	1 6.000 MHz	
#Res BW 2.0 M	MHz	#VB	W 6.0 MHz	STATUS	Sweep 1.000 m	s (1001 pts)	

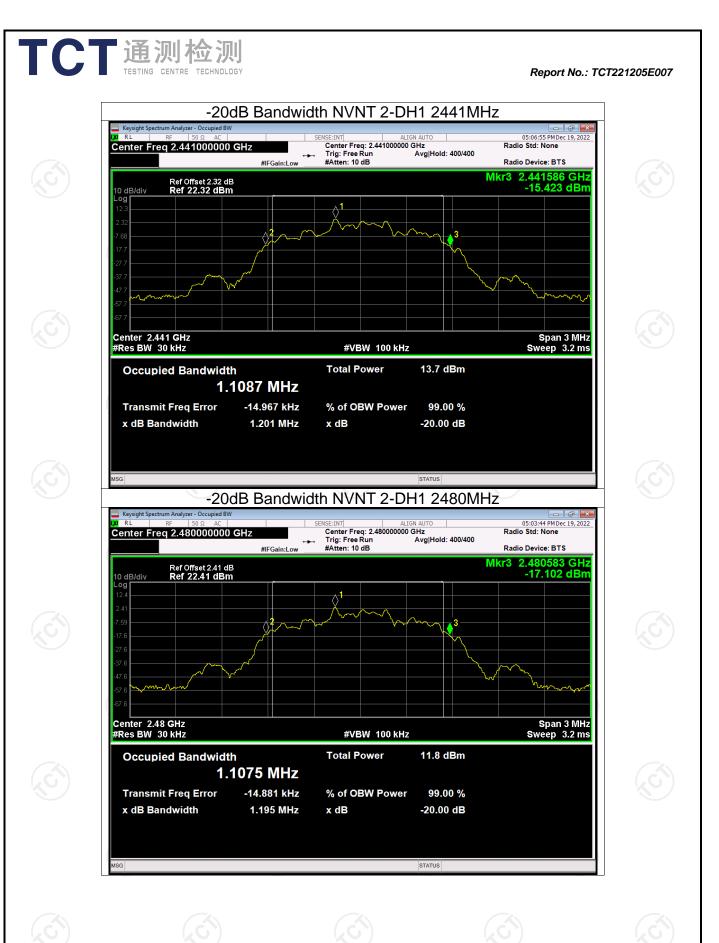
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

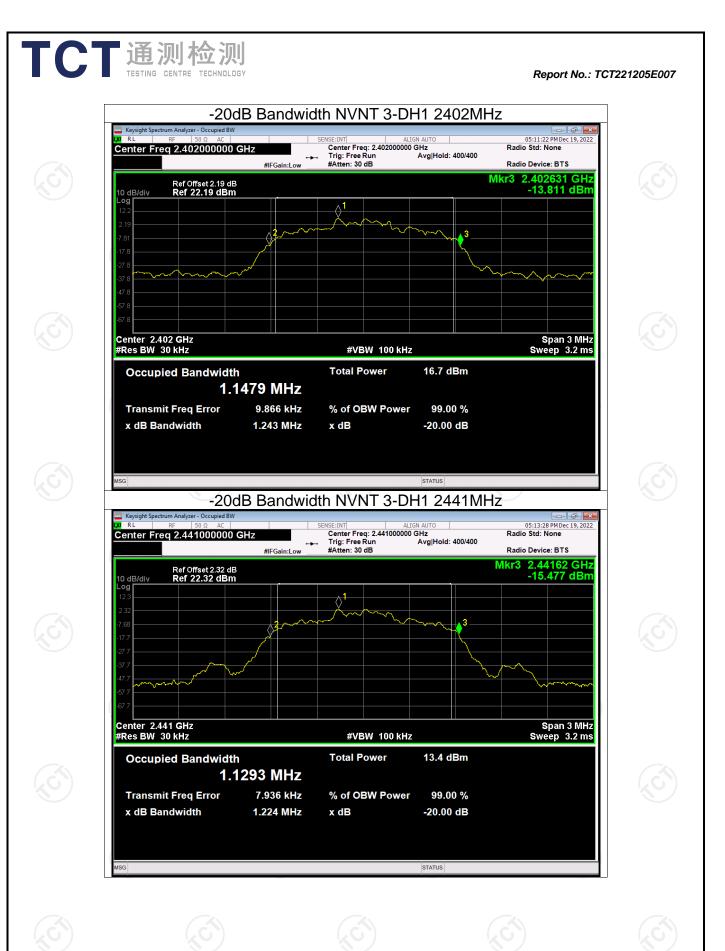
Condition Mode		Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict		
NVNT	1-DH1	2402	0.799	Pass		
NVNT 🚫	1-DH1	2441	0.831	Pass		
NVNT	1-DH1	2480	0.792	Pass		
NVNT	2-DH1	2402	1.210	Pass		
NVNT	2-DH1	2441	1.201	Pass		
	2-DH1	2480	1.195	Pass		
NVNT	3-DH1	2402	1.243	Pass		
NVNT	3-DH1	2441	1.224	Pass		
NVNT	3-DH1	2480	1.223	Pass		

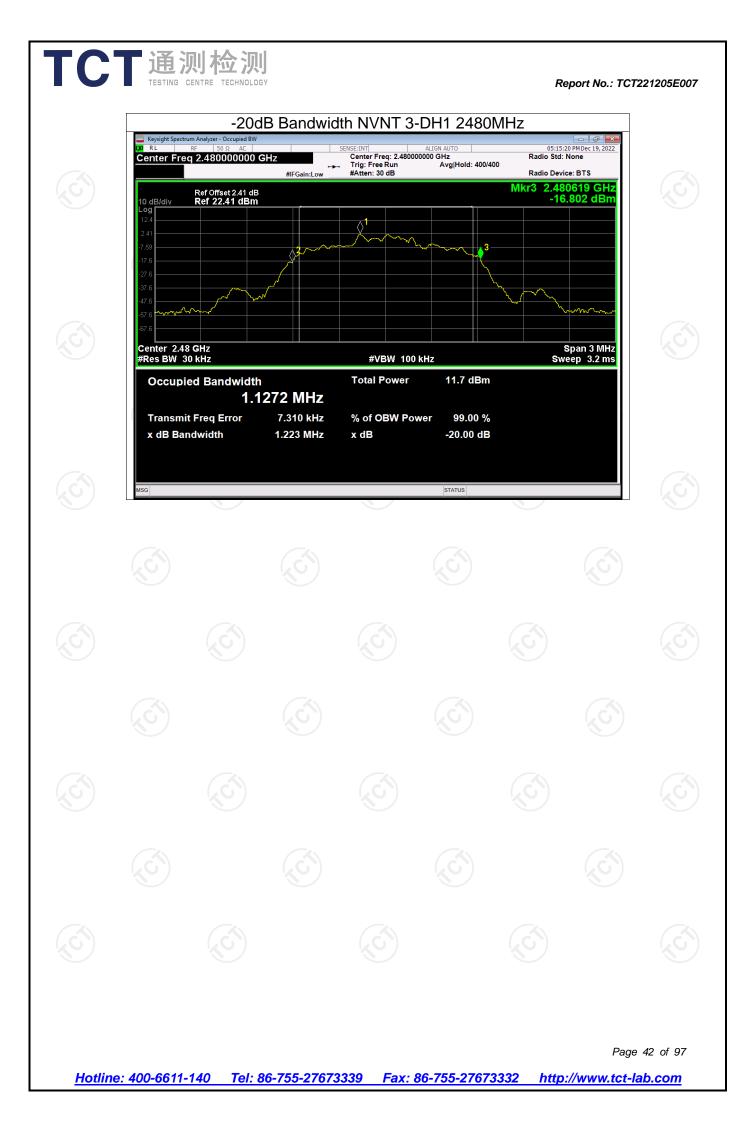


Report No.: TCT221205E007

Page 37 of 97



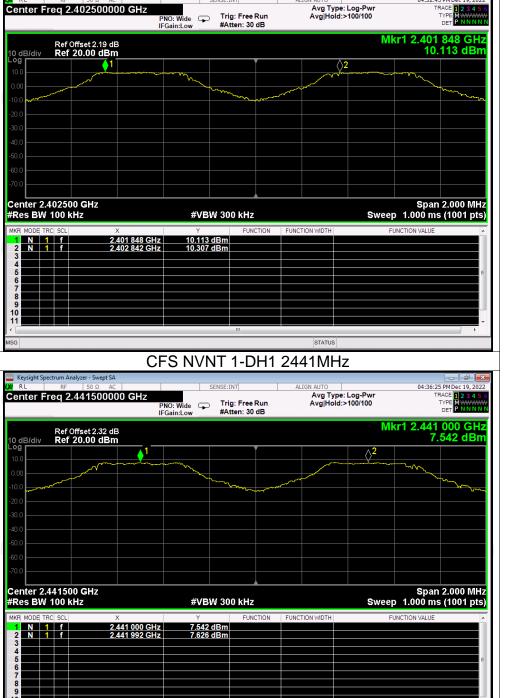

Page 38 of 97


Page 39 of 97

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

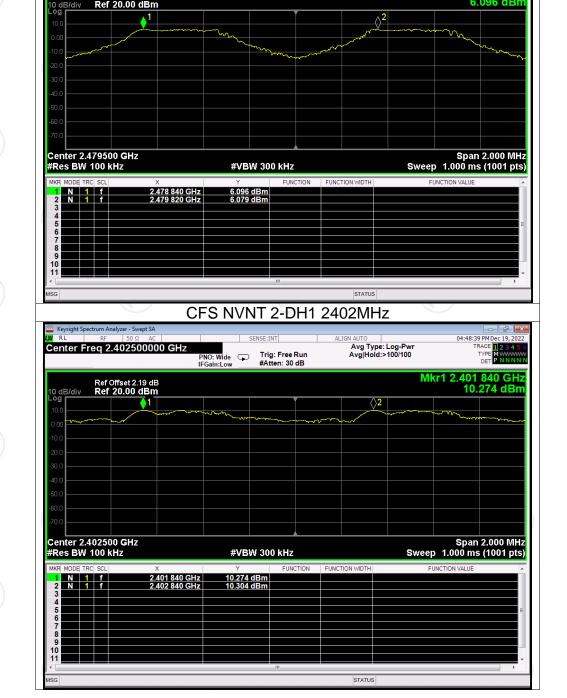
Page 41 of 97

Report No.: TCT221205E0


Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.848	2402.842	0.994	0.831	Pass
NVNT	1-DH1	2441	2441.992	0.992	0.831	Pass
NVNT	1-DH1	2478.840	2479.820	0.980	0.831	Pass
NVNT	2-DH1	2401.840	2402.840	1	0.807	Pass
NVNT	2-DH1	2440.838	2441.844	1.006	0.807	Pass
NVNT 🐇	2-DH1	2478.846	2479.838	0.992	0.807	Pass
NVNT	3-DH1	2401.834	2402.842	1.008	0.829	Pass
NVNT	3-DH1	2440.842	2441.844	1.002	0.829	Pass
NVNT	3-DH1	2478.842	2479.846	1.004	0.829	Pass
		KO)	ku)		•	

Carrier Frequencies Separation

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Test Graphs CFS NVNT 1-DH1 2402MHz

Report No.: TCT221205E007

Page 44 of 97

Keysight Spectrum Analyzer - Swept SA

CFS NVNT 1-DH1 2480MHz

Trig: Free Run #Atten: 30 dB

PNO: Wide 😱 IFGain:Low

Avg Type: Log-Pwr Avg|Hold:>100/100

Report No.: TCT221205E007

1:40:58 PM Dec 19, 2 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYPE DET

Mkr1 2.478 840 GHz 6.096 dBm

Page 45 of 97

Center Freg 2.479500000 GHz

Ref Offset 2.41 dB Ref 20.00 dBm

🔤 Keysight Sj

RL

≬1 ()² Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz N 1 f N 1 f 2.440 838 GHz 2.441 844 GHz 7.155 dBm 7.063 dBm 234 CFS NVNT 2-DH1 2480MHz Keysight Spectrum Analyzer - Swept SA 05:00:19 PM Dec 19, 2022 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N Avg Type: Log-Pw Avg|Hold:>100/100 Center Freg 2.479500000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Wide IFGain:Low \square Mkr1 2.478 846 GHz 4.940 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log **r ∂**² **♦**¹ Center 2.479500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION N 1 f N 1 f 2.478 846 GHz 2.479 838 GHz 4.940 dBm 5.102 dBm 10 11 STATUS

CFS NVNT 2-DH1 2441MHz ALTGN Avg Type: Log-Pwr Avg|Hold:>100/100 Center Freg 2.441500000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low \mathbf{P} Ref Offset 2.32 dB Ref 20.00 dBm

Report No.: TCT221205E007

04:54:03 PM Dec 19, 2022 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

7.155 dBm

TYP

Mkr1 2.440 838 GHz

Page 46 of 97

🔤 Keysight Spe

a RL

10 d Log

CFS NVNT 3-DH1 2402MHz 05:22:52 PM Dec 19, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N Avg Type: Log-Pwr Avg|Hold:>100/100 PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB TYPE

⊘2

STATUS

Mkr1 2.401 834 GHz 10.108 dBm

Center 2.402500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz 10.108 dBm 10.246 dBm 2.401 834 GHz 2.402 842 GHz

CFS NVNT 3-DH1 2441MHz

Keysight Spectrum Analyzer - Swept SA				
LX/ RL RF 50 Ω AC	SENSE:I	NT AL	IGN AUTO	05:29:25 PM Dec 19, 2022
Center Freq 2.441500000	PNO: Wide Tri	g: Free Run tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
Ref Offset 2.32 dB 10 dB/div Ref 20.00 dBm			Ν	/kr1 2.440 842 GHz 7.131 dBm
Log				
-10.0		An and a second		
-20.0				
-30.0				
-40.0				
-50.0				
-60.0				
-70.0				
Center 2.441500 GHz #Res BW 100 kHz	#VBW 30	0 kHz	Swe	Span 2.000 MH: ep 1.000 ms (1001 pts
MKR MODE TRC SCL X	Y	FUNCTION FUNC	TION WIDTH	FUNCTION VALUE
1 N 1 f 2.44 2 N 1 f 2.44	0 842 GHz 7.131 dBm 1 844 GHz 7.138 dBm			
3				
5				
7				
8 9 9				
10				
•		m		•
MSG			STATUS	

Page 47 of 97

Keysight Spectrum Analyzer - Swept SA

N 1 f N 1 f

234

10 d Log

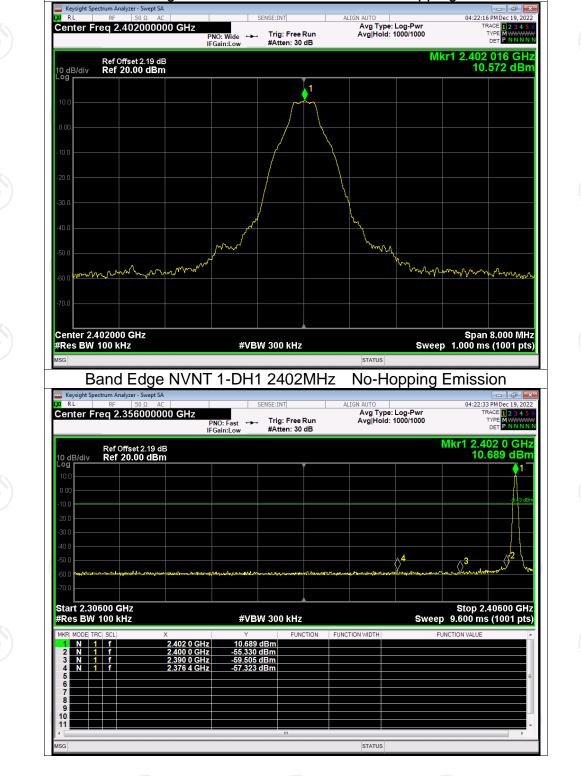
Center Freq 2.402500000 GHz

Ref Offset 2.19 dB Ref 20.00 dBm

61

F	Kowickt Cont	um Analyzer - Swept SA	CFS NVI	NT 3-DH1 2	2480MHz			
	LXI RL	m Analyzer - Swept SA RF 50 Ω AC Q 2.4795000000 C	GHZ PNO: Wide	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log- Avg Hold:>100/1	⁵ wr 00	100 PMDec 19, 2022 TRACE 12 3 4 5 6 TYPE MWWWW DET PNNNNN 8 842 GHz	
	10 dB/div	Ref Offset 2.41 dB Ref 20.00 dBm			2 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.491 dBm	
	-10.0 -20.0 -30.0 -40.0							
)	-50.0 -60.0 -70.0							
	Center 2.47 #Res BW 10 MKR MODE TRC 1 N 1 2 N 1	DO KHZ	Y	FUNCTION GBM dBm	FUNCTION WIDTH	Spa Sweep 1.000 n FUNCTION VALU		
	3 4 5 6 7 8 9						E	
	10 11 MSG				STATUS		• •	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Condition	Mode	(MHz)	Mode	(dBc)	(dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-67.89	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-62.79	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-67.22	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-62.40	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-68.24	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping	-61.14	-20	Pass

			Band Edge			
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-67.89	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-62.79	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-67.22	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-62.40	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-68.24	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping	-61.14	-20	Pass

Report No.: TCT221205E007

Page 49 of 97

Test Graphs

Band Edge NVNT 1-DH1 2402MHz

Report No.: TCT221205E007

Page 50 of 97

No-Hopping Ref

Band Edge NVNT 1-DH1 2480MHz **No-Hopping Ref** 04:27:53 PM Dec 19, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 30 dB TYPE Mkr1 2.480 024 GHz 6.297 dBm 1

mm

manh

Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT 1-DH1 2480MHz **No-Hopping Emission** Keysight Spe

Reysignt Spectrum Analyz	50 Ω AC 26000000 GHz		g: Free Run ten: 30 dB	ALIGN AUTO Avg Type Avg Hold:		TR	PM Dec 19, 20 ACE 1 2 3 4 YPE M WWWW DET P N N N
0 dB/div Ref 20	set 2.41 dB 9.00 dBm					Mkr1 2.4	30 0 GH 480 dBi
-og							
0.00							
10.0							-13.70 d
20.0							
80.0							
60.0 Mart have been a free to be a second way	ntrongen matring and 3	wander and provide after sold	an marine and	and the second second	masherman	hand and the state of the	fronderski ally/h
70.0							
tart 2.47600 GH; Res BW 100 kHz		#VBW 30	0 kHz		Sweep	Stop 2. 9.600 ms	57600 GI (1001 pi
KR MODE TRC SCL	× 2.480 0 GHz	۲ 6.480 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
2 N 1 f	2.480 0 GHZ 2.483 5 GHZ 2.500 0 GHZ	-58.782 dBm -61.000 dBm					
4 N 1 f	2.486 4 GHz	-56.499 dBm					
6							
8							
1							

10 dB/div

m

 Keysight Spectrum Analyzer - Swept SA

 RL
 RF
 50 Ω
 AC

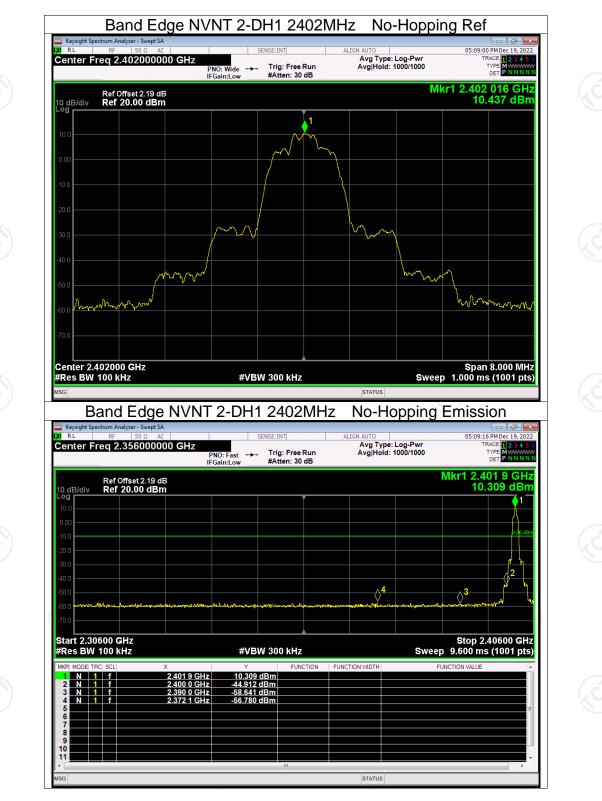
 Center Freq 2.480000000 GHz

Ref Offset 2.41 dB Ref 20.00 dBm

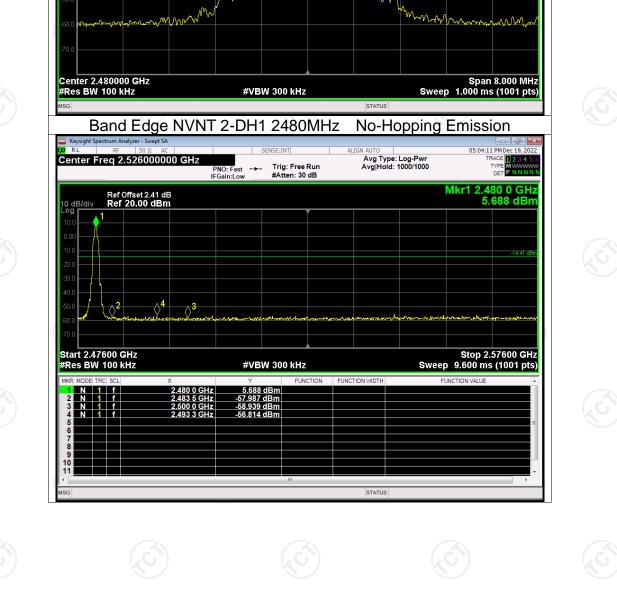
PNO: Wide IFGain:Low

mm

nmm



Report No.: TCT221205E007



Report No.: TCT221205E007

10 dB/div Loa

Keysight

Center Freq 2.480000000 GHz

Ref Offset 2.41 dB Ref 20.00 dBm

KI RL

Band Edge NVNT 2-DH1 2480MHz

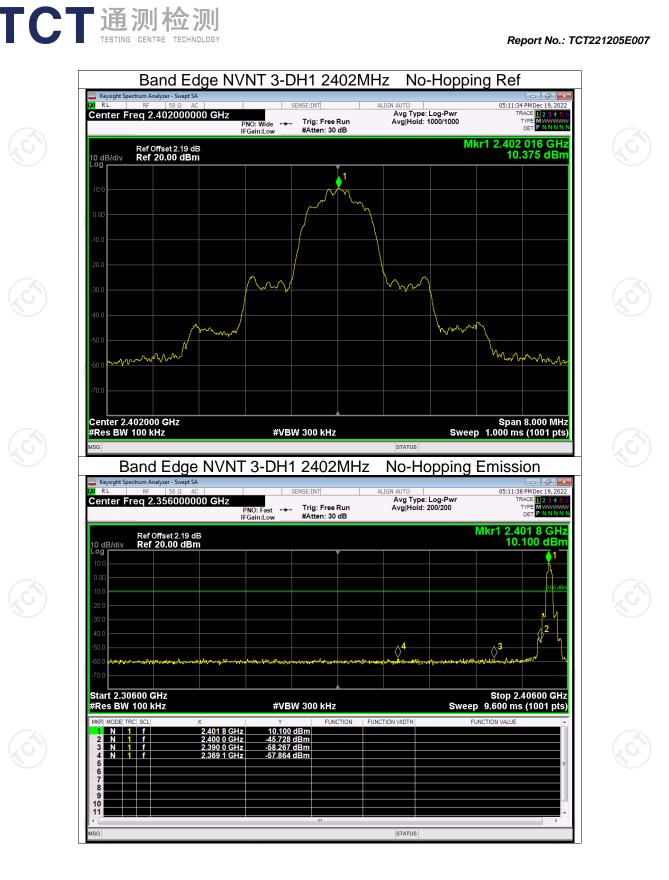
нн

PNO: Wide IFGain:Low

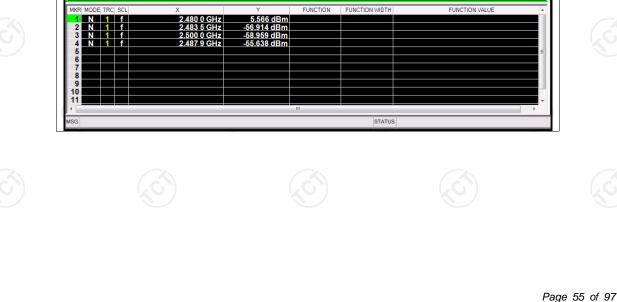
Trig: Free Run #Atten: 30 dB

Report No.: TCT221205E007

No-Hopping Ref


Avg Type: Log-Pwr Avg|Hold: 1000/1000

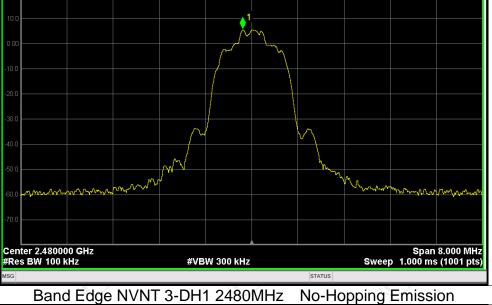
05:03:55 PM Dec 19, 20 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N


TYPE DET

Mkr1 2.479 856 GHz 5.592 dBm

http://www.tct-lab.com Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332

Report No.: TCT221205E007



-14.49 dE **∂**2 ⊘3 Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz

Keysight Spectrum Analyzer - Swept SA :50 PM Dec 19,

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

Trig: Free Run #Atten: 30 dB

Band Edge NVNT 3-DH1 2480MHz

нн

PNO: Wide IFGain:Low

Keysight

10 dB/div Loa

Center Freq 2.480000000 GHz

Center Freq 2.526000000 GHz

10 dB/div Log

Ref Offset 2.41 dB Ref 20.00 dBm

Ref Offset 2.41 dB Ref 20.00 dBm

KI RL

05:15:33 PM Dec 19, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

12345 MWWWW PNNNN

TYPE

Mkr1 2.480 0 GHz 5.566 dBm

TYP DE

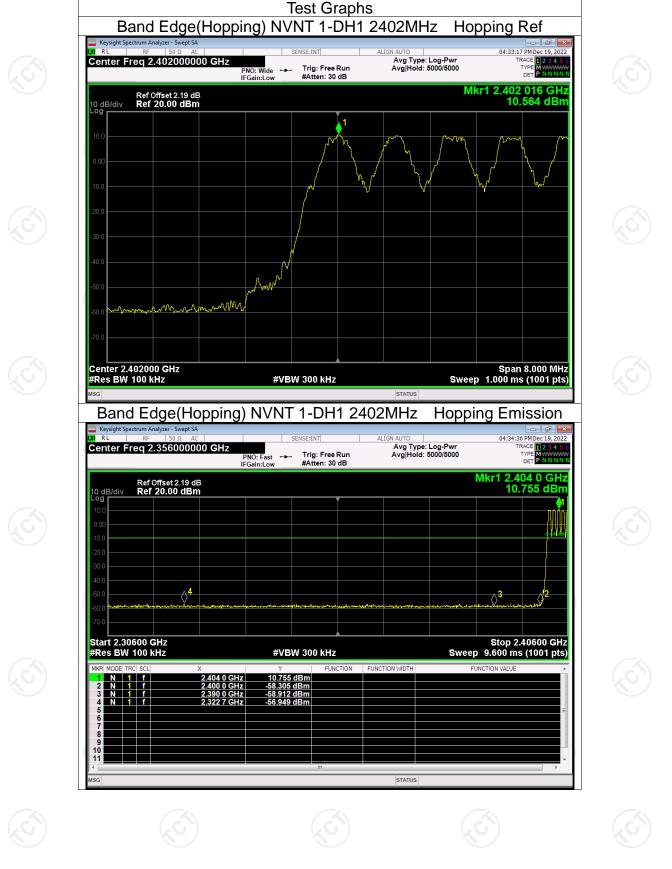
Mkr1 2.479 848 GHz 5.513 dBm

No-Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 1000/1000

Avg Type: Log-Pwr Avg|Hold: 1000/1000

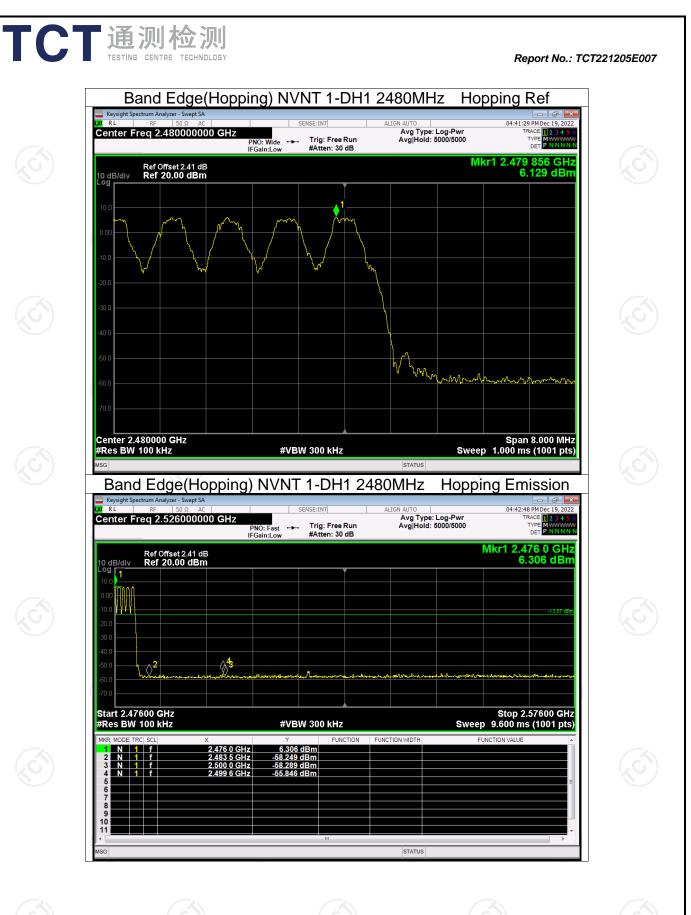
Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com


Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-67.50	-20	Pass
NVNT	1-DH1	2480	Hopping	-61.97	-20	Pass
NVNT	2-DH1	2402	Hopping	-67.62	-20	Pass
NVNT	2-DH1	2480	Hopping	-62.11	-20	Pass
NVNT	3-DH1	2402	Hopping	-67.25	-20	Pass
NVNT 🐇	3-DH1	2480	Hopping	-61.45	-20	Pass

Band Edge(Hopping)

Report No.: TCT221205E007

Page 56 of 97



Report No.: TCT221205E007

Page 57 of 97

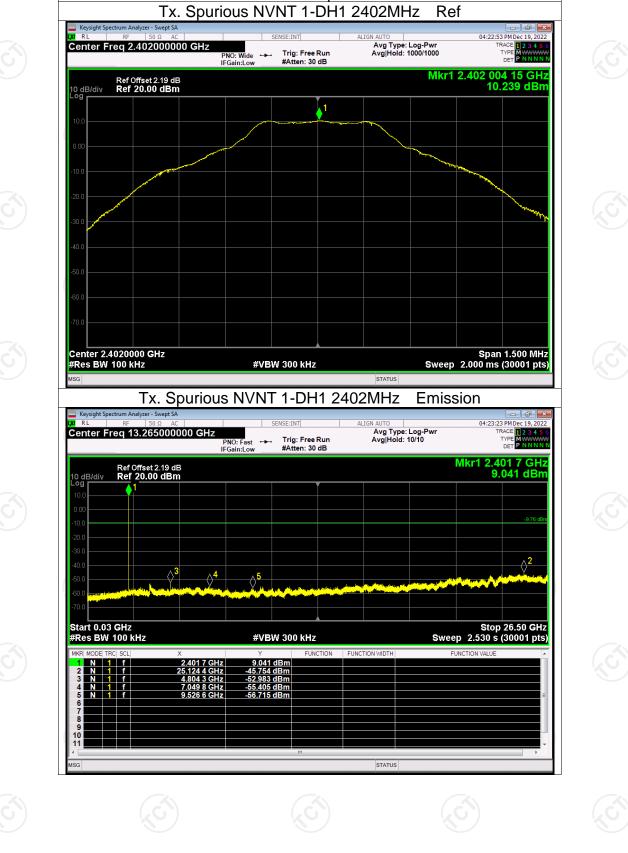
Page 58 of 97

Page 59 of 97

Page 60 of 97

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

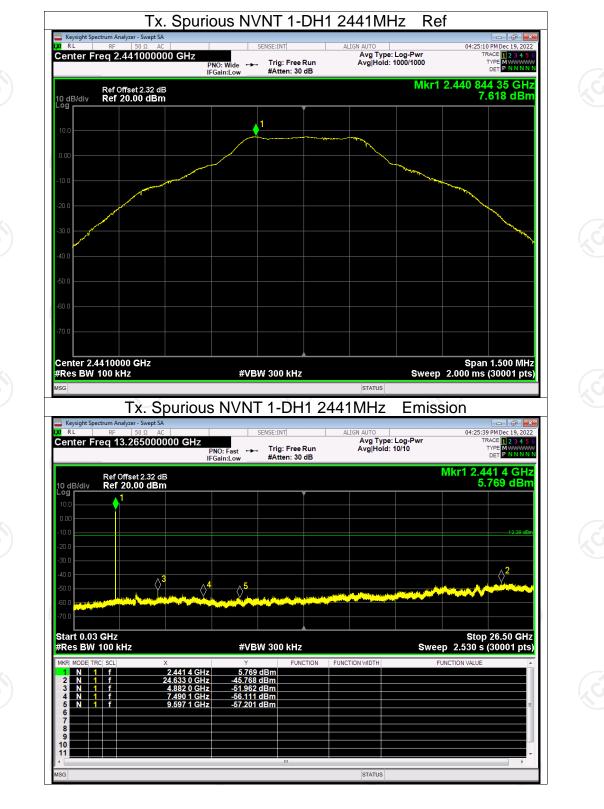
Page 61 of 97

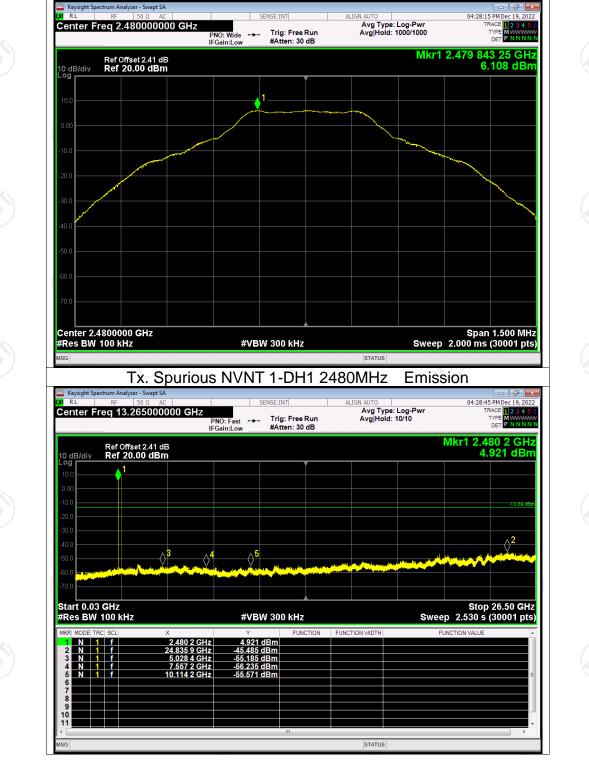


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	1-DH1	2402	-55.99	-20	Pass		
NVNT	1-DH1	2441	-53.38	-20	Pass		
NVNT	1-DH1	2480	-51.59	-20	Pass		
NVNT	2-DH1	2402	-56.23	-20	Pass		
NVNT	2-DH1	2441	-53.03	-20	Pass		
NVNT	2-DH1	2480	-51.33	-20	Pass		
NVNT 🚫	3-DH1	2402	-56.17	-20	Pass		
NVNT	3-DH1	2441	-53.02	-20	Pass		
NVNT	3-DH1	2480	-50.64	-20	Pass		
	(~ (- An			

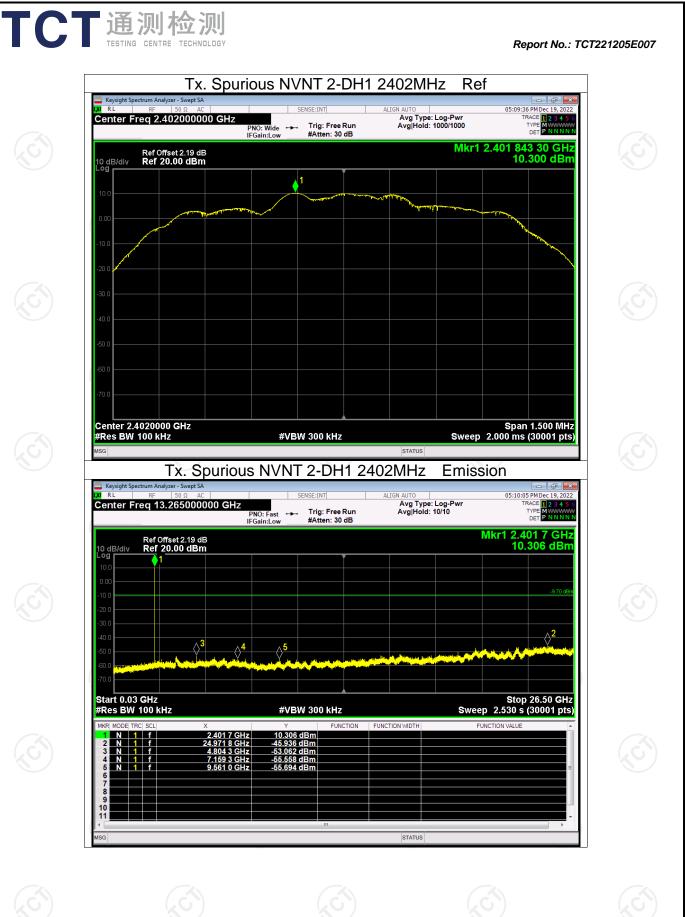
TCT 通测检测 TESTING CENTRE TECHNOLOGY


Page 63 of 97


Test Graphs

Report No.: TCT221205E007

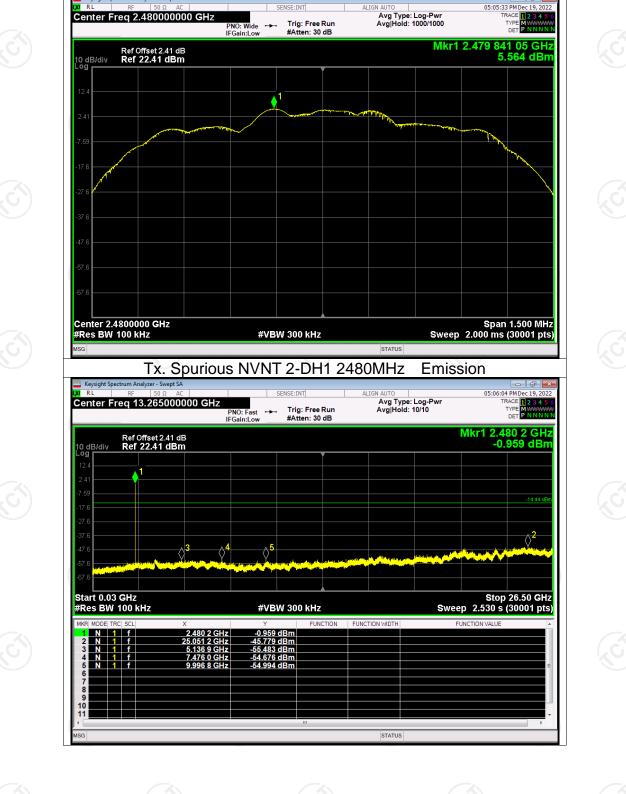
Page 64 of 97


Report No.: TCT221205E007

Tx. Spurious NVNT 1-DH1 2480MHz

Ref

Page 67 of 97



Tx. Spurious NVNT 2-DH1 2441MHz

Report No.: TCT221205E007

Ref

Page 68 of 97

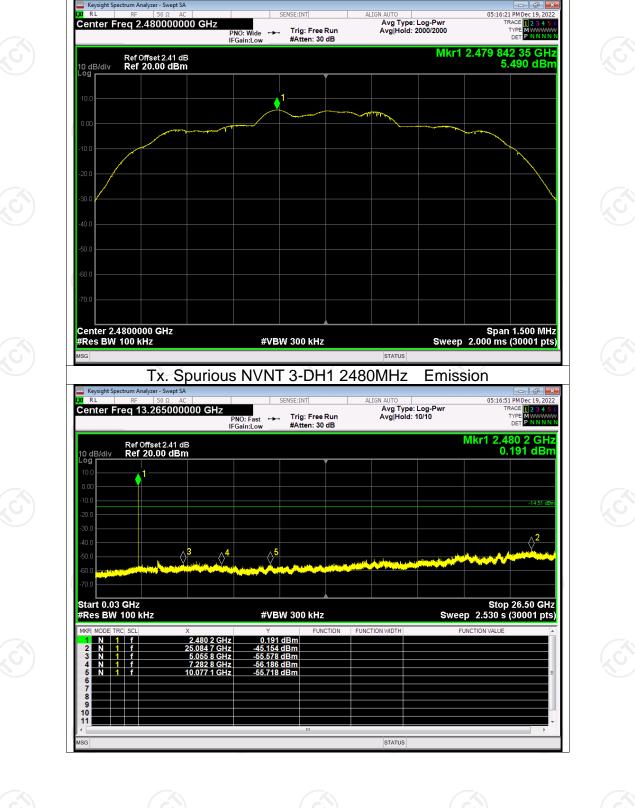

Tx. Spurious NVNT 2-DH1 2480MHz

🔤 Keysight S

Report No.: TCT221205E007

Ref

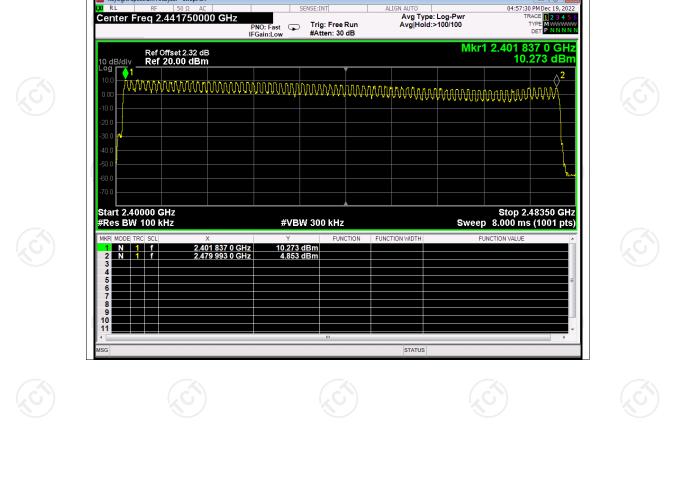
Page 69 of 97


Page 70 of 97

Report No.: TCT221205E007

Ref

Page 71 of 97


Tx. Spurious NVNT 3-DH1 2480MHz

Report No.: TCT221205E007

Ref

Page 72 of 97

	Verd Pas	Limit 15	l Channel umber	lopping N 79		Mode 1-DH	Condition NVNT	(
S	Pas	15	79 79		1	2-DH 3-DH	NVNT NVNT	
5	r do	15		19	<u> </u>	3-DH	INVINI	

Stop 2.48350 GHz Sweep 8.000 ms (1001 pts) Start 2.40000 GHz #Res BW 100 kHz

Hopping No. NVNT 2-DH1 2441MHz

#VBW 300 kHz

9.856 dBm 6.194 dBm

2.401 837 0 GHz 2.479 993 0 GHz

Test Graphs Hopping No. NVNT 1-DH1 2441MHz

PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwr Avg|Hold:>100/100

Keysight Spectrum Analyzer - Swept SA

10 dB/di Log

N 1 f N 1 f

10 11

Keysight Sp

Center Freq 2.441750000 GHz

Ref Offset 2.32 dB Ref 20.00 dBm

Report No.: TCT221205E007

- 67 - X 04:38:06 PM Dec 19, 2022

TRACE 12345 TYPE MWWWW DET PNNNN

Mkr1 2.401 837 0 GHz 9.856 dBm

Page 74 of 97

TC		检测 E TECHNOLOGY	,			R	eport No.: TCT2	21205E007
	Keysight Spectrum Analy		pping No.	NVNT 3-D	H1 2441MI		47 PM Dec 19, 2022	
	Center Freq 2.4	41750000 G	HZ PNO: Fast IFGain:Low		Avg Type: Log- Avg Hold:>100/	Pwr 100 Mkr1 2.401 8	TYPE MWWWW DET PNNNNN 337 0 GHz	
	10 dB/div Ref 20	0.00 dBm	wwwwww		MMMMMMMMM		.871 dBm 2 /₩₩₩	
	-10.0 -20.0 -30.0							
	-40.0 -50.0 -60.0 -70.0							
	Start 2.40000 GH #Res BW 100 kH	z X	Y	W 300 kHz	FUNCTION WIDTH	Stop 2 Sweep 8.000 m		
	1 N 1 f 2 N 1 f 3 4 5 6	2.401 837 2.480 076	0 GHz 9.871 5 GHz 4.364	dBm dBm			E	
	7 8 9 10 11							
	MSG				STATUS		•	
							_	
							Page	75 of 97

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

ГСТ	通测检测
	TESTING CENTRE TECHNOLOGY

Report No.: TCT221205E007

Dwell Time									
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict	
NVNT	1-DH1	2441	0.38	120.08	316	31600	400	Pass	
NVNT	1-DH3	2441	1.63	254.28	156	31600	400	Pass	
NVNT	1-DH5	2441	2.88	296.64	103	31600	400	Pass	
NVNT 🐇	2-DH1	2441	0.38	120.08	316	31600	400	Pass	
NVNT	2-DH3	2441	1.64	255.84	156	31600	400	Pass	
NVNT	2-DH5	2441	2.88	293.76	102	31600	400	Pass	
NVNT	3-DH1	2441	0.39	123.24	316	31600	400	Pass	
NVNT	3-DH3	2441	1.64	259.12	158	31600	400	Pass	
NVNT	3-DH5	2441	2.89	297.67	103	31600	400	Pass	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com