

CERTIFICATION TEST REPORT

FOR THE

CONSOLELINK, 7617

FCC PART 15 SUBPART C

COMPLIANCE

DATE OF ISSUE: AUGUST 23, 1999

PREPARED FOR: PREPARED BY:

Davis Instruments Joyce Walker CKC Laboratories, Inc. 3465 Diablo Ave. Hayward, CA 94545 5473A Clouds Rest Mariposa, CA 95338

P.O. No: 12542 W.O. No: 72312 Date of test: August 6, 9, 16, 1999

Report No: FC99-024

DOCUMENTATION CONTROL: APPROVED BY:

Dennis Ward

Tracy Phillips Documentation Control Supervisor

Director of Laboratories CKC Laboratories, Inc. CKC Laboratories, Inc.

This report contains a total of 42 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

> Page 1 of 42 Report No: FC99-024

Dennisward

TABLE OF CONTENTS

Administrative Information	1
Summary Of Results4	
Equipment Under Test (EUT) Description4	
Measurement Uncertainty4	
EUT Operating Frequency4	
Peripheral Devices5	ĺ
Report Of Measurements6)
Table 1: Six Highest Radiated Emission Levels-Below One GHz6)
Table 2: Six Highest Radiated Emission Levels - Above One GHz7	,
Table 3: Six Highest Conducted Emission Levels	,
Table A: List Of Test Equipment9	
EUT Setup1	0
Test Instrumentation And Analyzer Settings1	1
Table B: Analyzer Bandwidth Settings Per Frequency Range	
Spectrum Analyzer Detector Functions	
Peak1	2
Quasi-Peak1	2
Average1	2
Test Methods	3
Radiated Emissions Testing1	3
Conducted Emissions Testing1	4
Occupied Bandwidth1	
Sample Calculations	4
Appendix A: Information About The Equipment Under Test1	6
I/O Ports	
Crystal Oscillators	
Printed Circuit Boards	
Required EUT Changes To Comply1	7
Cable Information1	
Photograph Showing Radiated Emissions1	9
Photograph Showing Radiated Emissions2	
Photograph Showing Conducted Emissions2	1
Photograph Showing Conducted Emissions2	2
Appendix B: Measurement Data Sheets	
Averaging for Pulsed Modulated Systems2	4
Averaging for Pulsed Modulated Systems2	5
Averaging for Pulsed Modulated Systems2	
Averaging for Pulsed Modulated Systems2	
Occupied Bandwidth Plot2	
Occupied Bandwidth Plot2	
Occupied Bandwidth Plot3	
Occupied Bandwidth Plot3	1

Page 2 of 42 Report No: FC99-024 CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies:

DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong).

CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-

Korea; TUV Rheinland-Russia; Radio Communication Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST: August 6, 9, 16, 1999

PURPOSE OF TEST: To demonstrate the compliance of the

ConsoleLink, 7617, with the requirements

for FCC Part 15 Subpart C devices.

MANUFACTURER: Davis Instruments

3465 Diablo Ave. Hayward, CA 94545

REPRESENTATIVE: Brett Preston

TEST LOCATION: CKC Laboratories, Inc.

5473A Clouds Rest Mariposa Ca 95338

TEST PERSONNEL: Wes Norris & Dustin Oaks

TEST METHOD: ANSI C63.4 1992

FREQUENCY RANGE TESTED: 9 kHz - 9200 MHz

EQUIPMENT UNDER TEST: <u>ConsoleLink</u>

Manuf: Davis Instruments

Model: 7617 Serial: Prototype

FCC ID: IR2DWW7617 (pending)

Page 3 of 42 Report No: FC99-024

SUMMARY OF RESULTS

The Davis Instruments ConsoleLink, 7617, was tested in accordance with ANSI C63.4 1992 for compliance with FCC Part 15 Subpart C.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15 Subpart C. The results in this report apply only to the items tested, as identified herein.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Device transmits every 2.5 seconds 6 bytes of data using OOK and <1mW of power at 916.5 MHz. Accessory for wired stations.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ±4dB measurement uncertainty.

EUT OPERATING FREQUENCY

The EUT was operating at 916.5 MHz.

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

Page 4 of 42 Report No: FC99-024

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Weather Console

Manuf: Davis Instruments

Manuf: Davis Instruments

PC Link

Model: 7425 Model: 7862

Serial: WC80921B67 Serial: LC90802A32 FCC ID: FCC ID: IR2DUW74XX

AC Adaptor

Manuf: Davis Model: 7916 Serial: N/A

FCC ID:

Page 5 of 42 Report No: FC99-024

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the ConsoleLink, 7617. All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

Table 1: Six Highest Radiated Emission Levels-Below One GHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
32.300	48.4	14.1	-26.7	0.8		36.6	40.0	-3.4	VQ
48.580	52.4	11.5	-26.6	1.1		38.4	40.0	-1.6	VQ
58.539	54.6	8.7	-26.7	1.1		37.7	40.0	-2.3	VQ
59.038	54.9	8.6	-26.7	1.1		37.9	40.0	-2.1	VQ
59.566	54.4	8.5	-26.7	1.1		37.3	40.0	-2.7	VQ
60.072	56.4	8.4	-26.7	1.1		39.2	40.0	-0.8	VQ

Test Method: ANSI C63.4 1992 Spec Limit: FCC Part 15.209/15.231(e)

Test Distance: 3 Meters

NOTES: H = Horizontal Polarization

V = Vertical Polarization

N = No Polarization D = Dipole Reading

Q = Quasi Peak Reading

A = Average Reading

COMMENTS: Testing to FCC Part 15 Subpart C, Section 15.209/15.231(e). The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting continuously, at full power, in CW Mode. The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor powered from a 115V/60Hz source.

Page 6 of 42 Report No: FC99-024

Table 2: Six Highest Radiated Emission Levels - Above One GHz									
	METER	CO	RRECTION	ON FACT	ORS	CORRECTED	SPEC		
FREQUENCY	READING	Horn	Amp	P	Cable	READING	LIMIT	MARGIN	NOTES
MHz	dΒμV	dB	dB	Factor dB	dB	dBμV/m	dBμV/m	dB	
1833.000	73.9	26.5	-38.6	0.0	4.2	66.0	74.0	-8.0	Н
3666.000	62.5	32.4	-38.9	-20.0	6.3	42.3	54.0	-11.7	Н
4582.500	57.1	32.3	-39.7	-20.0	7.2	36.9	54.0	-17.1	Н
7332.000	49.0	36.6	-39.2	-20.0	8.6	35.0	54.0	-19.0	V
8248.500	47.2	37.6	-40.2	-20.0	9.9	34.5	54.0	-19.5	Н
9165.000	47.8	38.5	-39.0	-20.0	10.0	37.3	54.0	-16.7	V

Test Method: ANSI C63.4 1992 NOTES: H = Horizontal Polarization Spec Limit: FCC Part 15.209/15.231(e) V = Vertical Polarization

Test Distance: 3 Meters

N = No Polarization
D = Dipole Reading
Q = Quasi Peak Reading
A = Average Reading

COMMENTS: Testing to FCC Part 15 Subpart C, Section 15.209/15.231(e). The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting continuously, at full power, in CW Mode. The frequencies which are close to limit have the specification limit raised from 54dBuV to 74dBuV based on a 20dB correction factor for pulsed systems (noted as "P Factor" on data sheets) derived from the duty cycle of the transmitter. The on time of the transmitter in a 100ms period is measured. This on time divided by the 100ms period is the duty cycle. A 20Log(duty cycle) calculation is then performed and this factor (not to exceed 20dB) is then added to the limit. This method is specified in CFR 47 Section 15.35(c). The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor powered from a 115V/60Hz source.

Page 7 of 42 Report No: FC99-024

Table 3: Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	dB	ON FACT	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
0.456825	36.0	0.0				36.0	48.0	-12.0	В
1.126235	36.0	0.0				36.0	48.0	-12.0	В
9.695558	35.5	0.0				35.5	48.0	-12.5	W
25.181080	38.5	0.0				38.5	48.0	-9.5	В
25.455020	36.0	0.0				36.0	48.0	-12.0	В
25.978010	36.1	0.0				36.1	48.0	-11.9	В

Test Method: ANSI C63.4 1992 NOTES: Q = Quasi Peak Reading Spec Limit: FCC Part 15.207 A = Average Reading Test Distance: No Distance B = Black Lead W = White Lead

COMMENTS: Testing to FCC part 15 Subpart C, Section 15.207. The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting this data in 12.5 milli-second bursts each 2.5 seconds. The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor, which is powered from a 115V/60Hz source.

Page 8 of 42 Report No: FC99-024

TABLE A

LIST OF TEST EQUIPMENT

- 1. Spectrum Analyzer, Hewlett Packard, Model No. 85680A, S/N 2049A01408. Calibration date: April 9, 1999. Calibration due date: April 9, 2000.
- 2. Quasi Peak Adapter, Hewlett Packard, Model No. 85650A, S/N 2430A00541. Calibration date: March 3, 1999. Calibration due date: March 3, 2000.
- 3. Preamp, Hewlett Packard, Model No. 8447F, S/N 2944A03850. Calibration date: March 22, 1999. Calibration due date: March 22, 2000.
- 4. Biconical Antenna, Schwarzbeck, Model No. 3110, S/N 9205-1522. Calibration date: April 22, 1999. Calibration due date: April 22, 2000.
- 5. Log Periodic Antenna, A & H Systems, Model No. SAS-200/510, S/N 318. Calibration date: April 23, 1999. Calibration due date: April 23, 2000.
- 6. Horn Antenna, EMCO, Model No. 3115, S/N 9602-4660. Calibration date: September 16, 1998. Calibration due date: September 16, 1999.
- 7. Magloop Antenna, EMCO, Model 6502, S/N 2078. Calibration date June 1, 1998. Calibration due date: September 1, 1999.
- 8. LISN, Solar Electronics, Model No. 8028-50-TS-24-BNC, S/Ns 910489 & 910490. Calibration date: August 19, 1998. Calibration due date: August 19, 1999.
- 9. Hollister site A. Calibration date: February 12, 1997. Calibration due date: January 30, 2000.
- 10. Test software, EMI Test 2.91.

Page 9 of 42 Report No: FC99-024

EUT SETUP

The equipment under test (EUT) and the peripheral(s) listed were set up in a manner that represented their normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Tables 1 and 2 for radiated emissions and Table 3 for conducted characteristics. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

I/O cables were connected to the EUT and peripherals in the manner required for normal operation of the system. Excess cabling was bundled in the center in a serpentine fashion using 30-40 centimeter lengths.

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT is located, has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test. Conducted emissions tests required the use of the LISN's listed in Table A.

Page 10 of 42 Report No: FC99-024

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the ConsoleLink, 7617. For frequencies below 30 MHz, the magloop antenna was used. For radiated measurements 30 - 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. For frequencies above 1000 MHz the horn antenna was used. All antennas were located at a distance of 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISN's.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

TABLE B : ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	40 GHz	1 MHz			

Page 11 of 42 Report No: FC99-024

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1, 2 and 3 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the ConsoleLink, 7617.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

When the frequencies exceed 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 12 of 42 Report No: FC99-024

TEST METHODS

The radiated and conducted emissions data of the ConsoleLink, 7617, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15 Subpart C emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode with the I/O cables and line cords facing the antenna. For frequencies below 30 MHz the magloop antenna was used. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks which were at or near the limit were recorded. The frequency range of 100 - 300 MHz was scanned with the biconical antenna in the same manner, and the peaks recorded. Lastly, a scan of the FM band from 88 -110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. For frequencies above 1000 MHz the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the peripherals and cables. Maximizing of the cables was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Page 13 of 42 Report No: FC99-024

Conducted Emissions Testing

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

FCC Part 15.215(c) - Occupied Bandwidth Measurements

In accordance with Part 15.215(c), the fundamental frequency was kept within the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the emissions readings in Tables 1, 2 and 3. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV)

- + Antenna Factor (dB)
- + Cable Loss (dB)
- Distance Correction (dB)
- Pre-amplifier Gain (dB)
- = Corrected Reading ($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance.

Page 14 of 42 Report No: FC99-024

A typical data sheet will display the following in column format:

#	Freq	Rdng	Cable	Amp.	Bicon	Horn	Log	Dist	Corr	Spec	Margin	Polar
	MHz	dBuV		_					dBuV/m			

means reading number

Freq MHz is the frequency in MHz of the obtained reading.

Rdng dBuV is the reading obtained on the spectrum analyzer in dB μ V.

Amp. is short for the preamplifier factor or gain in dB.

Bicon is the biconical antenna factor in dB.

Horn is the horn antenna factor in dB.

Cable is the cable loss in dB of the coaxial cable on the OATS.

P Factor is the correction factor in dB used for pulsed systems (FCC Part 15.35).

Dist is the distance factor (in dB). It is used when testing at a different test distance than the one stated in the spec.

Corr dB\muV/m is the corrected reading which is now in dB μ V/m (field strength).

Spec is the specification limit (dB) stated in the agency's regulations.

Margin is the closeness to the specified limit in dB; + is over and - is under the limit.

Polar is the Polarity of the antenna with respect to earth.

Page 15 of 42 Report No: FC99-024

APPENDIX A INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 16 of 42 Report No: FC99-024

INFORMATION ABOUT THE EQUIPMENT UNDER TEST					
Test Software/Firmware:	N/A				
CRT was displaying:	N/A				
Power Supply Manufacturer:	Ablex, Hong Kong 9V DC @ 200 ma				
Power Supply Part Number:	Model No. 7916				
AC Line Filter Manufacturer:	N/A				
AC Line Filter Part Number:	N/A				
Line voltage used during testing:	115V 60Hz				

I/O PORTS				
Type	#			
4 conductor phone jack output	1			
to Weatherlink Data Logger				
Product No. 7862				
+13V,SCLK,SDATA,GND				

CRYSTAL OSCILLATORS				
Type	Freq. In MHz			
Surface Mount Quartz	.076			

PRINTED CIRCUIT BOARDS						
Function	Model & Rev	Clocks, MHz	Layers	Location		
DEVICE TRANSMITS EVERY 2.5 SECONDS 6 BYTES OF DATA USING OOK AND < 1 MW OF POWER AT 916.5 MHZ. ACCESORY FOR WIRED STATIONS	7617 REV A	.072	2	Inside custom plastic housing.		
STATIONS						

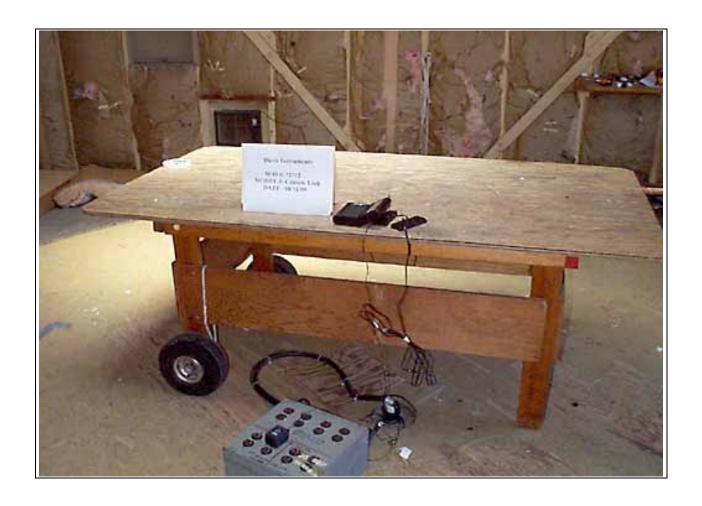
REQUIRED EUT CHANGES TO COMPLY:
None.

Page 17 of 42 Report No: FC99-024

CABLE INFORMATION

Cable #:	1	Cable(s) of this type:	1
Cable Type:	Standard Phone	Shield Type:	None
	Wire	-	
Construction:		Length In Meters:	12
Connected To End (1):	ConsoleLink	Connected To End (2):	Weather Station
	Circuit Board		Console
Connector At End (1):	Solder	Connector At End (2):	RJ11
Shield Grounded At (1):	None	Shield Grounded At (2):	None
Part Number:		Number of Conductors:	4
Notes:	+13V, SCLK, SDAT	ΓA, GND	

Page 18 of 42 Report No: FC99-024


PHOTOGRAPH SHOWING RADIATED EMISSIONS

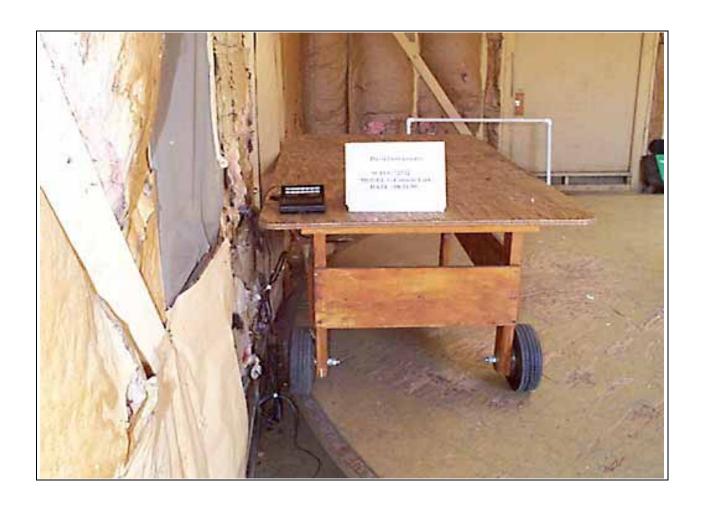
Radiated Emissions - Front View

Page 19 of 42 Report No: FC99-024

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

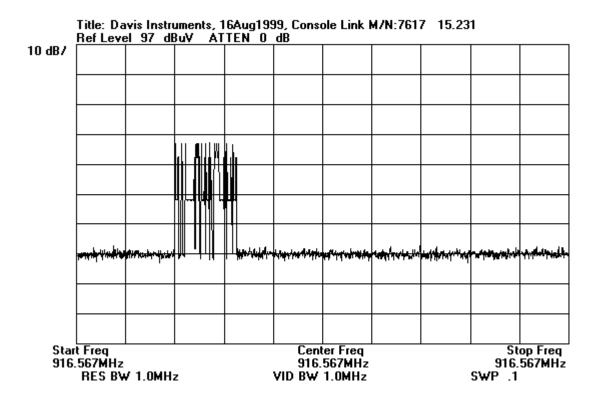
Page 20 of 42 Report No: FC99-024


PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

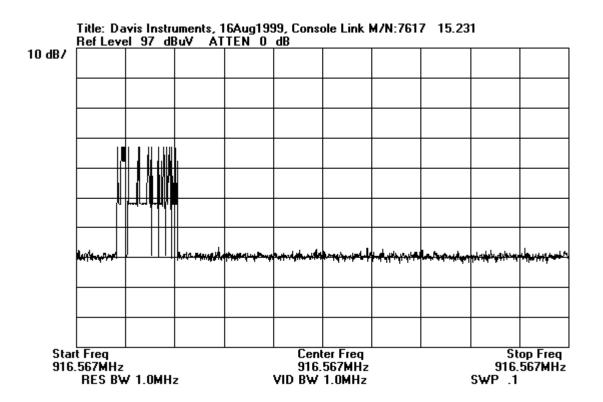
Conducted Emissions - Front View

Page 21 of 42 Report No: FC99-024

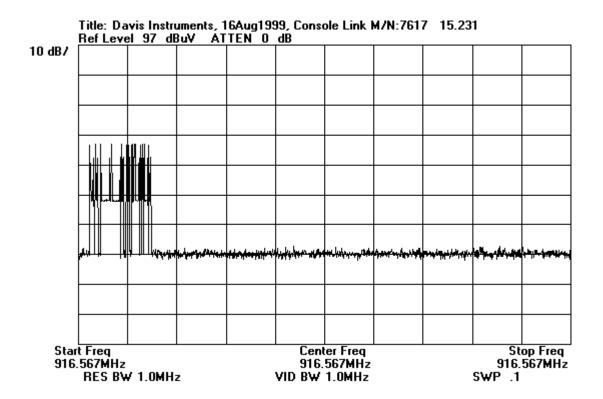
PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

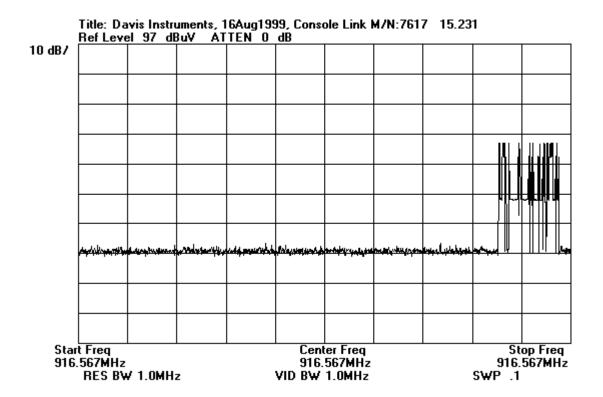

Conducted Emissions - Back View

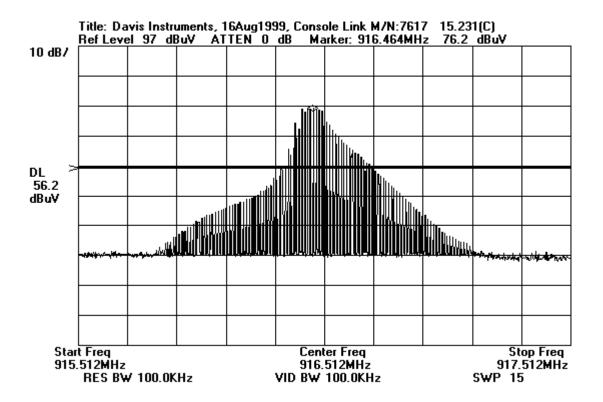
Page 22 of 42 Report No: FC99-024

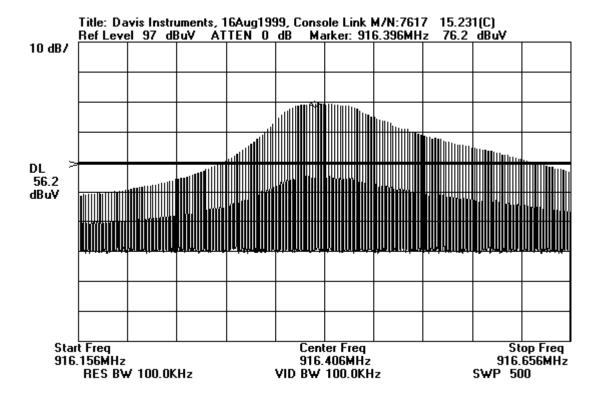

APPENDIX B

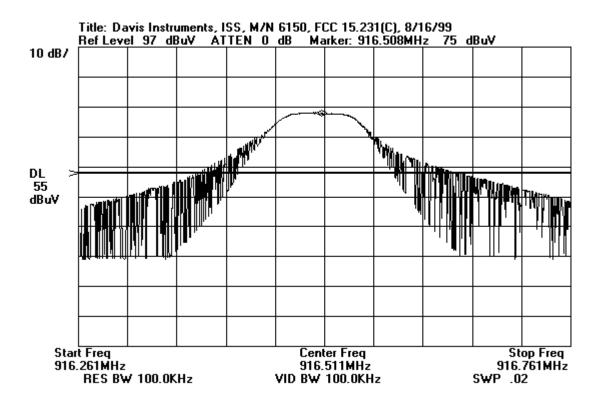
MEASUREMENT DATA SHEETS

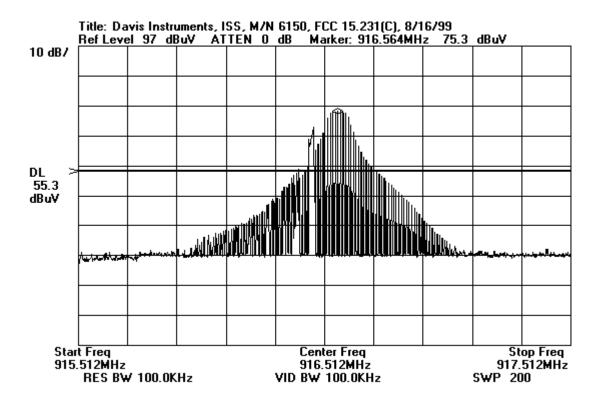

Page 23 of 42 Report No: FC99-024


Page 24 of 42 Report No: FC99-024


Page 25 of 42 Report No: FC99-024


Page 26 of 42 Report No: FC99-024


Page 27 of 42 Report No: FC99-024


Page 28 of 42 Report No: FC99-024

Page 29 of 42 Report No: FC99-024

Page 30 of 42 Report No: FC99-024

Page 31 of 42 Report No: FC99-024 **Test Location:** CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-

0485

Customer: **Davis Instruments** Date: Aug-06-99 Specification: FCC15.209/15.231(e) Time: 16:17 Test Type: **Maximized Emissions** Sequence#: 2

Equipment: Weather Data Telemetry

Manufacturer: Tested By: Wes Norris **Davis Instruments**

Model: 7617 S/N: Prototype

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Weather Data Telemetry*	Davis Instruments	7617	Prototype	

Support Devices:

~ ·- F F · · · · = · · · · · · · · ·			
Function	Manufacturer	Model #	S/N
Weather Console	Davis Instruments	7425	WC80921B67
PC Link	Davis Instruments	7862	LC90802A32
AC Adaptor	Ablex	7916	N/A

Test Conditions / Notes:

Measurement Data:

Testing to FCC Part 15 Subpart C, Section 15.209/15.231(e). The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting continuously, at full power, in CW Mode. The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor powered from a 115V/60Hz source.

Test Distance: 3 Meters

Bicon Cable Amp. Freq Rdng Dist Corr Spec Margin

Sorted by Margin

MHz	dΒμV	dB	dB	dB	dB	dB	$dB\mu V/m$	$dB\mu V/m$	dB	
1 60.072	56.4	-26.7		+8.4	+1.1	+0.0	39.2	40.0	-0.8	Vert
Quasi Peak										
^ 60.072	56.8	-26.7		+8.4	+1.1	+0.0	39.6	40.0	-0.4	Vert
3 48.580	52.4	-26.6		+11.5	+1.1	+0.0	38.4	40.0	-1.6	Vert
Quasi Peak										
^ 48.582	52.3	-26.6		+11.5	+1.1	+0.0	38.3	40.0	-1.7	Vert
0 00.000	54.9	-26.7		+8.6	+1.1	+0.0	37.9	40.0	-2.1	Vert
Quasi Peak										
^ 59.038	55.1	-26.7		+8.6	+1.1	+0.0	38.1	40.0	-1.9	Vert
, , , , , ,	54.6	-26.7		+8.7	+1.1	+0.0	37.7	40.0	-2.3	Vert
Quasi Peak										
^ 58.539	54.5	-26.7		+8.7	+1.1	+0.0	37.6	40.0	-2.4	Vert
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	54.4	-26.7		+8.5	+1.1	+0.0	37.3	40.0	-2.7	Vert
^ 59.589	55.1	-26.7		+8.5	+1.1	+0.0	38.0	40.0	-2.0	Vert
	1 60.072 Quasi Peak ^ 60.072 3 48.580 Quasi Peak ^ 48.582 5 59.038 Quasi Peak ^ 59.038 7 58.539 Quasi Peak ^ 58.539 Quasi Peak ^ 58.539 Quasi Peak ^ 9 59.566 Quasi Peak	1 60.072 56.4 Quasi Peak ^ 60.072 56.8 3 48.580 52.4 Quasi Peak ^ 48.582 52.3 5 59.038 54.9 Quasi Peak ^ 59.038 55.1 7 58.539 54.6 Quasi Peak ^ 58.539 54.5 9 59.566 Quasi Peak	1 60.072 56.4 -26.7 Quasi Peak ^ 60.072 56.8 -26.7 3 48.580 52.4 -26.6 Quasi Peak ^ 48.582 52.3 -26.6 5 59.038 54.9 -26.7 Quasi Peak ^ 59.038 55.1 -26.7 7 58.539 54.6 -26.7 Quasi Peak ^ 58.539 54.5 -26.7 9 59.566 54.4 -26.7 Quasi Peak	1 60.072 56.4 -26.7 Quasi Peak ^ 60.072 56.8 -26.7 3 48.580 52.4 -26.6 Quasi Peak ^ 48.582 52.3 -26.6 5 59.038 54.9 -26.7 Quasi Peak ^ 59.038 55.1 -26.7 7 58.539 54.6 -26.7 Quasi Peak ^ 58.539 54.5 -26.7 9 59.566 54.4 -26.7 Quasi Peak	1 60.072 56.4 -26.7 +8.4 Quasi Peak	1 60.072 56.4 -26.7 +8.4 +1.1 Quasi Peak ^ 60.072 56.8 -26.7 +8.4 +1.1 3 48.580 52.4 -26.6 +11.5 +1.1 Quasi Peak ^ 48.582 52.3 -26.6 +11.5 +1.1 5 59.038 54.9 -26.7 +8.6 +1.1 Quasi Peak ^ 59.038 55.1 -26.7 +8.6 +1.1 7 58.539 54.6 -26.7 +8.7 +1.1 9 4 59.566 54.4 -26.7 +8.5 +1.1 9 59.566 54.4 -26.7 +8.5 +1.1	1 60.072 56.4 -26.7 +8.4 +1.1 +0.0 Quasi Peak ^ 60.072 56.8 -26.7 +8.4 +1.1 +0.0 3 48.580 52.4 -26.6 +11.5 +1.1 +0.0 Quasi Peak ^ 48.582 52.3 -26.6 +11.5 +1.1 +0.0 5 59.038 54.9 -26.7 +8.6 +1.1 +0.0 Quasi Peak ^ 59.038 55.1 -26.7 +8.6 +1.1 +0.0 7 58.539 54.6 -26.7 +8.7 +1.1 +0.0 Quasi Peak ^ 59.566 54.4 -26.7 +8.5 +1.1 +0.0 Quasi Peak	1 60.072 56.4 -26.7 +8.4 +1.1 +0.0 39.2 Quasi Peak ^ 60.072 56.8 -26.7 +8.4 +1.1 +0.0 39.6 3 48.580 52.4 -26.6 +11.5 +1.1 +0.0 38.4 Quasi Peak ^ 48.582 52.3 -26.6 +11.5 +1.1 +0.0 37.9 Quasi Peak ^ 59.038 54.9 -26.7 +8.6 +1.1 +0.0 37.9 Quasi Peak ^ 59.038 55.1 -26.7 +8.6 +1.1 +0.0 37.7 Quasi Peak ^ 58.539 54.6 -26.7 +8.7 +1.1 +0.0 37.6 9 59.566 54.4 -26.7 +8.5 +1.1 +0.0 37.3 Quasi Peak	1 60.072 56.4 -26.7 +8.4 +1.1 +0.0 39.2 40.0 Quasi Peak ^ 60.072 56.8 -26.7 +8.4 +1.1 +0.0 39.6 40.0 3 48.580 52.4 -26.6 +11.5 +1.1 +0.0 38.4 40.0 Quasi Peak ^ 48.582 52.3 -26.6 +11.5 +1.1 +0.0 37.9 40.0 5 59.038 54.9 -26.7 +8.6 +1.1 +0.0 37.9 40.0 Quasi Peak * 59.038 55.1 -26.7 +8.6 +1.1 +0.0 37.7 40.0 7 58.539 54.6 -26.7 +8.7 +1.1 +0.0 37.6 40.0 9 59.566 54.4 -26.7 +8.5 +1.1 +0.0 37.3 40.0 9 59.566 54.4 -26.7 +8.5 +1.1 +0.0 37.3 40.0	1 60.072 56.4 -26.7 +8.4 +1.1 +0.0 39.2 40.0 -0.8 Quasi Peak ^ 60.072 56.8 -26.7 +8.4 +1.1 +0.0 39.6 40.0 -0.4 3 48.580 52.4 -26.6 +11.5 +1.1 +0.0 38.4 40.0 -1.6 Quasi Peak ^ 48.582 52.3 -26.6 +11.5 +1.1 +0.0 38.3 40.0 -1.7 5 59.038 54.9 -26.7 +8.6 +1.1 +0.0 37.9 40.0 -2.1 Quasi Peak -26.7 +8.6 +1.1 +0.0 38.1 40.0 -1.9 7 58.539 54.6 -26.7 +8.7 +1.1 +0.0 37.7 40.0 -2.3 Quasi Peak - 58.539 54.5 -26.7 +8.7 +1.1 +0.0 37.3 40.0 -2.4 9 59.566 54.4 -26.7 +8.5 +1.1 +0.0 37.3 40.0 -2.7 <

Page 32 of 42 Report No: FC99-024

Polar

11	32.300 Juasi Peak	48.4	-26.7	+14.1	+0.8	+0.0	36.6	40.0	-3.4	Vert
^	32.325	49.1	-26.7	+14.1	+0.8	+0.0	37.3	40.0	-2.7	Vert
13	58.000 Quasi Peak	53.3	-26.7	+8.8	+1.1	+0.0	36.5	40.0	-3.5	Vert
^	58.019	54.0	-26.7	+8.8	+1.1	+0.0	37.2	40.0	-2.8	Vert
15	57.470 Quasi Peak	52.6	-26.7	+8.9	+1.1	+0.0	35.9	40.0	-4.1	Vert
^	57.493	53.6	-26.7	+8.9	+1.1	+0.0	36.9	40.0	-3.1	Vert
17	70.070 Quasi Peak	53.9	-26.6	+7.1	+1.1	+0.0	35.5	40.0	-4.5	Vert
^	70.070	53.8	-26.6	+7.1	+1.1	+0.0	35.4	40.0	-4.6	Vert
19	56.969	51.6	-26.7	+9.0	+1.1	+0.0	35.0	40.0	-5.0	Vert
20	52.249	50.6	-26.6	+9.9	+1.1	+0.0	35.0	40.0	-5.0	Vert
21	55.918	51.3	-26.7	+9.2	+1.1	+0.0	34.9	40.0	-5.1	Vert
22	54.870	51.0	-26.7	+9.4	+1.1	+0.0	34.8	40.0	-5.2	Vert
23	51.198	50.1	-26.6	+10.1	+1.1	+0.0	34.7	40.0	-5.3	Vert
24	52.773	50.3	-26.6	+9.8	+1.1	+0.0	34.6	40.0	-5.4	Vert
25	50.675	49.7	-26.6	+10.3	+1.1	+0.0	34.5	40.0	-5.5	Vert
26	69.027	52.7	-26.6	+7.2	+1.1	+0.0	34.4	40.0	-5.6	Vert
27	48.034 Quasi Peak	48.0	-26.6	+12.0	+1.0	+0.0	34.4	40.0	-5.6	Vert
^	48.054	49.0	-26.6	+11.9	+1.0	+0.0	35.3	40.0	-4.7	Vert
29	55.375 Quasi Peak	50.6	-26.7	+9.3	+1.1	+0.0	34.3	40.0	-5.7	Vert
^	55.394	51.6	-26.7	+9.3	+1.1	+0.0	35.3	40.0	-4.7	Vert
31	67.978	52.5	-26.6	+7.3	+1.1	+0.0	34.3	40.0	-5.7	Vert
32	60.637	51.4	-26.7	+8.3	+1.1	+0.0	34.1	40.0	-5.9	Vert
33	67.457	52.1	-26.6	+7.4	+1.1	+0.0	34.0	40.0	-6.0	Vert
34	32.846 Quasi Peak	45.8	-26.7	+14.1	+0.8	+0.0	34.0	40.0	-6.0	Vert
^	32.848	48.4	-26.7	+14.1	+0.8	+0.0	36.6	40.0	-3.4	Vert
36	53.823	49.8	-26.6	+9.6	+1.1	+0.0	33.9	40.0	-6.1	Vert
37	53.297	49.5	-26.6	+9.7	+1.1	+0.0	33.7	40.0	-6.3	Vert

Page 33 of 42 Report No: FC99-024

38	54.343	49.6	-26.6	+9.5	+1.1	+0.0	33.5	40.0	-6.5	Vert
39	56.447	50.0	-26.7	+9.1	+1.1	+0.0	33.5	40.0	-6.5	Vert
40	33.372	45.1	-26.7	+14.0	+0.8	+0.0	33.2	40.0	-6.8	Vert
41 Qı	31.780 uasi Peak	44.7	-26.6	+14.2	+0.8	+0.0	33.1	40.0	-6.9	Vert
۸	31.798	46.0	-26.6	+14.1	+0.8	+0.0	34.3	40.0	-5.7	Vert
43	66.931	51.0	-26.6	+7.5	+1.1	+0.0	33.0	40.0	-7.0	Vert
44	68.503	51.1	-26.6	+7.3	+1.1	+0.0	32.9	40.0	-7.1	Vert
45	31.277	44.4	-26.6	+14.2	+0.8	+0.0	32.8	40.0	-7.2	Vert
46	69.553	50.5	-26.6	+7.2	+1.1	+0.0	32.2	40.0	-7.8	Vert
47	66.405	49.0	-26.6	+7.5	+1.1	+0.0	31.0	40.0	-9.0	Vert

Page 34 of 42 Report No: FC99-024 Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-

0485

Customer:Davis InstrumentsDate:Aug-09-99Specification:15.209/15.231(e)Time:14:33Test Type:Maximized EmissionsSequence#:2

Equipment: Weather Data Telemetry

Manufacturer: Davis Instruments Tested By: Wes Norris

Model: 7617 S/N: Prototype

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Weather Data Telemetry*	Davis Instruments	7617	Prototype	

Support Devices:

$\sim r_F$			
Function	Manufacturer	Model #	S/N
Weather Console	Davis Instruments	7425	WC80921B67
PC Link	Davis Instruments	7862	LC90802A32
AC Adaptor	Ablex	7916	N/A

Test Conditions / Notes:

Testing to FCC Part 15 Subpart C, Section 15.209/15.231(e). The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting continuously, at full power, in CW Mode. The frequencies which are close to limit have the specification limit raised from 54dBuV to 74dBuV based on a 20dB correction factor for pulsed systems (noted as "P Factor" on data sheets) derived from the duty cycle of the transmitter. The on time of the transmitter in a 100ms period is measured. This on time divided by the 100ms period is the duty cycle. A 20Log(duty cycle) calculation is then performed and this factor (not to exceed 20dB) is then added to the limit. This method is specified in CFR 47 Section 15.35(c). The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor powered from a 115V/60Hz source.

Measure	ement Data:		Sorted	l by Ma	rgin	Test Distance: 3 Meters					
			Horn								
#	Freq	Rdng	P Factor	Amp	Cable	Cable	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	dB	$dB\mu V/m$	$dB\mu V/m$	dB	
1	1833.000	73.9	+26.5	-38.6	+0.3	+3.9	+0.0	66.0	74.0	-8.0	Horiz
			+0.0								
2	3666.000	62.5	+32.4	-38.9	+0.5	+5.8	+0.0	42.3	54.0	-11.7	Horiz
			-20.0								
3	1833.000	66.8	+26.5	-38.6	+0.3	+3.9	+0.0	58.9	74.0	-15.1	Vert
			+0.0								
4	9165.000	47.8	+38.5	-39.0	+0.6	+9.4	+0.0	37.3	54.0	-16.7	Vert
			-20.0								
5	4582.500	57.1	+32.3	-39.7	+0.6	+6.6	+0.0	36.9	54.0	-17.1	Horiz
			-20.0								
6	9165.100	46.5	+38.5	-39.0	+0.6	+9.4	+0.0	36.0	54.0	-18.0	Horiz
			-20.0								
7	4582.500	55.9	+32.3	-39.7	+0.6	+6.6	+0.0	35.7	54.0	-18.3	Vert
			-20.0								
8	7332.000	49.0	+36.6	-39.2	+0.3	+8.3	+0.0	35.0	54.0	-19.0	Vert
			-20.0								

Page 35 of 42 Report No: FC99-024

9	8248.500	47.2	+37.6 -40.2	+0.8	+9.1	+0.0	34.5	54.0	-19.5	Horiz
			-20.0							
10	8248.500	46.8	+37.6 -40.2	+0.8	+9.1	+0.0	34.1	54.0	-19.9	Vert
			-20.0							
11	5499.000	51.2	+34.9 -39.9	+0.4	+7.3	+0.0	53.9	74.0	-20.1	Vert
			+0.0							
12	7332.000	47.3	+36.6 -39.2	+0.3	+8.3	+0.0	33.3	54.0	-20.7	Horiz
			-20.0							
13	5499.000	50.5	+34.9 -39.9	+0.4	+7.3	+0.0	53.2	74.0	-20.8	Horiz
			+0.0							
14	3666.000	52.3	+32.4 -38.9	+0.5	+5.8	+0.0	32.1	54.0	-21.9	Vert
			-20.0							
15	6415.500	47.7	+35.4 -40.3	+0.6	+7.9	+0.0	51.3	74.0	-22.7	Vert
			+0.0							
16	6415.500	46.0	+35.4 -40.3	+0.6	+7.9	+0.0	49.6	74.0	-24.4	Horiz
			+0.0							
17	2749.500	52.0	+29.7 -37.6	+0.4	+5.0	+0.0	29.5	54.0	-24.5	Horiz
			-20.0							
18	2749.500	49.9	+29.7 -37.6	+0.4	+5.0	+0.0	27.4	54.0	-26.6	Vert
			-20.0							

Page 36 of 42 Report No: FC99-024 Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-

0485

Customer:Davis InstrumentsDate:Aug-16-99Specification:FCC 15.207 CONDTime:09:44Test Type:Conducted EmissionsSequence#:2

Equipment: Weather Data Telemetry

Manufacturer: Davis Instruments Tested By: Wes Norris

Model: 7617 S/N: Prototype

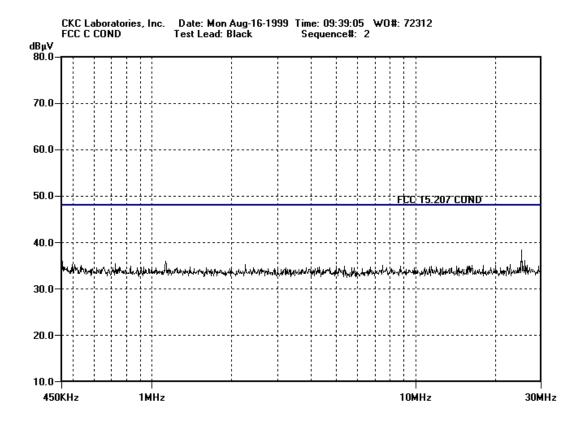
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Weather Data Telemetry*	Davis Instruments	7617	Prototype	

Support Devices:

~ · · · · · · · · · · · · · · · · · · ·			
Function	Manufacturer	Model #	S/N
Weather Console	Davis Instruments	7425	WC80921B67
PC Link	Davis Instruments	7862	LC90802A32
AC Adaptor	Ablex	7916	N/A

Test Conditions / Notes:


Testing to FCC Part 15 Subpart C, Section 15.207. The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting this data in 12.5 milli-second bursts each 2.5 seconds. The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor powered from a 115V/60Hz source.

Measur	ement Data:		Son	rted by M	argin		Test Lead: Black				
#	Freq	Rdng dBµV	dB	dB	dB	dB	Dist dB	Corr dBµV	Spec dBµV	Margin dB	Polar
1	25.181M	38.5					+0.0	38.5	48.0	-9.5	Black
2	25.978M	36.1					+0.0	36.1	48.0	-11.9	Black
3	25.455M	36.0					+0.0	36.0	48.0	-12.0	Black
4	1.126M	36.0					+0.0	36.0	48.0	-12.0	Black
5	456.825k	36.0					+0.0	36.0	48.0	-12.0	Black
6	726.019k	35.4					+0.0	35.4	48.0	-12.6	Black
7	22.815M	35.2					+0.0	35.2	48.0	-12.8	Black
8	2.259M	35.2					+0.0	35.2	48.0	-12.8	Black
9	509.147k	35.2					+0.0	35.2	48.0	-12.8	Black
10	494.739k	35.2					+0.0	35.2	48.0	-12.8	Black

Page 37 of 42 Report No: FC99-024

11	26.501M	35.1	+0.0	35.1	48.0	-12.9	Black
12	20.101M	35.1	+0.0	35.1	48.0	-12.9	Black
13	18.083M	35.1	+0.0	35.1	48.0	-12.9	Black
14	16.331M	35.1	+0.0	35.1	48.0	-12.9	Black
15	7.463M	35.1	+0.0	35.1	48.0	-12.9	Black
16	539.479k	35.1	+0.0	35.1	48.0	-12.9	Black
17	11.447M	35.0	+0.0	35.0	48.0	-13.0	Black
18	8.719M	35.0	+0.0	35.0	48.0	-13.0	Black
19	5.352M	35.0	+0.0	35.0	48.0	-13.0	Black
20	828.768k	35.0	+0.0	35.0	48.0	-13.0	Black

Page 38 of 42 Report No: FC99-024

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-

Date: Aug-16-99 Customer: **Davis Instruments** Specification: FCC 15.207 COND Time: 09:51 Test Type: **Conducted Emissions** Sequence#: 3

Equipment: **Weather Data Telemetry**

Manufacturer: Tested By: Wes Norris **Davis Instruments**

Model: 7617 S/N: Prototype

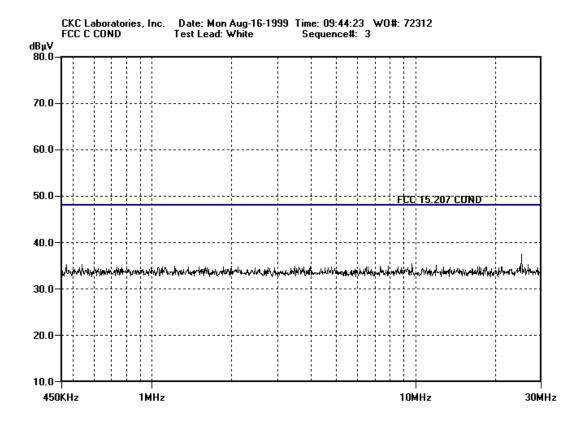
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Weather Data Telemetry*	Davis Instruments	7617	Prototype	

Support Devices:

Function	Manufacturer	Model #	S/N
Weather Console	Davis Instruments	7425	WC80921B67
PC Link	Davis Instruments	7862	LC90802A32

Test Conditions / Notes:


Testing to FCC Part 15 Subpart C, Section 15.207. The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting this data in 12.5 milli-second bursts each 2.5 seconds. The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor powered from a 115V/60Hz source.

Measurement Data:		Sorted by Margin				Test Lead: White					
#	Freq	Rdng dBµV	dB	dB	dB	dB	Dist dB	Corr dBµV	Spec dBµV	Margin dB	Polar
1	25.194M	37.5					+0.0	37.5	48.0	-10.5	White
2	9.696M	35.5					+0.0	35.5	48.0	-12.5	White
3	471.991k	35.3					+0.0	35.3	48.0	-12.7	White
4	26.825M	35.2					+0.0	35.2	48.0	-12.8	White
5	540.237k	35.2					+0.0	35.2	48.0	-12.8	White
6	11.961M	35.1					+0.0	35.1	48.0	-12.9	White
7	7.358M	35.0					+0.0	35.0	48.0	-13.0	White
8	3.981M	35.0					+0.0	35.0	48.0	-13.0	White
9	3.484M	35.0					+0.0	35.0	48.0	-13.0	White
10	1.220M	35.0					+0.0	35.0	48.0	-13.0	White
11	25.455M	34.9					+0.0	34.9	48.0	-13.1	White

Page 40 of 42 Report No: FC99-024

12	24.857M	34.9	+0.0	34.9	48.0	-13.1	White
13	7.864M	34.9	+0.0	34.9	48.0	-13.1	White
14	2.000M	34.9	+0.0	34.9	48.0	-13.1	White
15	6.625M	34.8	+0.0	34.8	48.0	-13.2	White
16	6.468M	34.8	+0.0	34.8	48.0	-13.2	White
17	4.791M	34.8	+0.0	34.8	48.0	-13.2	White
18	3.616M	34.8	+0.0	34.8	48.0	-13.2	White
19	2.114M	34.8	+0.0	34.8	48.0	-13.2	White
20	1.090M	34.8	+0.0	34.8	48.0	-13.2	White

Page 41 of 42 Report No: FC99-024

