

ation & Testino

WSEI

Navization Certification Totom

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

WSET

For Question, Please Contact with WSCT www.wsct-cert.com

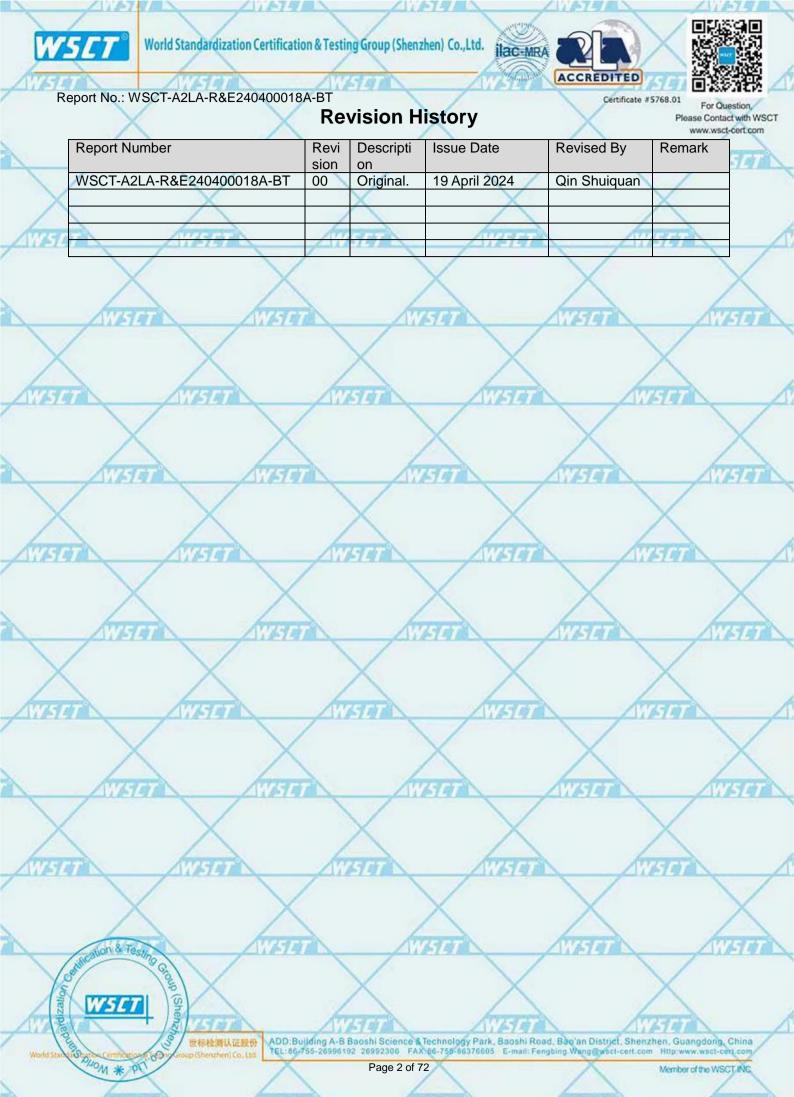
TEST REPORT

FCC ID: 2AXYP-OTW-330S-R Product: True Wireless Earbuds Model No.: OTW-330S Trade Mark: oraimo Report No.: WSCT-A2LA-R&E240400018A-BT Issued Date: 19 April 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:


World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Page 1 of 72

nion & Tes

W5[7

PHOM * PT

oup (Shenzk

60

Cor

Zatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

TABLE OF CONTENTS

	AVISTAT AVISTAT	WISET	AVISIOT	AY IST
1.	Test Certification	<u> </u>		
2.	Test Result Summary		<u> </u>	5
3.		WISTER AVE	न रिप्र	. 6
4.				
	4.1. TEST ENVIRONMENT AND MODE	A		
	4.2. DESCRIPTION OF SUPPORT UNITS			
5.	Facilities and Accreditati	ons		
	5.1. FACILITIES	X	X	
141	5.2. ACCREDITATIONS	172300 /1723	107	
	5.3. MEASUREMENT UNCERTAINTY			10
	5.4. MEASUREMENT INSTRUMEN	тѕ		11
6.	Test Results and Measur	ement Data	(Tara)	
/	6.1. ANTENNA REQUIREMENT			
X	6.2. CONDUCTED EMISSION		<u> </u>	
747	6.3. CONDUCTED OUTPUT POWER			AN ALL .
	6.4. 200B OCCUPY BANDWIDTH			
	6.5. CARRIER FREQUENCIES SEPARAT			
	6.6. HOPPING CHANNEL NUMBER			
/	6.7. DWELL TIME			
X	6.8. PSEUDORANDOM FREQUENCY HO			
3.00	6.9. CONDUCTED BAND EDGE MEASUR 6.10. CONDUCTED SPURIOUS EMISSION			
	6.10. CONDUCTED SPURIOUS EMISSION 6.11. RADIATED SPURIOUS EMISSION M			
7.	XXX	X	X	
7.	Test Setup Photographs	Autor	(11111)	

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No .: WSCT-A2LA-R&E240400018A-BT

1. Test Certification

		www.wscr-cer.
	Product	True Wireless Earbuds
	Model No.:	OTW-330S
	Additional Model:	oraimo
	Applicant:	ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
	Manufacturer:	ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
h	Date of receipt:	28 March 2024 WSET WSET WSET
	Date of Test:	29 March 2024 ~ 18 April 2024
	Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Xial Tested By: Checked By:

(Wang Xiang)

(Qin Shuiquan)

yan

WS

Approved By:

ation & Testing

World Standard Tables Certifications, Tables

(Liu Fuxin)

Date: 19

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Page 4 of 72

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

2. Test Result Summary

	ATTACK ATTAC	ATTEN AT	AVIET A	(TITAL)
7	Requirement	CFR 47 Section	Result	
	Antenna Requirement	§15.203/§15.247 (c)	PASS	
	AC Power Line Conducted Emission	§15.207	N/A	\checkmark
/	Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS	WISTER
	20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS	
	Carrier Frequencies Separation	§15.247 (a)(1)	PASS	\bigtriangledown
	Hopping Channel Number	§15.247 (a)(1)	PASS	WESTER
7	Dwell Time	§15.247 (a)(1)	PASS	
	Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	
	Band Edge	§15.247(d) §2.1051, §2.1057	PASS	\mathbf{X}
				I PATRICE N

Note:

on & Tes

W5C

PHOM * PT

oup (Shen

e

1. PASS: Test item meets the requirement.

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240400018A-BT

EUT Description 3.

3. EUT Descriptio		www.wsct-cert.com
Product Name:	True Wireless Earbuds	1757
Model :	OTW-330S	\times
Trade Mark:	oraimo	777
Frequency Range:	2402-2480MHz(TX/RX)	
Channel Separation:	1MHz	X
Number of Channel:	79	17517
Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK	\times
Antenna Type:	FPC Antenna	नन
Antenna Gain:	1.03dBi	\sim
Operating Voltage	Li-ion Battery: 501012 Voltage: 3.7V Rated Capacity: 40mAh Limited Charge Voltage: 4.2V Charging Box: 902235 Output: 5V200mA Input:5V1A Capacity:600Ah/3.7V/2.22Wh	311
Remark:	N/A.	X

Note: 1. N/A stands for no applicable.

on & Tes

WSET

PHOM * PIT

oup (Shenz

.60

e

dizatio

2. Antenna gain provided by the applicant

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-758-86376605 E-mail: Fengbing-Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

9.4

1.11

non & Tes

W5[7

WOM * PIT

oup (Shens

e

Zatio

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK

0 0 0 0 0 0 0 0		J C C D D D D D D D D D D				,	WARAN
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
010	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
	\wedge		\wedge		\wedge		\sim
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
X		X		X		X	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
ZH19_7	2421MHz	A// 39 🗾	2441MHz	59	2461MHz	1779	

Remark: Channel 0, 39 &78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT IN

Report No.: WSCT-A2LA-R&E240400018A-BT

4. Genera Information

4.1. Test environment and mode

Operating Environment:

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

ilac-MRA

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
			/	/ /

Note:

M * P

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
 - use.

S

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

> 検済し証数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86,755-26996192 26992306 FAX 86-755-86376605. E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

For Question, Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT IN

Report No.: WSCT-A2LA-R&E240400018A-BT

5. Facilities and Accreditations

5.1. Facilities

on & Te

M * P

S

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

on & Te

WSE1

PHOM * PI

Zatio

oup (Shen

Certificate #5768.01

For Question Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

5.3. Measurement Uncertainty

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1GHz)	±4.7dB
5	All emissions, radiated(>1GHz)	±4.7dB
6	Temperature WSGT WSGT	±0.5°C
7	Humidity	±2.0%
	1 2 3 4 5	1 Conducted Emission Test 2 RF power, conducted 3 Spurious emissions, conducted 4 All emissions, radiated(<1GHz) 5 All emissions, radiated(>1GHz) 6 Temperature

on & Te

W5C

S PHOM * PT

oup (Shenz

60

e

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

5.4. MEASUREMENT INSTRUMENTS

	5.4. MEASUREMENT INSTRUMENTS					www.wsc	ct-cert.com
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	SET
	Test software	<	EZ-EMC	CON-03A	-	X-	
7	Test software		MTS8310	MART	- /	47.8	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	/
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	X
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	SET
1	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
ý	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	1
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	X
	Pre Amplifier	FP	HP8447E	2945A02715	11/05/2023	11/04/2024	54
/	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
1	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2023	7/28/2024	
Ż	9*6*6 Anechoic	-	ISET -	WHIT	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2023	11/04/2024	\checkmark
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	6191
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	CCS	N/A	N/A	N.C.R	N.C.R	
1	Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	Х
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	1501
1	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
5	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
2	Power sensor	Anritsu	MX248XD	MISET	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	\checkmark
	~	\wedge		Sec. 1			~

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Antenna

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6. Test Results and Measurement Data

6.1. Antenna requirement

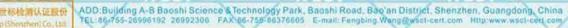
Standard requirement: FCC

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

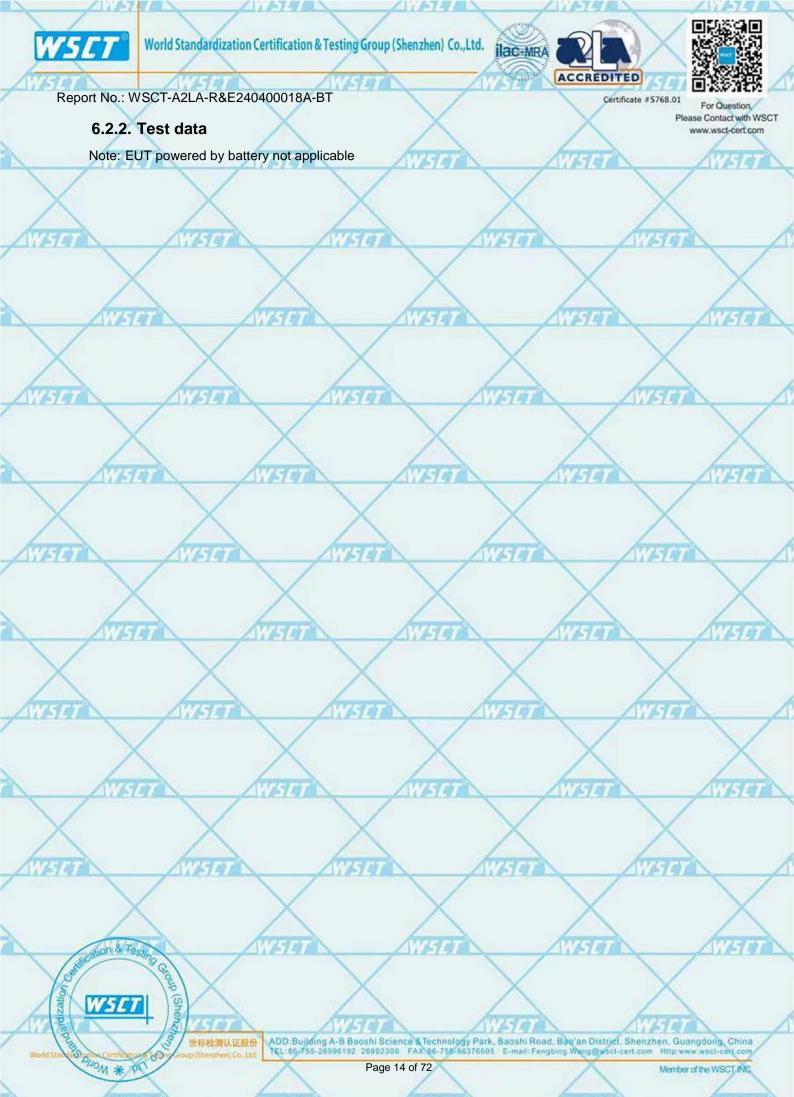
S

M * P

The Bluetooth antenna is a FPC Antenna. it meets the standards, and the best case gain of the antenna is 1.03 dBi.

MOM * P

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.2. Conducted Emission

6.2.1. Test Specification FCC Part15 C Section 15.207 **Test Requirement:** Test Method: ANSI C63.10:2014 Frequency Range: 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep time=auto **Receiver** setup: Frequency range Limit (dBuV) Quasi-peak (MHz) Average Limits: 0.15-0.5 66 to 56* 56 to 46* 0.5-5 46 56 5 - 3050 60 Reference Plane LISN 40cm 80cm Filter - AC power E.U.T AC power EMI Test Setup: Receiver Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Mode: Refer to item 4.1 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please **Test Procedure:** refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement. on & Tea PASS Test Result: W5C7 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com 世纪检测认证授价

(

Contration & Tes

WSET

S PHOM * PT

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

Conducted Output Power 6.3.

-		_	~		1
6	.3.1.	lest	Spe	CITIO	cation

Part15 C Section 15.247 (b)(3) I C63.10:2014 ion 15.247 (b) The maximum peak conducted output er of the intentional radiator shall not exceed the wing: (1) For frequency hopping systems operating e 2400-2483.5 MHz band employing at least 75 overlapping hopping channels, and all frequency bing systems in the 5725-5850 MHz band: 1 watt. all other frequency hopping systems in the 0-2483.5 MHz band 0.125 watts.
ion 15.247 (b) The maximum peak conducted output er of the intentional radiator shall not exceed the wing: (1) For frequency hopping systems operating e 2400-2483.5 MHz band employing at least 75 overlapping hopping channels, and all frequency bing systems in the 5725-5850 MHz band: 1 watt. all other frequency hopping systems in the 0-2483.5 MHz band 0.125 watts.
er of the intentional radiator shall not exceed the wing: (1) For frequency hopping systems operating e 2400-2483.5 MHz band employing at least 75 overlapping hopping channels, and all frequency bing systems in the 5725-5850 MHz band: 1 watt. all other frequency hopping systems in the 0-2483.5 MHz band 0.125 watts.
trum Analyzer EUT
smitting mode with modulation
the following spectrum analyzer settings: n = approximately 5 times the 20 dB bandwidth, ered on a hopping channel l > the 20 dB bandwidth of the emission being sured VBW \ge RBW ep = auto ector function = peak e = max hold w the trace to stabilize. the marker-to-peak function to set the marker to the s of the emission.

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.3.2. Test Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	6.04	20.97	PASS		
Middle	4.97	20.97	PASS		
Highest	3.61	20.97	PASS		

Pi/4DQPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	8.15	20.97	PASS
Middle	7.00	20.97	PASS
Highest	5.75	20.97	PASS
AV414	ANA AN		

8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	7.73	20.97	PASS
Middle	6.85	20.97	PASS
Highest	5.86	20.97	PASS

Test plots as follows:

YOUP (Shenzy

60

Contration & Tes

W5[7

PHOM * PT

Zatio

Contration & Test

WSCI

S PLOM * PT

Zatio

HOND

60

(Shenz)


World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Lin TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Contration & Test

WSCI

S PLOM * PT

HOND

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

#Res BW 2.0 MHz

toup

60

(Shenz)

Contration & Test

W5C7

S DUOM * PT

7 after

? Apr 14, 2024 ... H うつ

> ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

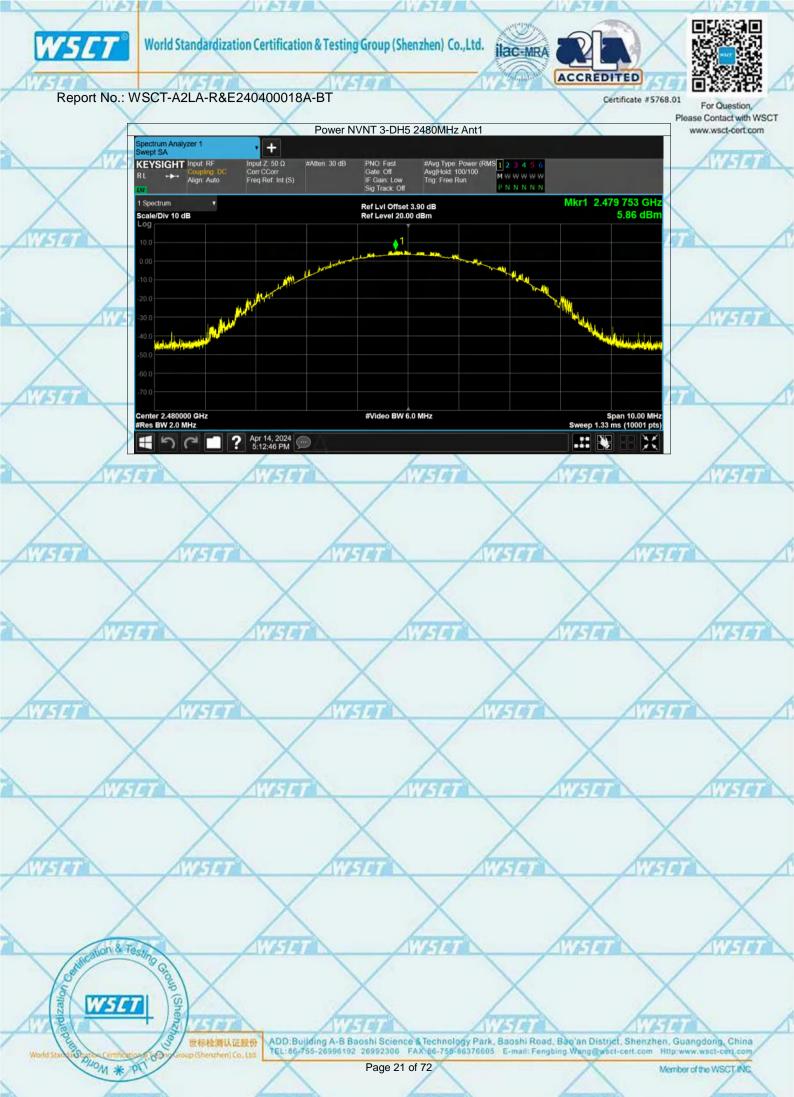
**

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Lin

Member of the WSCT INC.

Contration & Test

WSCI


S DUOM * PT

7 after

Tonb

60

(Shenz)

210

mon & Tes

WSET

PHOM * PT

oup (Shenzk

60

Cot

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question

Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
0	Test Method:	ANSI C63.10:2014	_
	Limit:	N/A	1
7	Test Setup:	Spectrum Analyzer EUT	
	Test Mode:	Transmitting mode with modulation	
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤ RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 	
	Test Result:	PASS	1
	XXX	XXX	

世际检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

D V Š

Report No.: WSCT-A2LA-R&E240400018A-BT

6.4.2. Test data

7	Test channel	20dB Occupy Bandwidth (MHz)			
	Test channel	GFSK	π/4-DQPSK	8DPSK	Conclusion
	Lowest	626.1	1.104	1.115	PASS
	Middle	661.2	1.032	1.061	PASS / 5
1	Highest	665.4	1.087	1.082	PASS
1.1		A	A		~

45E

Test plots as follows:

1510

Contration & Test

WSET

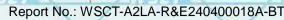
S PHOM * PT

60

dizatio

151

14


1.72

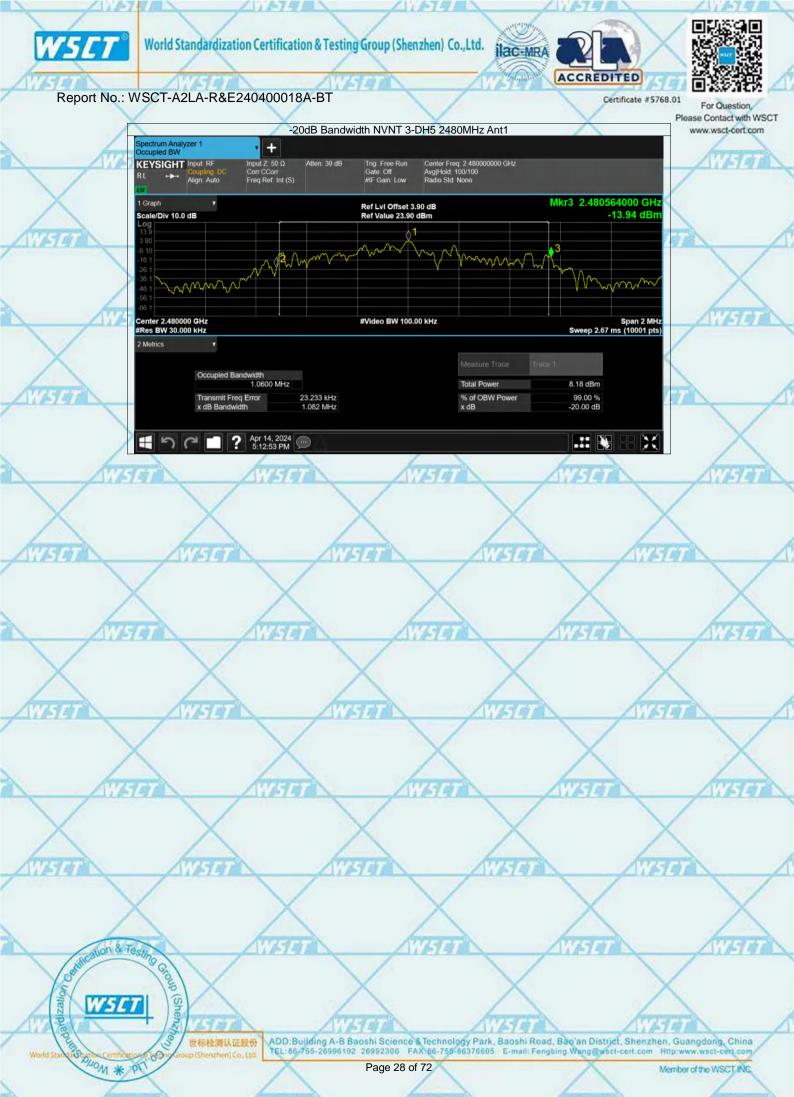
World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

(Shenz)

60

W5L

PHOM * PT



ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

211

non & Tes

WSET

PHOM * PT

oup (Shenz)

60

Co

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2014	
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.	
Test Setup:	Spectrum Analyzer EUT	
Test Mode:	Hopping mode	
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 	
Test Result:	PASS	

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. lun] TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Please Contact with WSCT www.wsct-cert.com

17

Report No.: WSCT-A2LA-R&E240400018A-BT

6.5.2. Test data

CIPTURES CIPTURES CIPTURES CONFIGURES CONFIGURES			
GFSK mode			
Test channelCarrier Frequencies Separation (MHz)Limit (MHz)Result			
Lowest	11414	2/3*20dB BW	PASS
Middle	0.998	2/3*20dB BW	PASS
Highest	1	2/3*20dB BW	PASS

Pi/4 DQPSK mode			
Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
Lowest	1	2/3*20dB BW	PASS
Middle	1	2/3*20dB BW	PASS
Highest	1	2/3*20dB BW	PASS

8DPSK mode				
Test channel Carrier Frequencies Separation (MHz)		Limit (MHz)	Result	
Lowest	1	2/3*20dB BW	PASS	
Middle	1	2/3*20dB BW	PASS	
Highest	AVISET 1	2/3*20dB BW	PASS	

Test plots as follows:

ation & Tee

W5[]

PHOM * PIT

oup (Shenzy

60

Cestific

dizatio

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) (o. M) TEL:86-755-26996192 26992300 FAX 66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Contration & Test

WSCI

SPUOM * PT

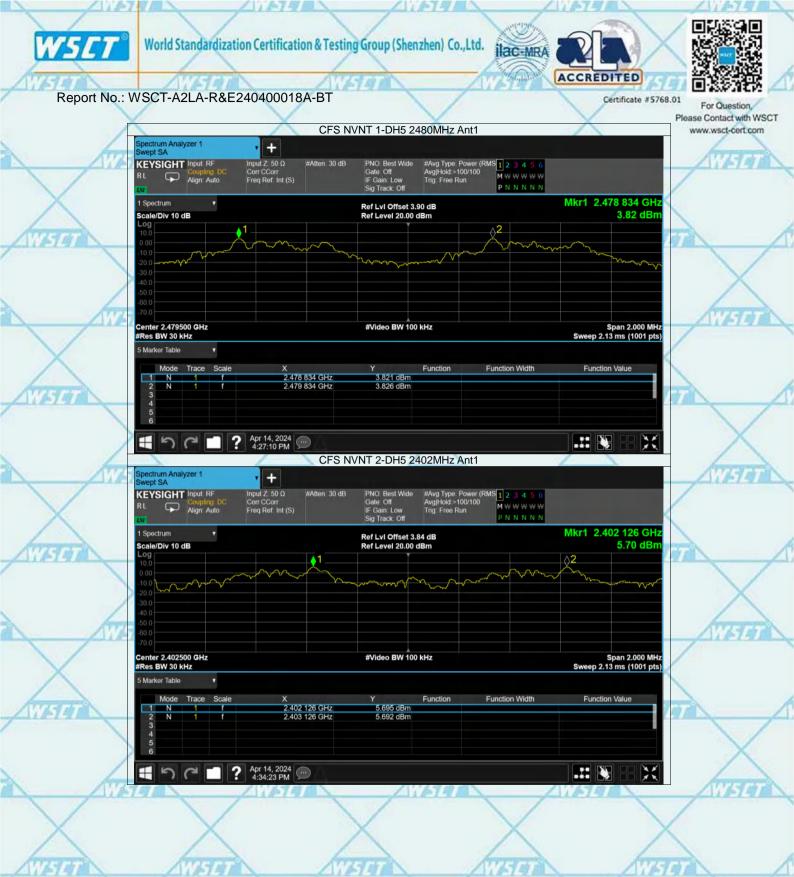
Zatio

roup

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA


Report No.: WSCT-A2LA-R&E240400018A-BT

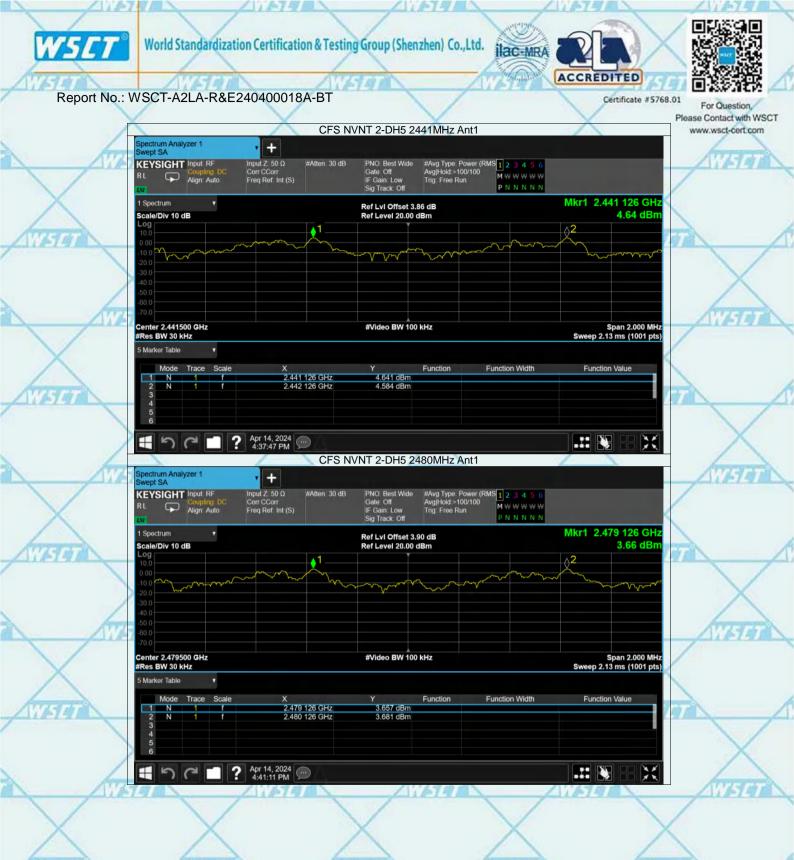
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. lun] TEL:86/755-26996192 26992306 FAX 06-755-86376605 E-mail: Fengbing Wang@wtst-cert.com Http://www.wsst-cert.com/

Page 32 of 72

Contration & Test

WSCI


S PHOM * PT

Zatio

(oup

60

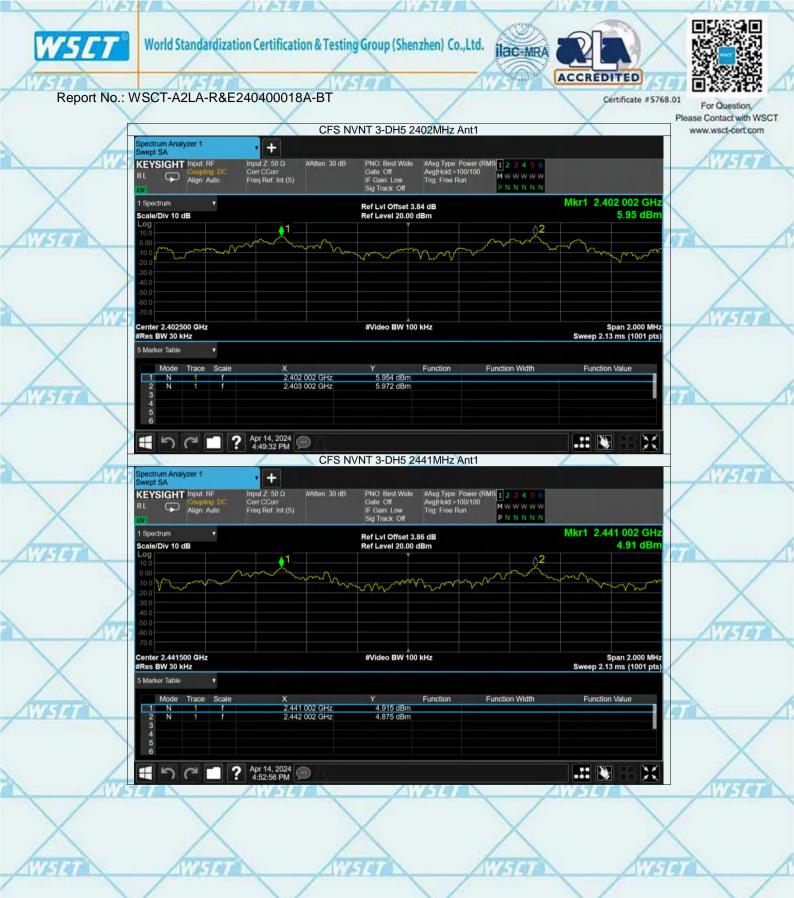
(Shenz)

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. lun] TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 33 of 72

Contration & Test

W5C7


S PHOM * PT

Zatio

(oup

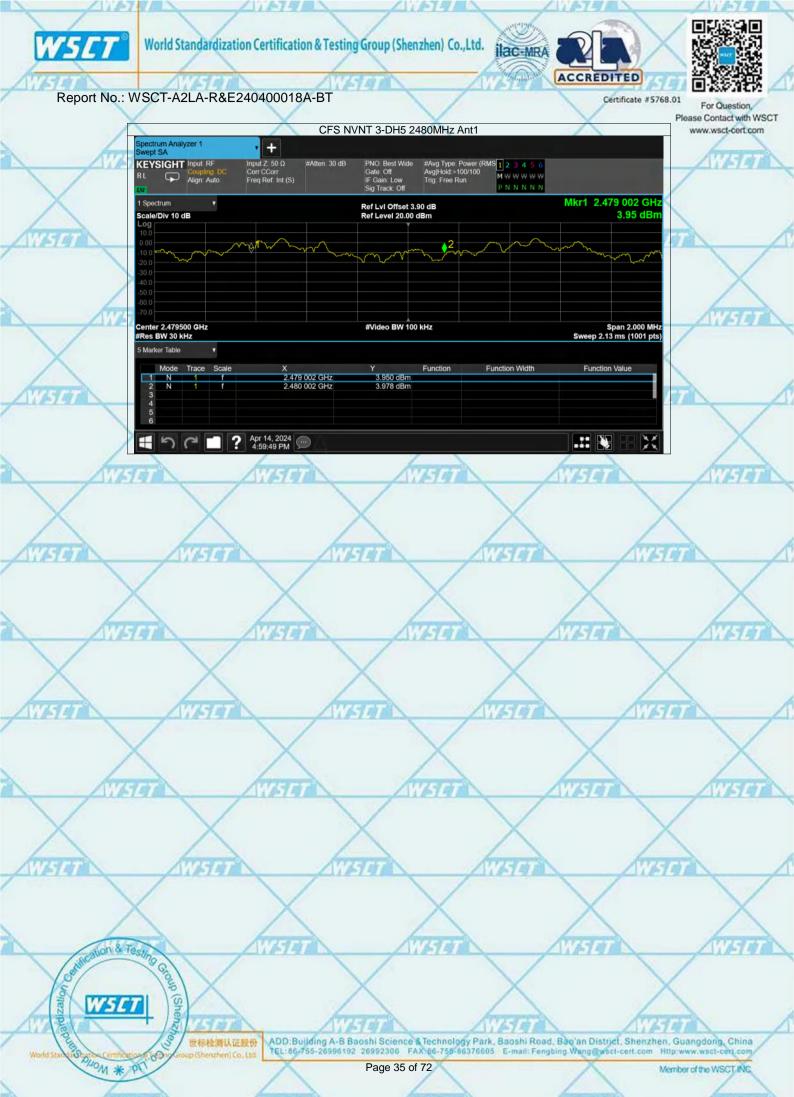
60

(Shenz)

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China n(Shenden) Co. Ivi

Contration & Test

WSCI


SPUOM * PT

Zatio

OUP

60

(Shenz)

non & Tes

WSET

PHOM * PT

oup (Shenz)

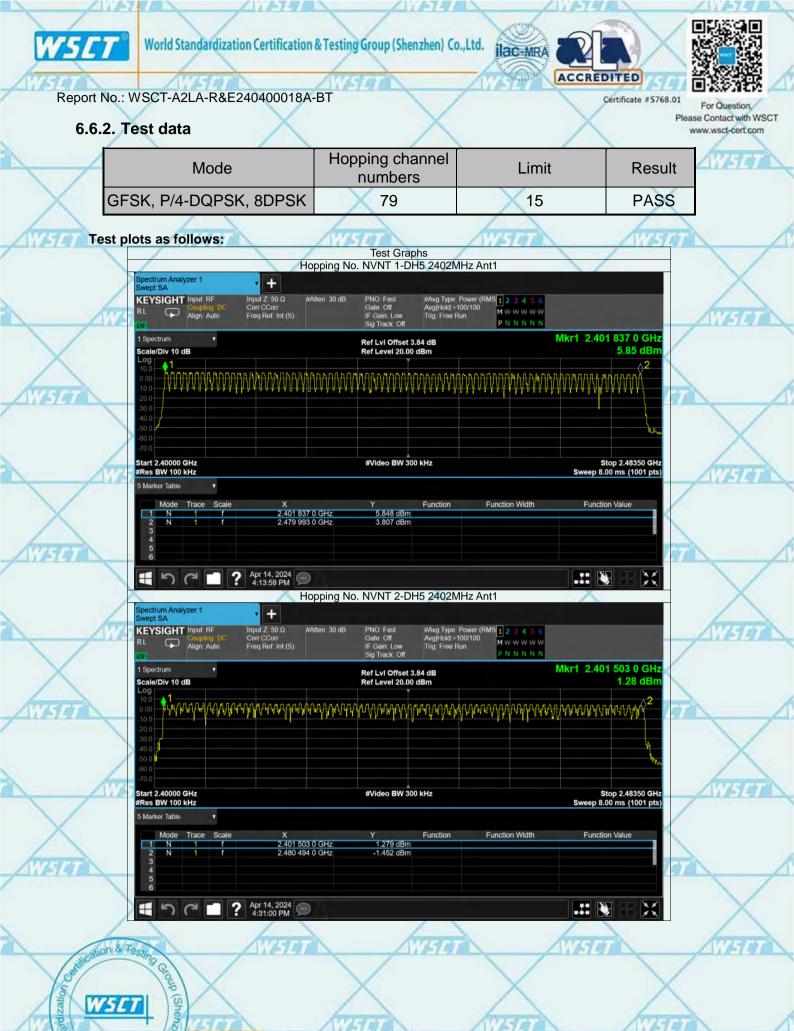
60

Cot

Zatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Please Contact with WSCT www.wsct-cert.com

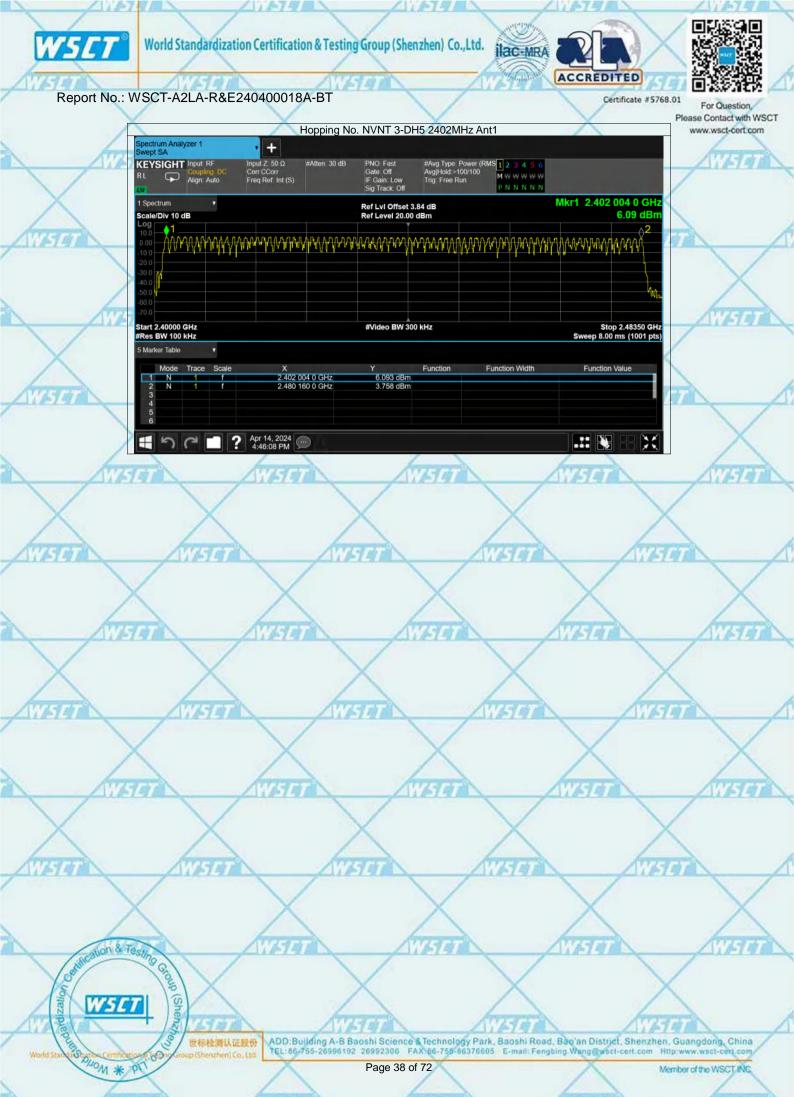

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240400018A-BT

6.6. Hopping Channel Number

6.6.1. Test Specification

1	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
	Test Method:	ANSI C63.10:2014		
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.		
	Test Setup:	Spectrum Analyzer EUT		
	Test Mode:	Hopping mode		
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as 		
	Test Result:	the number of total channel. 7. Record the measurement data in report. PASS		
	Automation Avenue			



世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Member of the WSCT INC

60

PHOM * PT

111

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240400018A-BT

6.7. Dwell Time

ation & Tee

W5[7

S PHOM * PT

60

Cestific

dizatio

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2014
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
Test Result:	6. Measure and record the results in the test report.PASS
ATTEN ATTEN	and the second of the second of the second s

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.7.2. Test Data

					/		
Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2402	0.399	127.281	319	31600	400	Pass
1-DH1	2441	0.399	126.483	317	31600	400	Pass
1-DH1	2480	0.397	126.643	319	31600	400	Pass
1-DH3	2402	1.655	273.075	165	31600	400	Pass
1-DH3	2441	1.652	257.712	156	31600	400	Pass
1-DH3	2480	1.653	267.786	162	31600	400	Pass
1-DH5	2402	2.902	310.514	107	31600	400	Pass
1-DH5	2441	2.9	290	100	31600	400	Pass
1-DH5	2480	2.901	290.1	100	31600	400	Pass

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.

For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 4 / 79) \times (0.4 \times 79) = 160$ hops

For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

non & Te

W5[]

MOM * PI

up (Shen

W5L

S PHOM * PT

Zatio

roup

(Shenz)

60


World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

WSET

BUOM * PT

dizatio

Group (Shenzh

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240400018A-BT

		2404000107.01		\checkmark		Certificate #	For Question, Please Contact with WSC
1		Dwell NVNT	1-DH1 2441N	MHz Ant1 O	ne Burst	\wedge	www.wsct-cert.com
Spec	strum Analyzer 1 pt SA	• +					
1 1 -	YSIGHT Input RF	Input Z: 50 Ω #Atten: 30 dB	PNO Fast	#Avg Type: Po	wer (RMS 1 2 3 4 5 6		11414
RL	Align: Auto	Corr CCorr Freq Ref: Int (S)	Gate: Off IF Gain: Low	Trig: Video Trig Delay: -50	00.0 µs W W W W W		
Da			Sig Track: Off		PNNNN		
	ectrum Y		Ref LvI Offset 3			ΔMkr1 399.0 4.43	
Log			Ref Level 20.00	dBm		4.45	
10.0						TRIG	
-10.0	p <u></u> ^2						
-20,0							
-40.0)						X
-50.0) <mark>Antine de la constante de l</mark>	all and the second later of the second s	Derformfingen profiler der in der Bereiten Scheiner der in Beite	n here policiel der ber für Jegende verste schele gehalt	n a feining finder and providing the set of previous and an Al Andrew Stational and the state but have a distribution	n filmen ander sin einer der bestehen einer der Bestehen einer der bestehen einer der	
7.7 -70.0		office half to the office of the second	and the later of t	ALCED STORES	are submit of children in some	test all several test	Austa
	ter 2.441000000 GHz		#Video BW 3.0	0 MHz		Span 0	
	BW 1.0 MHz					Sweep 10.0 ms (10001 p	ots)
5 Ma	arker Table 🔹 🔻						
	Mode Trace Scale		Y	Function	Function Width	Function Value	
	1 <u>Δ2</u> 1 t 2 F 1 t	(Δ) 399.0 μs (Δ) 497.0 μs	4.434 dB -3.532 dBm				
3	3						
	5						
	うで	? Apr 14, 2024 4:04:35 PM					
		Dwell NVNT	-DH1 2441M	Hz Ant1 Ac	cumulated		
	ctrum Analyzer 1 pt SA	• +					AWSET
	YSIGHT Input RF	Input Z: 50 Ω #Atten: 30 dB	PNO: Fast	#Avg Type: Pa	wer (RMS 1 2 3 4 5 6		
RL	Align: Auto	Corr CCorr Freq Ref: Int (S)	Gate: Off IF Gain: Low	Trig: Free Run	W W W W W		
Lu			Sig Track: Off		PNNNN		
	ectrum v		Ref LvI Offset 3				
Scal Log	le/Div 10 dB		Ref Level 20.00) dBm			137
10.0							
0.00							
-10.0							
7.4 -20.0							(Antonio
JE2							
-30,0			i hir yir dini				
-40.0							
-50.0							
-60.0							
-70.0							
	ter 2.441000000 GHz BW 1.0 MHz		#Video BW 3.0	0 MHz		Span 0 Sweep 31.6 s (10001 p	hz ots)
		? Apr 14, 2024 4:05:09 PM					¥
		4:05:09 PM					x
ALS.				NSLU	1	IT ATA	AWSET

世标检测认证数册 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m[Shenzhen] (p. Ltd. TEL:86-755-26996192 26992306 FAX 06-755-86376605 E-mail: Fengbing.Wang@whot-cert.com Http://www.wsci-cert.com/

WSET

Souon * PT

dardization

Group (Shenzh

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E240400018A-BT

10	VSCT-AZLA-I	K&E240400016	A-DI	\sim		Certificate #576	B.01 For Question, Please Contact with WSCT
		Dv	ell NVNT 1-DH1 2	480MHz Ant1	One Burst	\wedge	www.wsct-cert.com
	Spectrum Analyzer 1 Swept SA	• +					
1/40	KEYSIGHT Input R RL ++ Couplin Align: A	F Input Z: 50 Ω g DC Corr CCorr uto Freq Ref: Int (S)	#Atten: 30 dB PNO: Fa Gate: Ol IF Gain: Sig Trac	t Trig: Video Low Trig Delay: -{	Power (RMS <mark>123456</mark> 500.0 µs PNNNNN		A:190
	1 Spectrum Scale/Div 10 dB			Offset 3.90 dB el 20.00 dBm		ΔMkr1 397.0 μs 2.31 dB	
	Log 10.0 0.00	12				IRIG LVL	TA /
	-10.0 -20.0						
	-30.0 -40.0 -50.0 tenet fuel	and a state of the state of the state of	a state of the second	an till states the state	a kilala blati dati seri	and the sector of the sector ball	X
<u></u>	-60.0 0000000000000000000000000000000000			an a surface of the part		il program for a los as printed and in the	August a
IP	Center 2.480000000 G Res BW 1.0 MHz	Hz	#Video	BW 3.0 MHz		Span 0 Hz Sweep 10.0 ms (10001 pts)	
	5 Marker Table	•					
	Mode Trace 1 Δ2 1 2 F 1			Function 308 dB 4 dBm	Function Width	Function Value	
	3 4 5						7
1	6						\sim
/	1 つ つ	Apr 14, 2024 4:05:15 PM		ROMUT Apt A	aumulated		
112	Spectrum Analyzer 1 Swept SA				comulated		AVERA
	KEYSIGHT Input R	F Input Z: 50 Ω	#Atten: 30 dB PNO: Fa Gate: Of	t Trig: Free Ri	Power (RMS 1 2 3 4 5 6 un W W W W W W		/
	Align: A		IF Gain: Sig Trac		PNNNN		
	1 Spectrum Scale/Div 10 dB			Offset 3.90 dB el 20.00 dBm			
	10.0						
	0.00						\times
4	-10.0						hand
10.0	-20.0						11414
	-40.0						
	-50.0	eff des medie in a deal of an ender a set (des ide ender only a set det er	The second barries and the second secon				
	-60.0						
1	Center 2.480000000 G	Hz	#Video	BW 3.0 MHz		Span 0 Hz	\sim
1	Res BW 1.0 MHz	Apr 14, 2024 4:05:48 PM				Sweep 31.6 s (10001 pts)	\wedge
11/5		4:05:48 PM		ZW/5141			AWISTOT

世际检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m[Shenzhen] Co. Lts. TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

Page 43 of 72

14

Member of the WSCT INC

W5L

B MONOM * PT

Zatio

Tonb

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

W5E

S PLOM * PT

Tonb

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

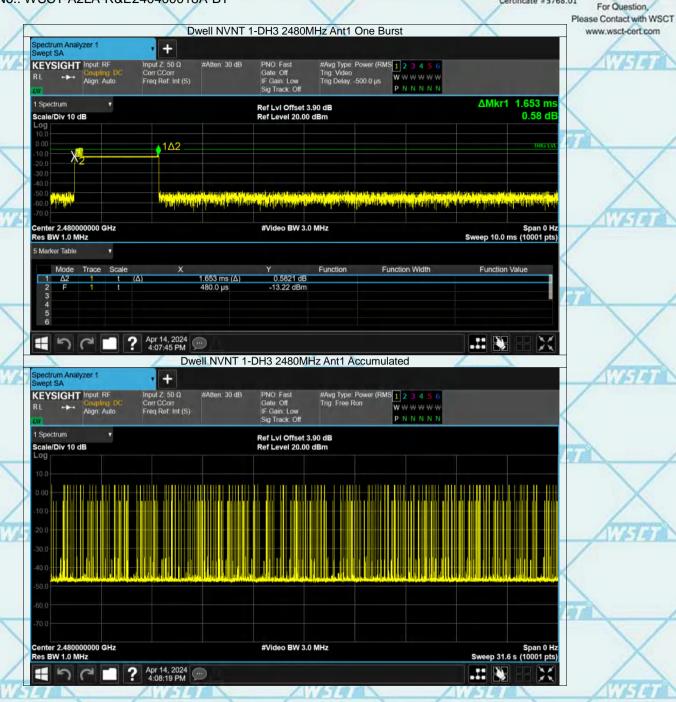
W5L

B MONOM * PT

Zatio

Tonb

(Shenz)


60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01

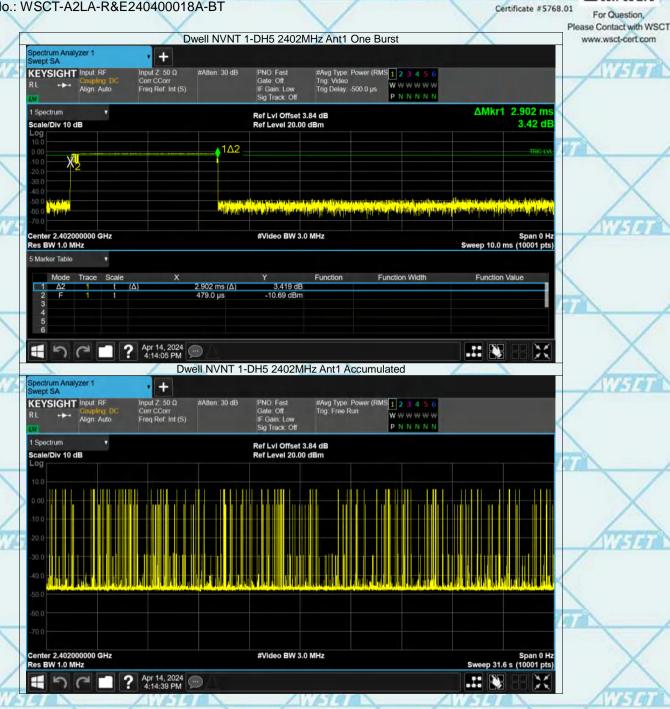
Report No.: WSCT-A2LA-R&E240400018A-BT

W5L

B MONOM * PT

Zatio

toup


60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

W5L

B PUOM * PT

Zatio

HOND

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

W5L

B MONOM * PT

Zatio

Tonb

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240400018A-BT

6.8. **Pseudorandom Frequency Hopping Sequence**

Test Requirement:

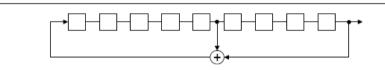
on & Te

M * P

S

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9

• Length of pseudo-random sequence: $2^9 - 1 = 511$ bits

Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

	0	2	4	6	6	2	64	78	1		73	75	77	
					[{				
/										}				

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

210

non & Tes

W5[7

PHOM * PT

oup (Shenz)

60

Cor

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2014
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China ntShenzhen Co. Lin TEL:86-755-26996192 26992306 FAX 86-755-88376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

S PHOM * PT

60

Member of the WSCT INC

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Lin

Contration & Test

W5L

S DUOM * PT

roup

(Shenz)

60

Member of the WSCT INC

210

11515

non & Tes

WSET

PHOM * PT

oup (Shenz)

.60

Co

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

VSE

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (d)					
10	Test Method:	ANSI C63.10:2014					
	Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.					
10	Test Setup:	Spectrum Analyzer EUT					
	Test Mode:	Transmitting mode with modulation					
N N N	Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 					
	Test Result:	PASS					

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

Test Data

Contration & Test

W5E

S PLOM * PT

7 afin

roup

(Shenz)

60

W5E

S DUOM * PT

Zatio

toup

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. lun] TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Contration & Test

W5E

S DUOM * PT

Zatio

toup

60

(Shenz)

Member of the WSCT INC

W5L

S DUOM * PT

7 afin

toup

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

W5L

S DUOM * PT

Zatio

toup

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

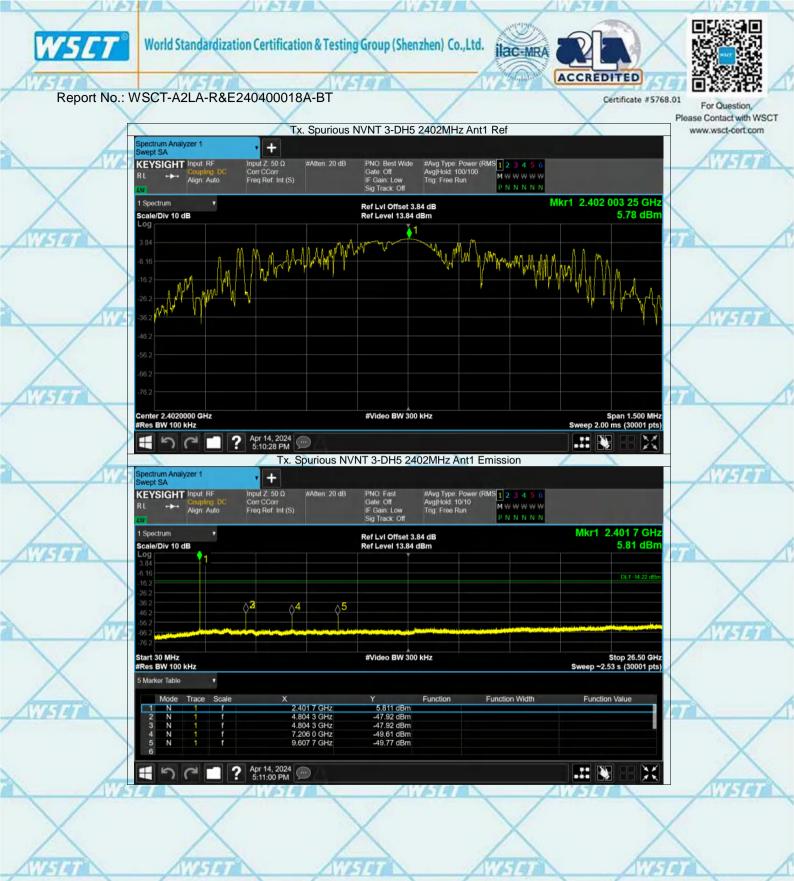
W5E

S DUOM * PT

toup

60

(Shenz)


World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Ivi

Member of the WSCT INC

Contration & Test

W5L

S DUOM * PT

7 afin

toup

60

(Shenz)

W5L

S DUOM * PT

Zatio

roup

(Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E240400018A-BT

世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Ivi

Contration & Test

W5L

S DUOM * PT

7 after

roup

(Shenz)

60

Member of the WSCT INC

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

1.10

For Question, Please Contact with WSCT

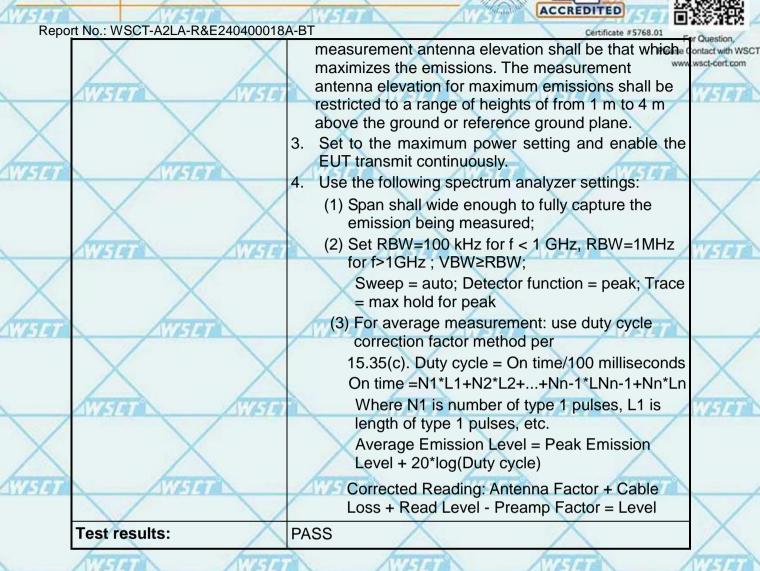
www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT

6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

6.11.1. Test Specification			45.000	9		
Test Requirement:	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10	0:2014	ATTEN	1	177.5	TA
Frequency Range:	9 kHz to 25	GHz		1	/	
Measurement Distance:	3 m	\wedge				
Antenna Polarization:	Horizontal &	Vertical		ATT	10	W/51
	Frequency	Detector	RBW	VBW	Remark	
	9kHz- 150kHz 150kHz-	Quasi-peak Quasi-peak		1kHz 30kHz	Quasi-peak	
Receiver Setup:	30MHz	addor pour	AUSITT	o o la la	Qual pour	
	30MHz-1GHz	Quasi-peak		300KHz	Quasi-peak	
\mathbf{X}	Above 1GHz	Peak	1MHz	3MHz	Peak Val	
\wedge		Peak	1MHz	10Hz	Average Va	alue
AVISTAT AVIS	Frequer	cv 557	Field Str		Measurem	1 1 2 2 1 1
			(microvolts	/	Distance (me	eters)
X	0.009-0.4		2400/F(24000/F		300 30	
	1.705-3		30	1(12)	30	
AVE A	30-88		100	2	3	
	88-21		150		3	
Limit:	216-96		200		3	X
	Above 9	60	500	-/-	3	
AWSET		ATTEL	d Ofre a sth	Measure	ment	WSI.
	Frequency		d Strength ovolts/meter)	Distan	ce Dete	ctor
X	X	(111010	X	(mete		
	Above 1GH	z	500 5000	3	Aver	
1715700	ALKIN		216191	3		
	For radiated emi	ssions below	30MHz	1	/	
XX	Di	stance = 3m				X
have have		1			Computer	-
AWSET			\frown	Dee	Amplifier	11151
		'(Л	Pie -	Amplifier	/
Test setup:	EUT		\prod			
A THERE A		Turn table				1
ALL					Receiver	
	/	Ground	Plane	L		
		Ground		1	1	
	30MHz to 1GHz	Anna		hores		1000
incolion & Testing gap			1	ALLEI		June
0102	\sim					/
WST I	\sim		\wedge			
A Start	Antana		ATTAC		1000	T
WEGG TO GOOD GOOD GOOD GOOD GOOD GOOD GOOD	Building A-B Baoshi Scie	nce & Technolog	y Park, Baoshi R	oad, Bào'an D	listrict, Shenzhen,	Guangdong, Chin
Proto Commission (Sono sroup (Shenzhen) Co. Ltd.	86,755-26996192 2699230	FAX 86-755-86	376605. E-mail: F	engbing.Wang	@wscl-cert.com Htt	p www.wscl-cerl.com
M * P	Page	0172		/	Me	mber of the WSCT INC



on & Te

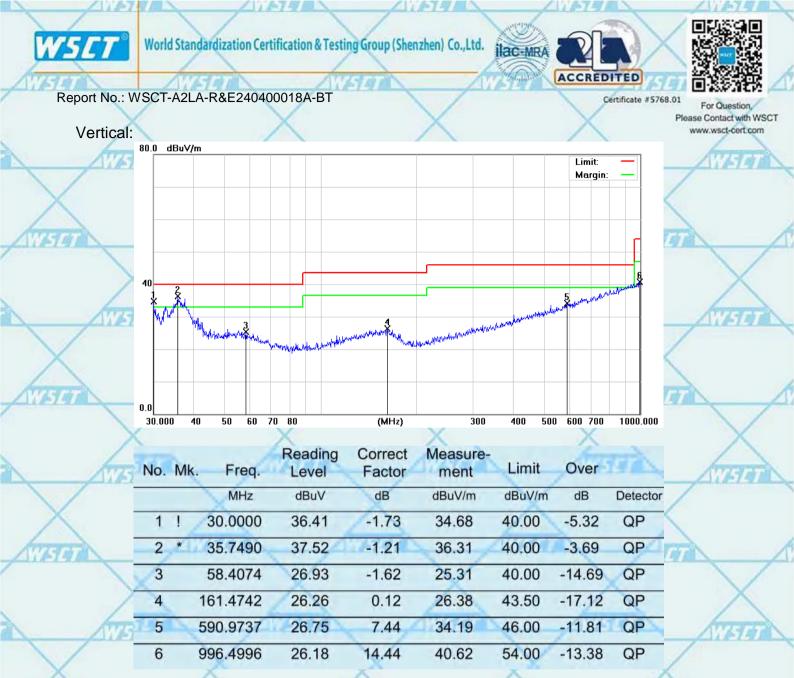
M * P

5

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Member of the WSCT IN

Member of the WSCT INC


on & Te

W5L

MOM * PI

up (Shen

Cot

Note1:

on & Te

MOM * P

(Sher

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Member of the WSCT INC

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

1

Report No.: WSCT-A2LA-R&E240400018A-BT

Above 1GHz

GF	SK		ATT TAL	k	11-1-1-	k	113AA	1
1	Frog			Low cha	innel: 2402	2MHz		
Freq. (MHz)		Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Over(dB)	
1		H/V	PK	AV	PK	AV	PK	AV
7	4804	V	61.05	39.51	74	54	-12.95	-14.49
	7206	V	62.58	39.31	74	54	-11.42	-14.69
	4804	Н	64.56	39.25	74	54	-9.44	-14.75
	7206	Н	56.55	40.55	74	54	-17.45	-13.45

Ener 1	Middle channel: 2441MHz									
Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Over(dB)				
(IVI⊟Z)	H/V	PK	AV	PK	AV	PK	AV			
4882	West V T	56.23	41.57	74	54	-17.77	-12.43			
7323	V	63.01	40.68	74	54	-10.99	-13.32			
4882	Н	62.62	39.53	74	54	-11.38	-14.47			
7323	Н	57.14	41.14	74	54	-16.86	-12.86			

All and the second		All I down and and		1 and and all		The state of the second					
Frog		High channel: 2480MHz									
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Over(dB)					
(MHz)	H/V	PK	AV	PK	AV	PK	AV				
4960	West T	64.27	41.34	74	54	-9.73	-12.66				
7440	V	59.40	39.24	74	54	-14.60	-14.76				
4960	Н	62.06	39.76	74	54	-11.94	-14.24				
7440	Н	57.65	41.65	74	54	-16.35	-12.35				

Note:

mon & Tes

W5E

WOM * PT

up (Shen

S

1. The emission levels of other frequencies are very lower than the limit and not show in test report.

Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
 Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated

Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Ltd. TEL:86-755-26996192 26992306 FAX 06-755-86376605. E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

⁰¹ For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400018A-BT Restricted Bands Requirements

Test result	for GFSK M	ode(the w	orst case)	hurst	A	hurs	ALL ALL
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
A.	Antara	6	Low Cha	nnel	Kuran	de la	Ano.
2390	62.92	-8.76	54.16	74	19.84	H	PK
2390	53.31	-8.76	44.55	54	9.45	н	AV
2390	62.94	-8.73	54.21	74	19.79	V	PK
2390	56.02	-8.73	47.29	54	6.71	VA	AV
	V		High Cha	annel			1
2483.5	61.70	-8.76	52.94	74	21.06	н	PK
2483.5	56.80	-8.76	48.04	54	5.96	Н	AV
2483.5	62.60	-8.73	53.87	74	20.13	V	PK
2483.5	56.34	-8.73	47.61	54	6.39	VX	AV

Note: Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit $(dB\mu V)$ = Limit stated in standard

1.10

Contration & Test

WSET

S PHOM * PT

60

dizatio

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

