

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202203190F01

TEST Report

Applicant: AAXA Technologies Inc

Address of Applicant: 17781 SKY PARK CIR STE F IRVINE CA 92614

Manufacturer: Shenzhen Fanghua DLP Technology Co.,LTD

Address of 4th Floor Block3, King Mei Way Industrial Park Hiyi Village

Manufacturer: Shajing Street Bao an Shenzhen

Equipment Under Test (EUT)

Product Name: LED Mini Projector

Model No.: P8

Series model: P7Y, P8L, P9

Trade Mark: AAXA TECHNOLOGIES

FCC ID: 2ANH2-P8

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Mar.21,2022

Date of Test: Mar.21,2022- Apr.06,2022

Date of report issued: Apr.06,2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Apr.06,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Apr.06,2022
	Project Engineer	_	
Check By:	Bruce 2hu	Date:	Apr.06,2022
	Reviewer		
Approved By :	Kevin Yang	Date:	Apr.06,2022
	Authorized Signature	-	

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.2. TEST MODE	
4.3. DESCRIPTION OF SUPPORT UNITS	
4.4. DEVIATION FROM STANDARDS	
4.6. TEST FACILITY	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	16
6.4. Frequencies Separation	19
6.5. HOPPING CHANNEL NUMBER	
6.6. DWELL TIME	
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	
6.8. Spurious Emission	
6.8.2. Radiated Emission Method	
7. TEST SETUP PHOTO	
8. EUT CONSTRUCTIONAL DETAILS	48

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9k~30MHz	3.17 dB	(1)		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	>6GHz	4.89dB	(1)		
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)		
RF power, conducted	1	0.16 dB	(1)		
Spurious emissions, conducted / 0.21dB (1)					
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

4. General Information

4.1. General Description of EUT

iiii Goiloidi Booolipiioli oi Eo i	
Product Name:	LED Mini Projector
Model No.:	P8
Series model:	P7Y, P8L, P9
Model Difference	The variation of each model name is used to distinguish different sales customers, other including product appearance, electrical structure and key components are exactly the same, does not affect product safety and Electromagnetic compatibility.
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8QPSK
Antenna Type:	FPCB Antenna
Antenna gain:	0dBi
Power supply:	DC 12V From Adapter
Adapter Information (auxiliary test equipment supplied by test Lab)	Model: J482-1203600UX Input: AC 100-240V~, 50/60Hz, 1.5A, Output :DC 12V 3.6A, 43.2W

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

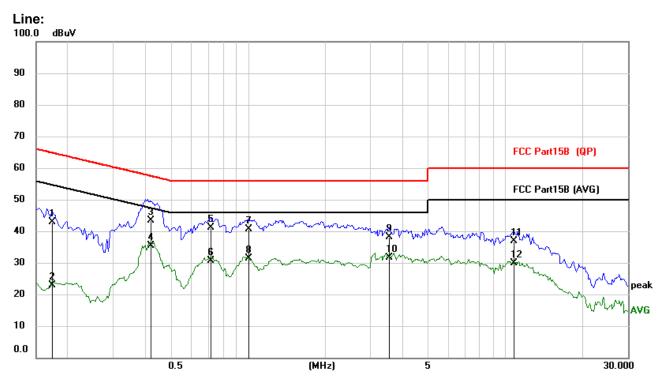
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

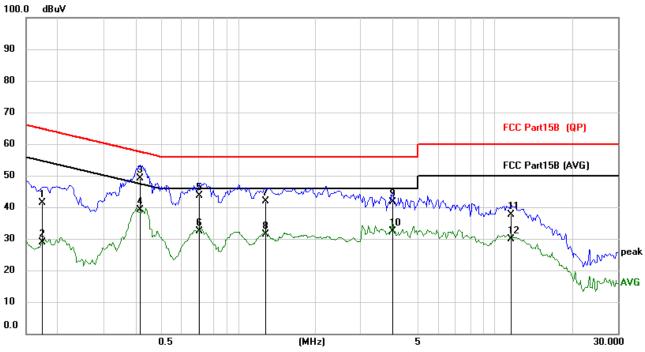
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
				No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 21 2021	May 20 2022
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 21 2021	May 20 2022
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 21 2021	May 20 2022
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 21 2021	May 20 2022
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 21 2021	May 20 2022
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 21 2021	May 20 2022
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 21 2021	May 20 2022
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 21 2021	May 20 2022
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 21 2021	May 20 2022
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 21 2021	May 20 2022
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 21 2021	May 20 2022
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 21 2021	May 20 2022
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 21 2021	May 20 2022
20	Attenuator	Robinson	6810.17A	HTT-E007	May 21 2021	May 20 2022
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 21 2021	May 20 2022
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 21 2021	May 20 2022
23	DC power supply	Agilent	E3632A	HTT-E023	May 21 2021	May 20 2022
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 21 2021	May 20 2022
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 21 2021	May 20 2022
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 21 2021	May 20 2022
27	Power sensor	Keysight	U2021XA	HTT-E027	May 21 2021	May 20 2022
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 21 2021	May 20 2022

6. Test results and Measurement Data

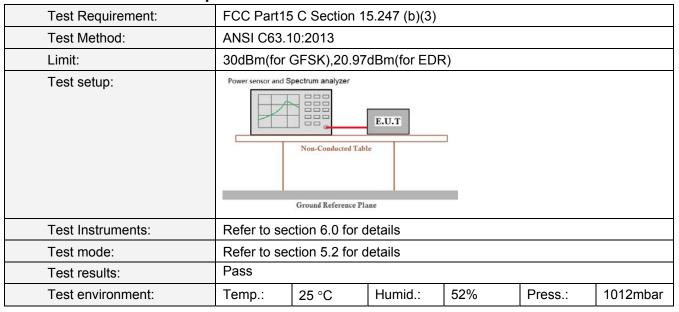

6.1. Conducted Emissions

o.i. Oolidabtea Elliissioli	9				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto				
Limit:	Fragueray range (MIII	Lim	it (dBuV)		
	Frequency range (MHz	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	* Decreases with the logar	rithm of the frequency	50		
Test setup:		•			
Test procedure:	Reference Plane LISN 40cm 80cm Filter Ac power Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative				
		3.10:2013 on conducted	cables must be changed measurement.		
Test Instruments:	Refer to section 6.0 for de	etails			
Test mode:	Refer to section 5.2 for de	etails			
Test environment:	Temp.: 25 °C	Humid.: 52%	Press.: 1012mba		
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				
	1				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

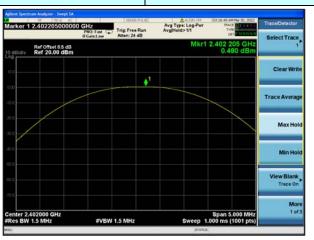
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector
1	0.1733	32.65	10.23	42.88	64.80	-21.92	QP
2	0.1733	12.57	10.23	22.80	54.80	-32.00	AVG
3	0.4193	33.19	10.31	43.50	57.46	-13.96	QP
4 *	0.4193	25.16	10.31	35.47	47.46	-11.99	AVG
5	0.7194	30.56	10.66	41.22	56.00	-14.78	QP
6	0.7194	19.86	10.66	30.52	46.00	-15.48	AVG
7	1.0079	29.79	10.80	40.59	56.00	-15.41	QP
8	1.0079	20.67	10.80	31.47	46.00	-14.53	AVG
9	3.5466	27.36	10.86	38.22	56.00	-17.78	QP
10	3.5466	20.89	10.86	31.75	46.00	-14.25	AVG
11	10.8231	25.22	11.61	36.83	60.00	-23.17	QP
12	10.8231	18.23	11.61	29.84	50.00	-20.16	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector
1	0.1734	31.24	10.23	41.47	64.80	-23.33	QP
2	0.1734	18.72	10.23	28.95	54.80	-25.85	AVG
3 *	0.4188	38.89	10.31	49.20	57.47	-8.27	QP
4	0.4188	28.79	10.31	39.10	47.47	-8.37	AVG
5	0.7116	32.89	10.65	43.54	56.00	-12.46	QP
6	0.7116	21.83	10.65	32.48	46.00	-13.52	AVG
7	1.2849	31.19	10.81	42.00	56.00	-14.00	QP
8	1.2849	20.65	10.81	31.46	46.00	-14.54	AVG
9	3.9866	30.85	10.87	41.72	56.00	-14.28	QP
10	3.9866	21.56	10.87	32.43	46.00	-13.57	AVG
11	11.5213	26.03	11.71	37.74	60.00	-22.26	QP
12	11.5213	18.15	11.71	29.86	50.00	-20.14	AVG

Notes:

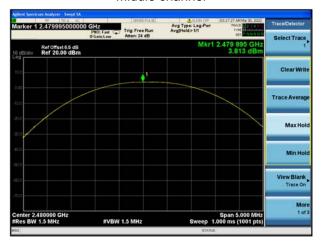
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

6.2. Conducted Peak Output Power

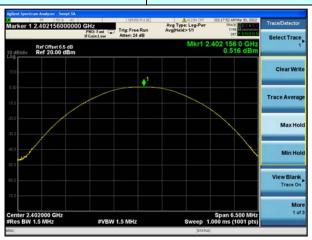

Measurement Data

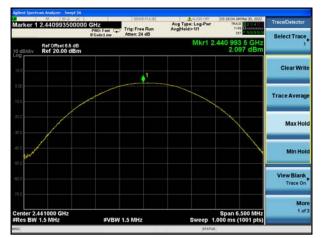
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	0.480		
GFSK	Middle	2.085	30.00	Pass
	Highest	3.813		
	Lowest	0.516		
π/4-DQPSK	Middle	2.097	20.97	Pass
	Highest	3.840		
	Lowest	0.482		
8QPSK	Middle	2.123	20.97	Pass
	Highest	3.895		

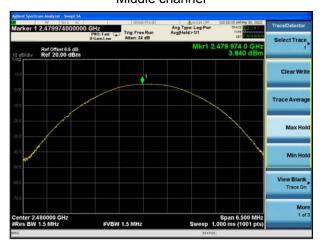
Test plot as follows:


Test mode: GFSK mode

Lowest channel

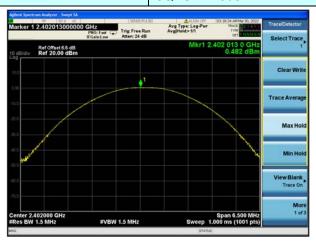

Middle channel


Highest channel


Test mode: $\pi/4$ -DQPSK mode

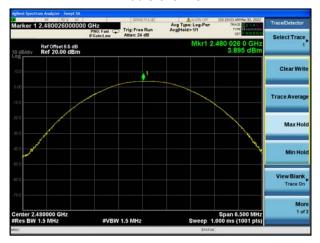
Lowest channel

Middle channel

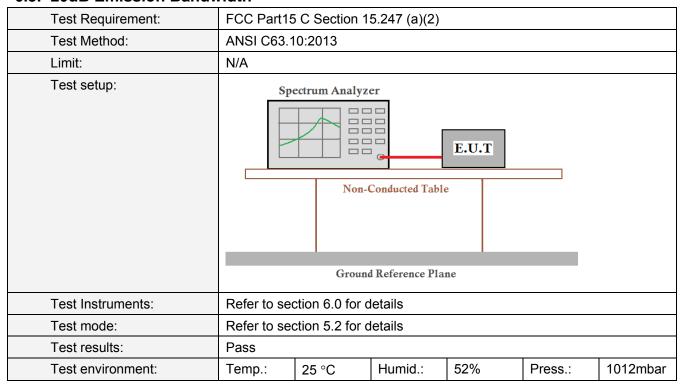


Highest channel

Test mode:


8QPSK mode

Lowest channel


Middle channel

Highest channel

6.3. 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
	Lowest			
GFSK	Middle	0.876	Pass	
	Highest	0.876]	
	Lowest	1.214		
8QPSK	Middle	1.213	Pass	
	Highest	1.212		

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

Test mode: 8QPSK mode

Lowest channel

Middle channel

Highest channel

6.4. Frequencies Separation

Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)			
Test Method:	ANSI C63.	10:2013				
Receiver setup:	RBW=300k	(Hz, VBW=1 <mark>1</mark>	MHz, detecto	r=Peak		
Limit:	GFSK: 20dB bandwidth 8QPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)					greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Measurement Data

Weasurement Dat	a			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
	Low	1.002	20dB	
GFSK	Middle	1.011	bandwidth	Pass
	High	0.999	Danawidin	
	Low	1.011	25KHz or	
8QPSK	Middle	0.993	2/3*20dB	Pass
	High	0.999	bandwidth	

Test plot as follows:

Test mode: GFSK mode

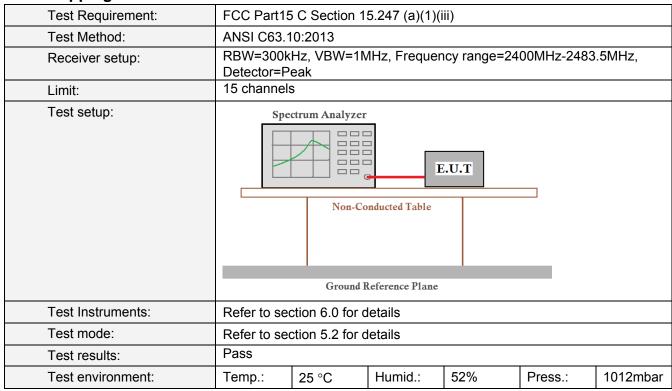
Lowest channel

Middle channel

Highest channel

Test mode: 8QPSK mode

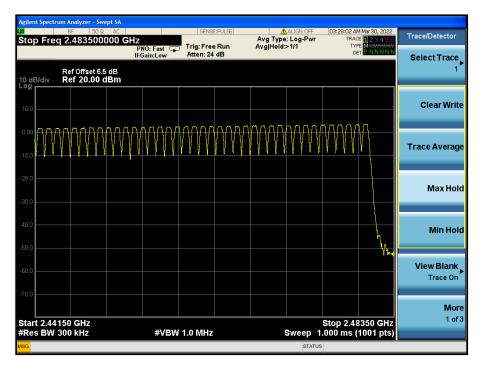
Lowest channel


Middle channel

Highest channel

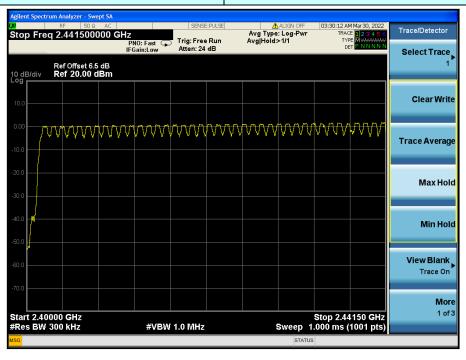
6.5. Hopping Channel Number

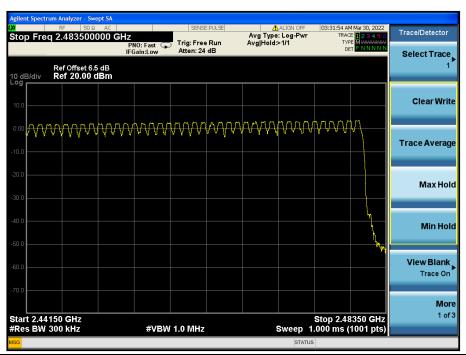
Measurement Data:


Mode	Hopping channel numbers	Limit	Result
GFSK	79	>15	Pass
8QPSK	79	≥15	Pass

Test plot as follows:

Test mode: GFSK





Test mode:

8QPSK

6.6. Dwell Time

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)					
Test Method:	ANSI C63.	10:2013					
Receiver setup:	RBW=1MH	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak					
Limit:	0.4 Second	0.4 Second					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.370	118	400	Pass
Hopping	DH3	1.617	259	400	Pass
Hopping	DH5	2.860	305	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at Low channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1

Dwell time=Pulse time (ms) × (1600 \div 4 \div 79) ×31.6 Second for DH3

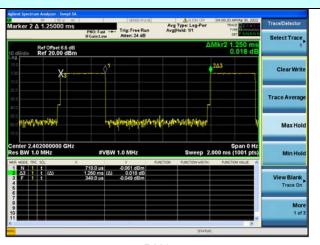
Dwell time=Pulse time (ms) × (1600 \div 6 \div 79) ×31.6 Second for DH5

8QPSK mode:

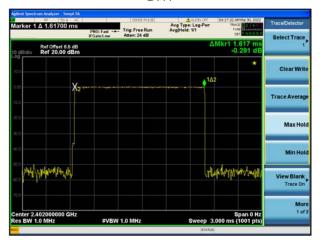
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.378	121	400	Pass
Hopping	3DH3	1.620	259	400	Pass
Hopping	3DH5	2.865	306	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at Low channel.

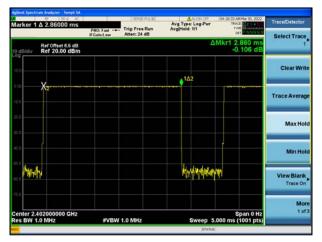
Dwell time=Pulse time (ms) × (1600 \div 2 \div 79) ×31.6 Second for 3-DH1


Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for 3-DH3

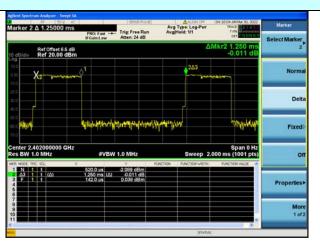
Dwell time=Pulse time (ms) × (1600 \div 6 \div 79) ×31.6 Second for 3-DH5

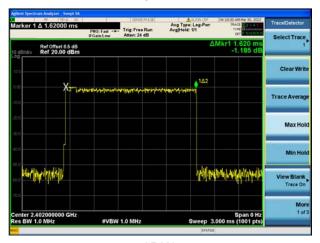


Test plot as follows:


GFSK mode

DH1


DH3


DH5

8QPSK mode

3DH1

3DH3

6.7. Band Edge

6.7.1. Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar				

Frequency Band	equency Band Delta Peak to band emission (dBc)		Result		
GFSK Non-hopping					
2400	56.65	20	Pass		
2483.5	56.07	20	Pass		

Frequency Band Delta Peak to band emission (dBc)		>Limit (dBc)	Result		
GFSK hopping					
2400	59.29	20	Pass		
2483.5	58.95	20	Pass		

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result				
8QPSK Non-hopping							
2400	56.61	20	Pass				
2483.5	57.68	20	Pass				

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result				
8QPSK hopping							
2400	59.47	20	Pass				
2483.5	59.54	20	Pass				

Test plot as follows: GFSK Mode:

Lowest channel

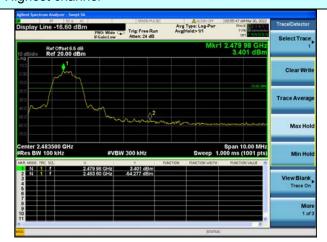
Ref Offset 8.5 dBs 10 dBids/ Ref 20.00 dBm Ref 2.400 dBm R

No-hopping mode

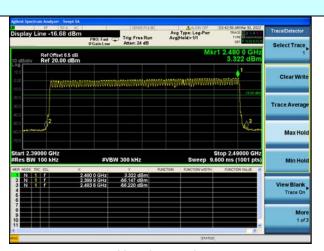
Highest channel

No-hopping mode

Hopping mode


8QPSK Mode:

Lowest channel


| All | All

No-hopping mode

Highest channel

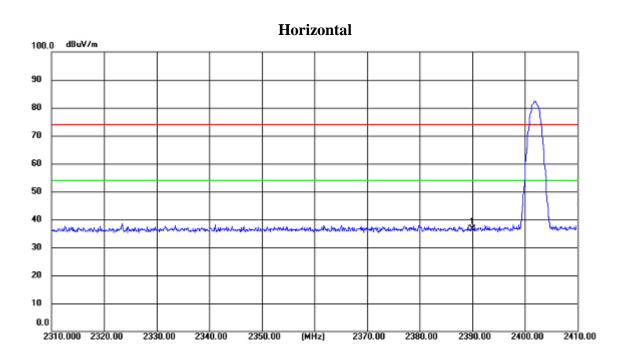
No-hopping mode

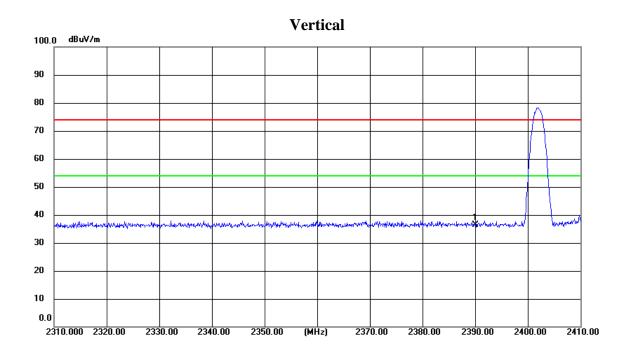
Hopping mode

6.7.2. Radiated Emission Method

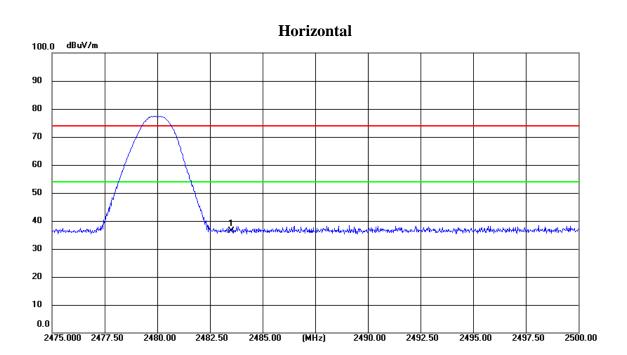
Test Requirement:	1	C Section 1	5 209 a	nd 15 2	205				
Test Method:	FCC Part15 C Section 15.209 and 15.205 ANSI C63.10:2013								
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to								
, , ,	2500MHz) data was showed.								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency Detector			RBV			mark		
	Above 1GHz Peak			1MH: 1MH:			k Value ge Value		
Limit:	Frequency				3uV/m @3m		mark		
Littitt	Above 1GHz				54.00 Average Valu				
	Abo	ve IGHZ		7	74.00	Peal	Peak Value		
Test setup:	Tum Table - EUT - < 1m 4m > - <								
	=		R	leceiver+	Preamplifier				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
Test Instruments:	Refer to sec	ction 6.0 for d	etails						
Test mode:	Refer to sec	ction 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mba								

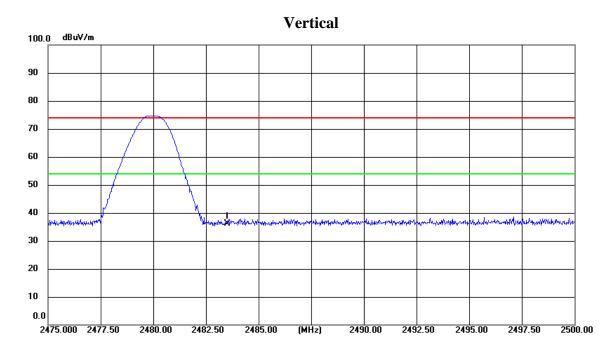
Measurement Data

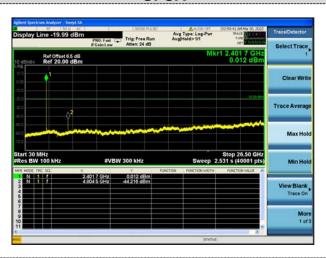

Remark: GFSK, Pi/4 DQPSK, 8QPSK all have been tested, only worse case 8QPSK is reported.


Operation Mode: 8QPSK TX

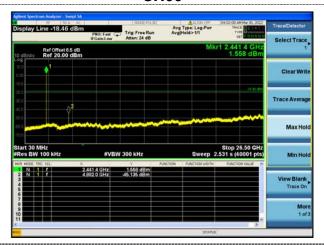
Frea. Ant.Pol.	Reading		Ant/CF	Act		Limit			
Freq. (MHz)	H/V	Peak	AV	CF(dB)	Peak	AV	Peak	AV	Note
(IVITZ)	⊓/ V	(dBuv)	(dBuv)	CF(ub)	(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/m)	
2390.00	Н	41.28		-5.79	35.49		74.00	54.00	CH00
2390.00	V	41.77		-5.79	35.98		74.00	54.00	CH00
2483.50	Н	40.31		-4.98	35.33		74.00	54.00	CH78
2483.50	V	40.66		-4.98	35.68		74.00	54.00	CH78

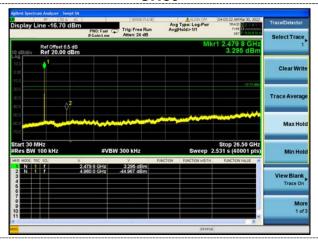

Corr.Factor = Antenna Factor + Cable Loss – Pre-amplifier.



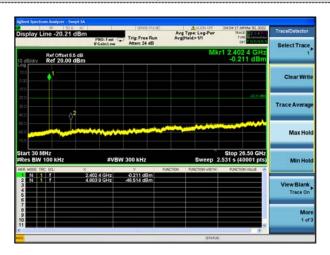

6.8. Spurious Emission

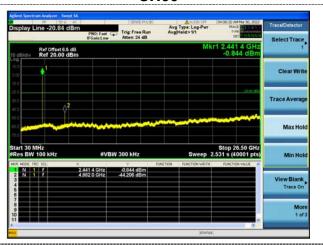
6.8.1. Conducted Emission Method

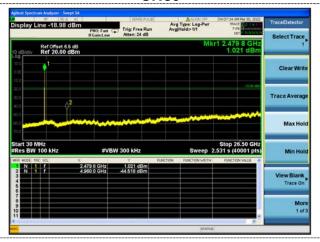

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.1	0:2013								
Limit:	spectrum in is produced the 100 kHz the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spo									
Test Instruments:	Refer to sec	ction 6.0 for o	details							
Test mode:	Refer to sec	ction 5.2 for o	details							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				


GFSK

CH00

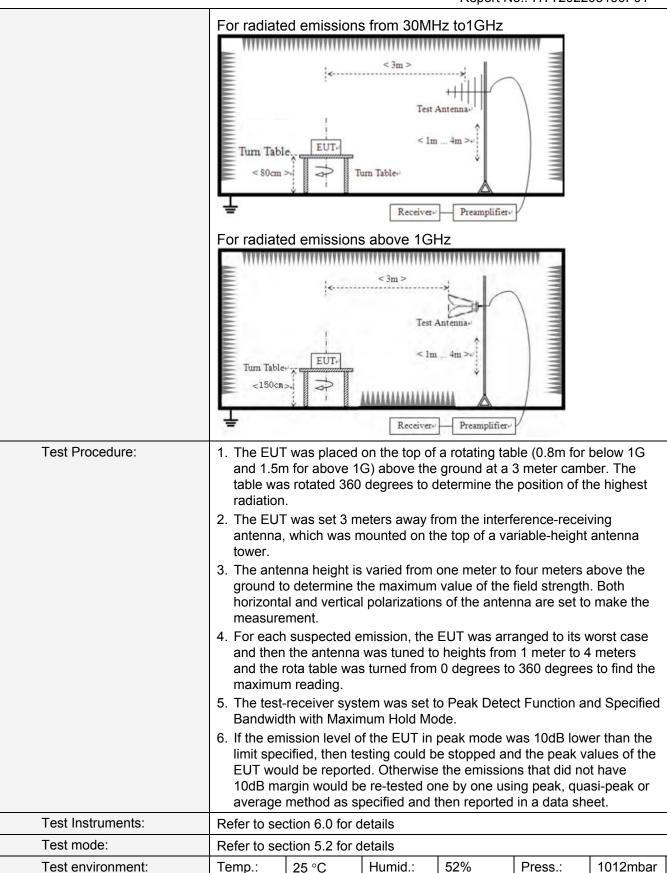

CH39


CH78


8QPSK

CH00

CH39


CH78

6.8.2. Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector		Ν	VBW	'	Value
	9KHz-150KHz	ă	Quasi-peak		Ηz	600Hz	Z	Quasi-peak
	150KHz-30MHz	Qι	uasi-peak 9KF		łz	30KH:	Z	Quasi-peak
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	łz	Quasi-peak
	Above 1GHz		Peak	1MF	łz	3MHz	<u> </u>	Peak
	Above 10112		Peak	1MF	łz	10Hz	<u>'</u>	Average
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	lHz	24000/F(I	KHz)		QP		30m
	1.705MHz-30MH	30		QP			30m	
	30MHz-88MHz	100			QP			
	88MHz-216MHz	150			QP			
	216MHz-960MH	200			QP		3m	
	960MHz-1GHz	500			QP		Om	
	Above 1GHz	500		Average				
	7,5576 15112		5000		F	Peak		
Test setup:	For radiated emiss		< 3m >	z to 30)	z		

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Test voltage:	AC 120V, 60Hz
Test results:	Pass

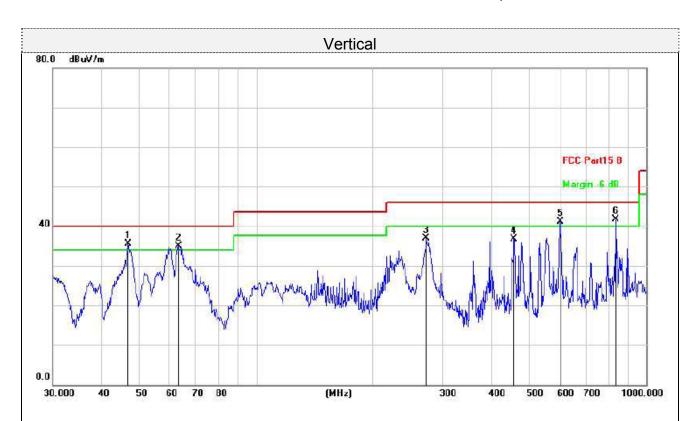
Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8QPSK modulation, and found the 8QPSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		60.2801	40.30	-18.18	22.12	40.00	-17.88	QP
2		275.1570	50.66	-17.44	33.22	46.00	-12.78	QP
3		396.2415	50.84	-14.46	36.38	46.00	-9.62	QP
4	*	599.3212	51.81	-10.17	41.64	46.00	-4.36	QP
5		661.1505	47.06	-9.43	37.63	46.00	-8.37	QP
6		848.0561	45.39	-6.09	39.30	46.00	-6.70	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	İ	46.8303	52.63	-17.20	35.43	40.00	-4.57	QP
2	İ	63.0916	53.64	-18.70	34.94	40.00	-5.06	QP
3		272.2776	54.50	-17.68	36.82	46.00	-9.18	QP
4		457.5073	50.85	-14.05	36.80	46.00	-9.20	QP
5	İ	601.4265	51.32	-10.17	41.15	46.00	-4.85	QP
6	*	836.2443	47.79	-6.18	41.61	46.00	-4.39	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK, Pi/4 DQPSK and 8QPSK were test at Low, Middle, and High channel; only the worst result of 8QPSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin]
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	52.25	31.40	8.18	31.50	60.33	74.00	-13.67	peak
4804	36.67	31.40	8.18	31.50	44.75	54.00	-9.25	AVG
7206	42.52	35.80	10.83	31.40	57.75	74.00	-16.25	peak
7206	26.03	35.80	10.83	31.40	41.26	54.00	-12.74	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	52.19	31.40	8.18	31.50	60.27	74.00	-13.73	peak
4804	36.08	31.40	8.18	31.50	44.16	54.00	-9.84	AVG
7206	43.38	35.80	10.83	31.40	58.61	74.00	-15.39	peak
7206	27.02	35.80	10.83	31.40	42.25	54.00	-11.75	AVG

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	52.23	31.40	9.17	32.10	60.70	74.00	-13.30	peak
4882	37.75	31.40	9.17	32.10	46.22	54.00	-7.78	AVG
7323	42.04	35.80	10.83	31.40	57.27	74.00	-16.73	peak
7323	27.16	35.80	10.83	31.40	42.39	54.00	-11.61	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	52.47	31.40	9.17	32.10	60.94	74.00	-13.06	peak
4882	37.06	31.40	9.17	32.10	45.53	54.00	-8.47	AVG
7323	42.59	35.80	10.83	31.40	57.82	74.00	-16.18	peak
7323	27.78	35.80	10.83	31.40	43.01	54.00	-10.99	AVG

CH High (2480MHz)

Horizontal:

Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
51.98	31.40	9.17	32.10	60.45	74	-13.55	peak
36.94	31.40	9.17	32.10	45.41	54	-8.59	AVG
42.15	35.80	10.83	31.40	57.38	74	-16.62	peak
26.77	35.80	10.83	31.40	42	54	-12	AVG
	(dBµV) 51.98 36.94 42.15 26.77	Meter Reading Factor (dBμV) (dB/m) 51.98 31.40 36.94 31.40 42.15 35.80 26.77 35.80	Meter Reading Factor Cable Loss (dBμV) (dB/m) (dB) 51.98 31.40 9.17 36.94 31.40 9.17 42.15 35.80 10.83 26.77 35.80 10.83	Meter Reading Factor Cable Loss Factor (dBμV) (dB/m) (dB) (dB) 51.98 31.40 9.17 32.10 36.94 31.40 9.17 32.10 42.15 35.80 10.83 31.40 26.77 35.80 10.83 31.40	Meter Reading Factor Cable Loss Factor Emission Level (dBμV) (dB/m) (dB) (dB) (dBμV/m) 51.98 31.40 9.17 32.10 60.45 36.94 31.40 9.17 32.10 45.41 42.15 35.80 10.83 31.40 57.38 26.77 35.80 10.83 31.40 42	Meter Reading Factor Cable Loss Factor Emission Level Limits (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 51.98 31.40 9.17 32.10 60.45 74 36.94 31.40 9.17 32.10 45.41 54 42.15 35.80 10.83 31.40 57.38 74 26.77 35.80 10.83 31.40 42 54	Meter Reading Factor Cable Loss Factor Emission Level Limits Margin (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m)

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	52.84	31.40	9.17	32.10	61.31	74	-12.69	peak
4960	36.69	31.40	9.17	32.10	45.16	54	-8.84	AVG
7440	41.05	35.80	10.83	31.40	56.28	74	-17.72	peak
7440	26.68	35.80	10.83	31.40	41.91	54	-12.09	AVG
Remark: Facto	or = Antenna Fac	ctor + Cable Los	ss – Pre-amplifie	er.				

Remark

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

