COMPLIANCE WORLDWIDE INC. TEST REPORT 242-22A In Accordance with the Requirements of FCC TITLE 47 CFR Part 15.519, Subpart F Technical Requirements for Handheld UWB Systems Class II Permissive Change ISED RSS-220, Issue 1 (March 2009) + Amendment 1 (July 2018) Devices Using Ultra-Wideband (UWB) Technology Issued to Wiser Systems, Inc. 819 W Hargett St Raleigh, NC 27603 (919) 551-5566 For the Client Tag Model: TAGV1.2T FCC ID: 2AGZM-B11017 IC: 25948-B01017 Report Issued on December 22, 2022 **Tested by** Sean P. Defelice Reviewed by This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc. Test Number: 242-22A Issue Date: 12/22/2022 # **Table of Contents** | 1. Scope | 3 | |--|-------| | 2. Product Details | 3 | | 2.1. Manufacturer | 3 | | 2.2. Model Number | 3 | | 2.3. Serial Number | 3 | | 2.4. Description | 3 | | 2.5. Power Source | | | 2.6. Hardware Revision | 3 | | 2.7. Software Revision | 3 | | 2.8. Modulation Type | 3 | | 2.9. Operating Frequency | | | 2.10. EMC Modifications | | | 3. Product Configuration | 3 | | 3.1. Operational Characteristics & Software | 3 | | 3.2. EUT Hardware | 3 | | 3.3. EUT Cables/Transducers | | | 3.4. Support Equipment | 3 | | 3.5. Test Setup | 4 | | 4. Measurements Parameters | | | 4.1. Measurement Equipment Used to Perform Test | 5 | | 4.2. Measurement & Equipment Setup | 6 | | 4.3. Measurement Procedure | 6 | | 4.4. Measurement Uncertainty | | | 5. Measurement Summary | | | 6. Measurement Data | | | 6.1. Antenna Requirement | 8 | | 6.2. Operational Requirements | | | 6.3. UWB Bandwidth | | | 6.4. Radiated Emissions below 960 MHz | | | 6.5. Radiated Emissions above 960 MHz | | | 6.6. Radiated Emissions in the GPS Bands | 84 | | 6.7. RMS Emissions of UWB Transmission | | | 6.8. Peak Emissions in a 50 MHz Bandwidth | | | 6.9. Conducted Emissions Test Setup | | | 6.10. 99% Emission Bandwidth | | | 7. Test Site Description | | | 8. Test Images | | | 8.1. Spurious and Harmonic Emissions - 30 kHz to 1 GHz Front | | | 8.2. Spurious and Harmonic Emissions - 30 kHz to 30 MHz Rear | . 124 | | 8.3. Spurious and Harmonic Emissions - 30 MHz to 1 GHz Rear | | | 8.4. Spurious and Harmonic Emissions - 1 to 18 GHz Front | | | 8.5. Spurious and Harmonic Emissions - 1 to 18 GHz Rear | | | 8.6. Spurious and Harmonic Emissions - 18 to 40 GHz Side | . 128 | Issue Date: 12/22/2022 ### 1. Scope This test report certifies that the Wiser Systems Client Tag as tested, meets the FCC Part 15, Subpart F and ISED RSS-220 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required. #### 2. Product Details **2.1. Manufacturer:** Wiser Systems, Inc. **2.2. Model Numbers:** TAGV1.2T **2.3. Serial Numbers:** SLS7 2.4. Description: RRLT Locator System leverages new advances in Ultra-Wideband technology to deliver low cost/high accuracy, real-time localization. **2.5. Power Source:** 3.0 VDC (CR2032 Lithium) 2.6. Hardware Revision: N/A2.7. Software Revision: N/A **2.8. Modulation Type:** Pulse Modulation, Frequency Hopping 4 GHz Center Frequency Nominal (Channel 2 – 500 MHz BW), **2.9. Operating Frequencies:** 4 GHz Center Frequency Nominal (Channel 4 – 900 MHz BW), 6.5 GHz Center Frequency Nominal (Channel 5 – 500 MHz BW) 2.10. EMC Modifications: None ## 3. Product Configuration ### 3.1 Operational Characteristics & Software #### **Hardware Setup:** Connect the Wiser USB Dongle to a laptop computer via USB. Place a battery into the handheld tag. Using the software tool configure the USB dongle to control the tag to transmit on Channels 2, 4 or 5 (16M or 64M PRF) using a data rates of 6.8 Mbps. The devices also support a data rate of 110 kbps. #### 3.2. EUT Hardware | Manufacturer | Model/Part # / Options | Serial Number | Input
Volts | Freq
(Hz) | Description/Function | |---------------|------------------------|---------------|----------------|--------------|----------------------| | Wiser Systems | TAGV1.2T | SLS7 | 3.0 | DC | Client Tag | #### 3.3. EUT Cables/Transducers | Cable Type | Length | Shield | From | То | |------------|--------|--------|------|----| | None | | | | | #### 3.4. Support Equipment | Manufacturer | Model/Part # / Options | Serial Number | Input
Voltage | Freq
(Hz) | Description/Function | |---------------|------------------------|---------------|------------------|--------------|-----------------------------------| | Wiser Systems | USB Dongle | n/a | 5.0 | DC | For setting up the DUT operation. | | Dell | XPS 13 – L321X | 41647808737 | 120 | 60 | For controlling the USB Dongle | # 3. Product Configuration (cont.) # 3.5. Test Setup Diagram Issue Date: 12/22/2022 ### 4. Measurements Parameters # 4.1. Measurement Equipment Used to Perform Test | Device | Manufacturer | Model No. | Serial No. | Cal Due | Interval | |--|--------------------|--------------------------------|---------------|------------|----------| | EMI Test Receiver, 9kHz - 7GHz ¹ | Rohde & Schwarz | ESR7 | 101156 | 10/25/2023 | 2 Year | | EMI Test Receiver, 10 Hz - 7GHz ¹ | Rohde & Schwarz | ESR7 | 101770 | 7/23/2023 | 2 Year | | Spectrum Analyzer, 2 Hz to 26.5 GHz ² | Rohde & Schwarz | FSW26 | 102057 | 6/24/2023 | 2 Years | | Spectrum Analyzer, 9 kHz to 40 GHz ³ | Rohde & Schwarz | FSV40 | 100899 | 8/12/2023 | 3 Years | | Spectrum Analyzer 10 Hz – 40 GHz ⁴ | Rohde & Schwarz | FSVR40 | 100909 | 9/18/2023 | 3 Years | | Loop Antenna 9 kHz - 30 MHz | EMCO | 6512 | 9309-1139 | 4/14/2025 | 3 Years | | Biconilog Antenna, 30 MHz - 2 GHz | Sunol Sciences | JB1 | A050913 | 7/1/2023 | 2 Years | | Dbl Ridged Guide Antenna 1- 18 GHz | ETS-Lindgren | 3117 | 00143292 | 5/11/2024 | 2 Years | | Dbl Ridged Guide Antenna 1- 18 GHz | ETS-Lindgren | 3117 | 00227631 | 4/21/2024 | 2 Years | | Preamplifier 100 MHz to 7 GHz | Miteq | AFS3-
00100200-
10-15P-4 | 988773 | 3/31/2023 | 1 Year | | Preamplifier 100 MHz to 18 GHz | Miteq | AMF-7D-
00101800-
30-10P | 1953081 | 3/31/2023 | 1 Year | | Preamplifier 2 to 12 GHz | JCA | JCA48-
4111B1 | 7087S | 3/31/2023 | 1 Year | | Preamplifier, 1 GHz to 26.5 GHz | Hewlett Packard | 8449B | 3008A01323 | 11/30/2023 | 2 Years | | Preamplifier 18 to 40 GHz | Miteq | JSD42-
21004200-40-
5P | 649199/649219 | 3/31/2023 | 1 Year | | Horn Antenna 18 to 40 GHz | Com Power | AH-840 | 101032 | 1/25/2024 | 2 Years | | High Pass Filter 8 to 18 GHz | Micro-Tronics | HPM50107 | G036 | 3/30/2023 | 1 Year | | High Pass Filter 6.4 to 18 GHz | Micro-Tronics | HPM50112 | 14 | 3/30/2023 | 1 Year | | Low Pass Filter DC to 2700 MHz | Mini-Circuits | NLP-2950+ | 15542 | 11/21/2023 | 1 Year | | 10 dB Attenuator | Pasternack | PE7004-10 | ID473 | 12/19/2023 | 1 Year | | Barometric Pressure/Humidity & Temp Datalogger | Extech Instruments | SD700 | Q590483 | 10/14/2023 | 2 Years | ¹ ESR7 Firmware revision: V3.48 SP3, Date installed: 09/30/2020 ² FSW26 Firmware revision: V4.71 SP1, Date installed: 11/16/2020 ³ FSV40 Firmware revision: V2.30 SP4, Date installed: 05/04/2016 ⁴ FSVR40 Firmware revision: V2.23 SP1, Date installed: 08/19/2016 Previous V3.48 SP2, installed 07/23/2020. Previous V4.61, installed 08/11/2020. Previous V2.30 SP1, installed 10/22/2014. Previous V2.23, installed 10/22/2014. ### 4. Measurements Parameters (continued) ### 4.2. Measurement & Equipment Setup 7/19/2022, 7/20/2022, 7/21/2022, 7/22/2022, Test Dates: 7/25/2022, 7/26/2022, 7/27/2022, 8/22/2022, 8/23/2022 Test Engineers: Sean Defelice Normal Site Temperature ($15 - 35^{\circ}$ C): 21.6 Relative Humidity (20 - 75%RH): 35 Frequency Range: 30 kHz to 40 GHz Measurement Distance: 3 Meters 200 Hz - 30 kHz to 150 kHz EMI Receiver IF Bandwidth: 9 kHz – 150 kHz to 30 MHz 120 kHz - 30 MHz to 1 GHz 1 MHz - Above 1 GHz EMI Receiver Avg Bandwidth: >= 3 * RBW Detector Function: Peak, Quasi-Peak & Average #### 4.3. Measurement Procedure Test measurements were made in accordance FCC Parts 15.209 Subpart C, 15.519 Subpart F and ISED RSS-220 requirements. The test methods used to generate the data is this test report is in accordance with ANSI C63.10:2013, American National Standard for Testing Unlicensed Wireless Devices. #### 4.4. Measurement Uncertainty The following uncertainties are expressed for an expansion/coverage factor of K=2. | RF Frequency (out of band) | ± 1x10 ⁻⁸ | |---|----------------------| | Radiated Emission of Transmitter to 100 GHz | ± 4.55 dB | | Radiated Emission of Receiver | ± 4.55 dB | | Temperature | ± 0.91° C | | Humidity | ± 5% | TESTING CERT #1673.01 Issue Date: 12/22/2022 Test Number: 242-22A Issue Date: 12 # **5. Measurements Summary** | Test Requirement | FCC
Rule
Requirement | ISED Rule
Requirement | Test
Report
Section | Result | Comment | |--|------------------------------|--------------------------|---------------------------|-----------|---------------------------| | Antenna Requirement | 15.203 | RSS-220
5.1 (b) | 6.1 | Compliant | | | Operational
Requirements | 15.519 (a) (1) | RSS-220 | 6.2 | Compliant | | | UWB Bandwidth | 15.503 (a) (d)
15.519 (b) | RSS-220 2
RSS-220 5.1 | 6.3 | Compliant | | | Radiated Emissions
below 960 MHz | 15.209 | RSS-220 3.4 | 6.4 | Compliant | | | Radiated Emissions above 960 MHz | 15.519 (c)
15.521 (d) | | 6.5 | Compliant | | | Radiated Emissions in GPS Bands | 15.519 (d) | RSS-220
5.3.1 (e) | 6.6 | Compliant | | | RMS Emissions of UWB Transmission in a 1 MHz Bandwidth | 15.519 (c)
15.521 (d) | RSS-220
5.3.1 (d) | 6.7 | Compliant | | | Peak Emissions in a 50 MHz Bandwidth | 15.519 (e)
15.521 (g) | RSS-220
5.3.1 (g) | 6.8 | Compliant | | | Conducted Emissions | 15.207 | RSS-GEN | 6.9 | N/A | EUT is Battery
Powered | | 99% Emission
Bandwidth | N/A | RSS-GEN | 6.10 | Compliant | | ACCREDITED TESTING CERT #1673.01 ### 6. Measurement Data ### 6.1. Antenna Requirement (15.203, RSS-220 5.1(b)) Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply Result: The antenna utilized by the device under test is a pcb chip type. ### 6. Measurement Data (continued) # 6.2. Operational Requirements of the Device under Test (15.519 (a) (1)) Requirement: UWB device operating under the provisions of this section must be hand held, i.e., they are relatively small device that are primarily hand held while being operated and do not employ a fixed infrastructure. UWB devices operating under the provisions of this section may operate indoors or outdoors. A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting. Result: Compliant, the EUT transmits a 0.173 mS burst of location information every 11.513 seconds to an associated receiver. #### 6.2.1 Plot of Transmission CH2 16M PRF On-Time 10:46:16 23.08.2022 # 6. Measurement Data (continued) # 6.2. Operational Requirements of the Device under Test (15.519 (a) (1)) 6.2.2 Plot of Transmission Period - CH2 16M PRF 10:52:51 23.08.2022 ### 6. Measurement Data (continued) ### 6.3. UWB Bandwidth (15.503 (a) (d), 15.519 (b)) Requirement: The UWB bandwidth of a device operating under the provisions of this section shall be contained between 3,100 MHz and 10,600 MHz and at any point in time and has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth. #### 6.3.1. Measurement Data - Values in GHz | | | CH2 16M | |----------------|--|---------| | f _M | The highest emission peak | 4.0140 | | f∟ | 10 dB below the highest peak | 3.6494 | | fн | 10 dB above the highest peak | 4.4246 | | fc | Calculated: (f _H + f _L) / 2 | 4.0370 | | Bandwidth | Calculated: (f _H - f _L) | 0.7752 | | Fractional BW | Calculated: $2*(f_H - f_L) / (f_H + f_L)$ | 0.1920 | #### 6.3.2. Measurement Plot of 10 dB frequencies (Channel 2, 16M PRF, 6.8 Mbps) 10:16:51 19.07.2022 # 6. Measurement Data (continued) # 6.3. UWB Bandwidth (15.503 (a) (d), 15.519 (b) continued) 6.3.3. Measurement Data - Values in GHz | | | CH2 64M | |----------------|---|---------| | fм | The highest emission peak | 3.9990 | | f∟ | 10 dB below the highest peak | 3.6454 | | fн | 10 dB above the highest peak | 4.4216 | | f _C | Calculated: (f _H + f _L) / 2 | 4.0335 | | Bandwidth | Calculated: (f _H - f _L) | 0.7762 | | Fractional BW | Calculated: 2*(f _H - f _L) / (f _H + f _L) | 0.1924 | ### 6.3.4. Measurement Plot of 10 dB frequencies (Channel 2, 64M PRF, 6.8Mbps) 13:47:11 19.07.2022 # 6. Measurement Data (continued) ### 6.3. UWB Bandwidth (15.503 (a) (d), 15.519 (b) continued) 6.3.5. Measurement Data - Values in GHz | | | CH4 16M | |----------------|---|---------| | f _M | The highest emission peak | 4.0040 | | f∟ | 10 dB below the highest peak | 3.4243 | | fн | 10 dB above the highest peak | 4.7426 | | f _C | Calculated: (f _H + f _L) / 2 | 4.0835 | | Bandwidth | Calculated: (f _H - f _L) | 1.3183 | | Fractional BW | Calculated: 2*(f _H - f _L) / (f _H + f _L) | 0.3228 | ### 6.3.6. Measurement Plot of 10 dB frequencies (Channel 4, 16M PRF, 6.8 Mbps) 10:11:29 20.07.2022 # 6. Measurement Data (continued) # 6.3. UWB Bandwidth (15.503 (a) (d), 15.519 (b) continued) 6.3.7. Measurement Data - Values in GHz | | | CH4 64M | |----------------|---|---------| | f _M | The highest emission peak | 3.9990 | | f∟ | 10 dB below the highest peak | 3.4243 | | f _H | 10 dB above the highest peak | 4.7236 | | f _C | Calculated: (f _H + f _L) / 2 | 4.0740 | | Bandwidth | Calculated: (f _H - f _L) | 1.2993 | | Fractional BW | Calculated: 2*(f _H - f _L) / (f _H + f _L) | 0.3189 | 6.3.8. Measurement Plot of 10 dB frequencies (Channel 4, 64M PRF, 6.8 Mbps) 12:28:39 20.07.2022 # 6. Measurement Data (continued) # 6.3. UWB Bandwidth (15.503 (a) (d), 15.519 (b) continued) 6.3.9. Measurement Data - Values in GHz | | | CH5 16M | |----------------|---|---------| | f _M | The highest emission peak | 6.4980 | | f∟ | 10 dB below the highest peak | 6.1853 | | fн | 10 dB above the highest peak | 6.8646 | | f _C | Calculated: (f _H + f _L) / 2 | 6.5250 | | Bandwidth | Calculated: (f _H - f _L) | 0.6793 | | Fractional BW | Calculated: 2*(f _H - f _L) / (f _H + f _L) | 0.1041 | 6.3.10. Measurement Plot of 10 dB frequencies (Channel 5, 16M PRF, 6.8 Mbps) 10:09:37 26.07.2022 # 6. Measurement Data (continued) ### 6.3. UWB Bandwidth (15.503 (a) (d), 15.519 (b) continued) 6.3.11. Measurement Data - Values in GHz | | | CH5 64M | |----------------|---|---------| | f _M | The highest emission peak | 6.5110 | | f∟ | 10 dB below the highest peak | 6.1414 | | fн | 10 dB above the highest peak | 6.8806 | | f _C | Calculated: (f _H + f _L) / 2 | 6.5110 | | Bandwidth | Calculated: (f _H - f _L) | 0.7392 | | Fractional BW | Calculated: 2*(f _H - f _L) / (f _H + f _L) | 0.1135 | ### 6.3.12. Measurement Plot of 10 dB frequencies (Channel 5, 64M PRF, 6.8 Mbps) 11:38:27 26.07.2022 ### 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions below 960 MHz (15.519 (c), 15.209) Requirement: The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in Section 15.209. ### Radiated Emissions Field Strength Limits at 3 Meters (Section 15.209, RSS-220) | Frequency
(MHz) | Field Strength
(μV/m) | Field Strength
(dBµV/m) | |--------------------|--------------------------|----------------------------| | 0.009 to 0.490 | 2,400/F (F in kHz) | 128.5 to 93.8 | | 0.490 to 1.705 | 24,000/F (F in kHz) | 73.8 to 63 | | 1.705 - 30 | 30 | 69.5 | | 30 - 88 | 100 | 40 | | 88 - 216 | 150 | 43.5 | | 216 - 960 | 200 | 46 | Test Notes: Refer to Section 4.1 for the test equipment used. Frequency Range: 30 kHz to 960 MHz Measurement Distance: 3 Meters 200 Hz – 30 kHz to 150 kHz EMI Receiver IF Bandwidth: 9 kHz – 150 kHz to 30 MHz 120 kHz - 30 MHz to 960 MHz EMI Receiver Avg Bandwidth: ≥ 3 * RBW or IF(BW) Detector Function: Peak, Quasi-Peak & CISPR Average Sample Calculation: Final Result (dBµV/m) = Measurement Value (dBµV) + Antenna Factor (dB/m) + Cable Loss (dB) - Pre-amplifier Gain (dB) Internal or External. Note: All correction factors are loaded into the measurement instrument prior to testing to determine the final result. # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.1 Parallel Measurement Antenna – 30 to 150 kHz – X Axis CH2 16M #### 6.4.1.2 Perpendicular Measurement Antenna - 30 to 150 kHz - X Axis CH2 16M Page 18 of 128 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.3 Ground Parallel Measurement Antenna – 30 to 150 kHz – X Axis CH2 16M #### 6.4.1.4 Parallel Measurement Antenna - 30 to 150 kHz - Y Axis CH2 16M # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. # 6.4.1.5 Perpendicular Measurement Antenna - 30 to 150 kHz - Y Axis CH2 16M #### 6.4.1.6 Ground Parallel Measurement Antenna - 30 to 150 kHz - Y Axis CH2 16M # 6. Measurement Data (continued) # 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.7 Parallel Measurement Antenna – 30 to 150 kHz – Z Axis CH2 16M ### 6.4.1.8 Perpendicular Measurement Antenna – 30 to 150 kHz – Z Axis CH2 16M Date: 21.JUL.2022 16:28:21 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.9 Ground Parallel Measurement Antenna – 30 to 150 kHz – Z Axis CH2 16M #### 6.4.1.10 Parallel Measurement Antenna - 30 to 150 kHz - X Axis CH4 16M # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. # 6.4.1.11 Perpendicular Measurement Antenna – 30 to 150 kHz – X Axis CH4 16M ### 6.4.1.12 Ground Parallel Measurement Antenna - 30 to 150 kHz - X Axis CH4 16M ACCREDITED TESTING CERT #1673.01 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.13 Parallel Measurement Antenna – 30 to 150 kHz – Y Axis CH4 16M ## 6.4.1.14 Perpendicular Measurement Antenna – 30 to 150 kHz – Y Axis CH4 16M Date: 21.JUL.2022 16:17:14 # 6. Measurement Data (continued) # 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.15 Ground Parallel Measurement Antenna – 30 to 150 kHz – Y Axis CH4 16M #### 6.4.1.16 Parallel Measurement Antenna - 30 to 150 kHz - Z Axis CH4 16M Date: 21.JUL.2022 16:22:47 ACCREDITED TESTING CERT #1673.01 Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. # 6.4.1.17 Perpendicular Measurement Antenna – 30 to 150 kHz – Z Axis CH4 16M #### 6.4.1.18 Ground Parallel Measurement Antenna – 30 to 150 kHz – Z Axis CH4 16M # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.19 Parallel Measurement Antenna – 30 to 150 kHz – X Axis CH5 16M #### 6.4.1.20 Perpendicular Measurement Antenna – 30 to 150 kHz – X Axis CH5 16M Date: 21.JUL.2022 16:02:57 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.21 Ground Parallel Measurement Antenna – 30 to 150 kHz – X Axis CH5 16M #### 6.4.1.22 Parallel Measurement Antenna – 30 to 150 kHz – Y Axis CH5 16M Page 28 of 128 # 6. Measurement Data (continued) # 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. # 6.4.1.23 Perpendicular Measurement Antenna – 30 to 150 kHz – Y Axis CH5 16M #### 6.4.1.24 Ground Parallel Measurement Antenna - 30 to 150 kHz - Y Axis CH5 16M # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.25 Parallel Measurement Antenna – 30 to 150 kHz – Z Axis CH5 16M ## 6.4.1.26 Perpendicular Measurement Antenna – 30 to 150 kHz – Z Axis CH5 16M Date: 21.JUL.2022 15:50:03 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209, continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.27 Ground Parallel Measurement Antenna – 30 to 150 kHz – Z Axis CH5 16M Date: 21.JUL.2022 15:41:45 WORLDWIDE Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.28 Parallel Measurement Antenna – 150 kHz to 30 MHz – X Axis CH2 16M #### 6.4.1.29 Perpendicular Measurement Antenna – 150 kHz to 30 MHz – X Axis CH2 16M # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.30 Ground Parallel Measurement Antenna – 150 kHz to 30 MHz – X Axis CH2 16M # 6.4.1.31 Parallel Measurement Antenna - 150 kHz to 30 MHz - Y Axis CH2 16M Date: 21.JUL.2022 12:13:21 TESTING CERT #1673.01 Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. 6.4.1.32 Perpendicular Measurement Antenna – 150 kHz to 30 MHz – Y Axis CH2 16M #### 6.4.1.33 Ground Parallel Measurement Antenna – 150 kHz to 30 MHz – Y Axis CH2 16M ACCREDITED TESTING CERT #1673.01 Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.34 Parallel Measurement Antenna – 150 kHz to 30 MHz – Z Axis CH2 16M ### 6.4.1.35 Perpendicular Measurement Antenna - 150 kHz to 30 MHz - Z Axis CH2 16M Page 35 of 128 ACCREDITED TESTING CERT #1673.01 Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.36 Ground Parallel Measurement Antenna – 150 kHz to 30 MHz – Z Axis CH2 16M # 6.4.1.37 Parallel Measurement Antenna - 150 kHz to 30 MHz - X Axis CH4 16M Date: 21.JUL.2022 14:01:49 Test Number: 242-22A Issue Date: 12/22/2022 ## 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. 6.4.1.38 Perpendicular Measurement Antenna - 150 kHz to 30 MHz - X Axis CH4 16M 6.4.1.39 Ground Parallel Measurement Antenna - 150 kHz to 30 MHz - X Axis CH4 16M Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.40 Parallel Measurement Antenna – 150 kHz to 30 MHz – Y Axis CH4 16M # 6.4.1.41 Perpendicular Measurement Antenna - 150 kHz to 30 MHz - Y Axis CH4 16M Date: 21.JUL.2022 12:41:57 Test Number: 242-22A Issue Date: 12/22/2022 ## 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.42 Ground Parallel Measurement Antenna – 150 kHz to 30 MHz – Y Axis CH4 16M ### 6.4.1.43 Parallel Measurement Antenna - 150 kHz to 30 MHz - Z Axis CH4 16M TESTING CERT #1673.01 Issue Date: 12/22/2022 # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. 6.4.1.44 Perpendicular Measurement Antenna – 150 kHz to 30 MHz – Z Axis CH4 16M ### 6.4.1.45 Ground Parallel Measurement Antenna - 150 kHz to 30 MHz - Z Axis CH4 16M Page 40 of 128 ## 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.46 Parallel Measurement Antenna – 150 kHz to 30 MHz – X Axis CH5 16M #### 6.4.1.47 Perpendicular Measurement Antenna – 150 kHz to 30 MHz – X Axis CH5 16M Page 41 of 128 Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.48 Ground Parallel Measurement Antenna - 150 kHz to 30 MHz - X Axis CH5 16M ### 6.4.1.49 Parallel Measurement Antenna - 150 kHz to 30 MHz - Y Axis CH5 16M Test Number: 242-22A Issue Date: 12/22/2022 ## 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. 6.4.1.50 Perpendicular Measurement Antenna – 150 kHz to 30 MHz – Y Axis CH5 16M 6.4.1.51 Ground Parallel Measurement Antenna – 150 kHz to 30 MHz – Y Axis CH5 16M WORLDWIDE Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.52 Parallel Measurement Antenna – 150 kHz to 30 MHz – Z Axis CH5 16M # 6.4.1.53 Perpendicular Measurement Antenna - 150 kHz to 30 MHz - X Axis CH5 16M Date: 21.JUL.2022 14:14:12 # 6. Measurement Data (continued) # 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. #### 6.4.1.54 Ground Parallel Measurement Antenna – 150 kHz to 30 MHz – Z Axis CH5 16M # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.55 Horizontal Polarity – 30 to 960 MHz – X Axis CH2 16M ### 6.4.1.56 Vertical Polarity - 30 to 960 MHz - X Axis CH2 16M # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.57 Horizontal Polarity – 30 to 960 MHz – Y Axis CH2 16M ### 6.4.1.58 Vertical Polarity - 30 to 960 MHz - Y Axis CH2 16M Page 47 of 128 # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.59 Horizontal Polarity – 30 to 960 MHz – Z Axis CH2 16M ### 6.4.1.60 Vertical Polarity - 30 to 960 MHz - Z Axis CH2 16M # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.61 Horizontal Polarity – 30 to 960 MHz – X Axis CH4 16M ### 6.4.1.62 Vertical Polarity - 30 to 960 MHz - X Axis CH4 16M Test Number: 242-22A Issue Date: 12/22/2022 # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.63 Horizontal Polarity – 30 to 960 MHz – Y Axis CH4 16M #### 6.4.1.64 Vertical Polarity - 30 to 960 MHz - Y Axis CH4 16M # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.65 Horizontal Polarity - 30 to 960 MHz - Z Axis CH4 16M ### 6.4.1.66 Vertical Polarity - 30 to 960 MHz - Z Axis CH4 16M Date. 20.00D.2022 10.42.17 # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.67 Horizontal Polarity – 30 to 960 MHz – X Axis CH5 16M ### 6.4.1.68 Vertical Polarity - 30 to 960 MHz - X Axis CH5 16M # 6. Measurement Data (continued) ### 6.4. Spurious Radiated Emissions (15.209 continued) # 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. ### 6.4.1.69 Horizontal Polarity – 30 to 960 MHz – Y Axis CH5 16M ### 6.4.1.70 Vertical Polarity - 30 to 960 MHz - Y Axis CH5 16M Page 53 of 128 # 6. Measurement Data (continued) ## 6.4. Spurious Radiated Emissions (15.209 continued) 6.4.1. 30 kHz to 960 MHz, measured at 3 Meters The device was prescreened in our 3 Meter Semi-Anechoic Chamber. There were no measurable emissions below 960 MHz on our 3 Meter OATS. TESTING CERT #1673.01 ### 6.4.1.71 Horizontal Polarity – 30 to 960 MHz – Z Axis CH5 16M ### 6.4.1.72 Vertical Polarity - 30 to 960 MHz - Z Axis CH5 16M