

Partial Test Report

Concerning:

Spurious Emissions

According:

CFR 47 Part 15.247

RSS-247 Issue 2

EUT Name: Ranger 4.4

Model No.: R44-V11

Prepared for:

Trapeze Software Group, Inc.

5265 Rockwell Drive NE, Cedar Rapids

Iowa 52402, U.S.A.

Prepared by:

TUV Rheinland of North America, Inc.

1279 Quarry Lane, Suite A Pleasanton, CA 94566 Tel: (925) 249-9123

Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date: September 14, 2017 Report Number: 31762446.004

Revision Number: 0

Project Number: 0000149346

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 1 of 40

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	September 14, 2017	Original Document	BMJ

Note: Latest revision report will replace all previous reports.

Table of Contents

Manufacturer: Trapeze Software Group, Inc.

5265 Rockwell Drive NE, Cedar Rapids

Iowa 52402, U.S.A.

Requester / Applicant: Trapeze Software Group, Inc.

Name of Equipment: Ranger 4.4 Model No. R44-V11

Type of Equipment: Intentional Radiator Application of Regulations: CFR 47 Part 15.247

Test Dates: July 17, 2017 to August 22, 2017

Guidance Documents:

Emissions: ANSI C63.10-2013

Test Methods:

Emissions: ANSI C63.10-2013

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Bernd Jungbluth September 14, 2017

Report written Date

Douglas Antioco September 14, 2017 Arndt Stoecker September 14, 2017

Test Engineer Date Operations Manager Date

Industry Canada Industrie Canada

Testing Cert #3331.02

US1131

2932M-1

Table of Contents

1 E	Executive Summary	7
1.1		
1.2	Purpose	7
1.3	Summary of Test Results	8
1.4	Special Accessories	9
1.5	Equipment Modifications	9
2 L	Laboratory Information	
2.1		10
	2.1.1 US Federal Communications Commission	10
	2.1.2 NIST / A2LA	10
2.2		10
2.	2.2.1 Emission Test Facility	10
2.3		11
	2.3.1 Sample Calculation – radiated & conducted emissions	11
2.4		
	Product Information	
3.1		
3.2		
3.3	Operating Mode	13
3.4		
3.	3.4.1 Results	14
4 E	Emissions	15
4.1		15
	I.1.1 Test Methodology	15 16
	1.1.3 Test Results	16
5 T	Test Equipment List	37
5.1	Equipment List	37
5.2	EMC Test Plan	38
5.3		
5.4		•
5.5		
5.6		40

Index of Tables

Table 1: Summary of Test Results	8
Table 2: Customer Information	38
Table 3: EUT Specifications	39
Table 4: Antenna Information	39
Table 5: Support Equipment	39
Table 6: Description of Sample used for Testing	40
Table 7 Accessory Equipment	40

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.247 based on the results of testing performed on July 17, 2017 to August 22, 2017 on the Ranger 4.4 Model R44-V11 manufactured by Trapeze Software Group, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report. The 2400 MHz to 2483.5 MHz frequency band is covered in this document.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Bluetooth LE

Test	Test Method ANSI C63.4	Test Parameters (Measured)	Result
Spurious Emission in Transmit Mode	CFR47 15.209, RSS-GEN Sect.8.9	Class B	Compliant
Restricted Bands of Operation	CFR47 15.205, RSS GEN Sect.8.10	Class B	Not Tested*
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.8.8	Class B	Not Tested*
6dB and 99% Occupied Bandwidth	CFR47 15.247 (a2), RSS 247 Sect. 5.2.1	See plots	Not Tested*
Maximum Output Power	CFR47 15.247 (b), RSS 247 Sect. 5.4.4	See plots	Not Tested*
Peak Power Spectral Density	CFR47 15.247 (e), RSS 247 Sect. 5.2.2	See plots	Not Tested*
Out of Band Emission	CFR47 15.247 (d), RSS 247 Sect.5.5	See plots	Not Tested*

^{*}This Partial Test report concerns only spurious emission measurements

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

Bluetooth EDR/BDR

Test	Test Method ANSI C63.4:2014/ ANSI C63.10:2013	Test Parameters	Result
Spurious Emission in Transmitted Mode	CFR47 15.209, RSS-Gen Sect.8.9	Class B	Complied
Restricted Bands of Operation	CFR47 15.205, RSS-Gen Sect.8.10	Class B	Not Tested*
AC Power Conducted Emission	CFR47 15.207, RSS-GenSect.8.8	Class B	Not Tested*
Occupied Bandwidth	CFR 47 15.247(a1), RSS Gen Sect. 6.6 & RSS 247 Sect.5.1(a)	See plots	Not Tested*
Channel Separation	CFR47 15.247 (a1), RSS 247 Sect. 5.1(b)	See plots	Not Tested*
Number of Hopping Channels	CFR47 15.247 (a1), RSS 247 Sect. 5.1(d)	See plots	Not Tested*
Average time occupancy of Channel	CFR47 15.247 (a1), RSS 247 Sect. 5.1(d)	See plots	Not Tested*
Maximum Transmitted Power	CFR47 15.247 (b1), RSS 247 Sect. 5.4(b)	See plots	Not Tested*
Out of Band Emission	CFR47 15.247 (d), RSS 247 Sect. 5.5	See plots	Not Tested*
RF Exposure for General Population	CFR47 15.247 (i), 2.1091	See plots	Not Tested*

^{*}This Partial Test report concerns only spurious emission measurements

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

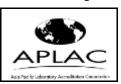
2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports

submitted to and accepted by the FCC (US1131). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.


2.1.2 NIST / A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:1999 and ISO 9002 (Lab Code

Testing Cert #3331.02). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory NIST / A2LA accreditation will be accepted by each member

country.

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA. The 2305 Mission College, Santa Clara, 95054, USA location is considered a Pleasanton annex.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meter and 5 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 10 of 40

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: RAW = Measured level before correction ($dB\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V\!/m = 10^{\frac{\mathit{dB}\mu V\,/\mathit{m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m$$

Tel: (925) 249-9123, Fax: (925) 249-9124

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	$ m U_{lab}$	$ m U_{cispr}$
Radiated Disturbance @ 10	meters	
30 – 1,000 MHz	2.25 dB	4.51 dB
Radiated Disturbance @ 3 m	eters	
30 – 1,000 MHz	2.26 dB	4.52 dB
1 – 6 GHz	2.12 dB	4.25 dB
6 – 18 GHz	2.47 dB	4.93 dB
Conducted Disturbance @ M	lains Terminals	
150 kHz – 30 MHz	1.09 dB	2.18 dB
Disturbance Power		
30 MHz-300 MHz	3.92 dB	4.3 dB

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 12 of 40

Product Description

3 Product Information

3.1 Product Description

Rugged and Compact Vehicular Computer.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section (Section 6). The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of a EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section (Section 6).

The final operating mode was selected to produce the worst case radiation for emissions testing.

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 13 of 40

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The Ranger 4.4 employs a single integral antenna inaccessible to the end user. The antenna has a declared maximum gain of -4 dBi.

Refer to Table 9 for additional antenna information.

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 14 of 40

4 Emissions

Testing was performed in accordance with CFR 47 Part 15.247. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Transmitter Radiated Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.247(d), RSS-Gen.

4.1.1 Test Methodology

4.1.1.1 Preliminary Test

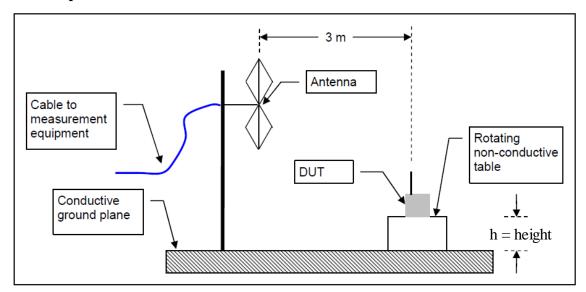
A test program that controls instrumentation and data logging was used to automate the preliminary RF emissions test procedure. The frequency range of interest was divided into sub-ranges. For each sub-range peak emission data was recorded and plotted while the turntable was rotated 360° in 90° steps and the measurement antenna was rotated in horizontal and vertical antenna polarization.

Preliminary emission profile testing was performed inside a semi-anechoic chamber. The EUT was placed on a non-conductive table 80 cm above the floor for emissions less than 1 GHz and 150cm above the floor for emissions greater than 1 GHz. The EUT was positioned as shown in the setup photographs. The measurement antenna was placed at a distance of 3m.

4.1.1.2 Final Test

Final testing was performed on an NSA compliant test site.

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. Emissions within 6 dB of the limit were measured.


The final scans were performed on the worst EUT axis for three operating channels in the operating mode with the highest power.

4.1.1.3 Deviations

None.

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 15 of 40

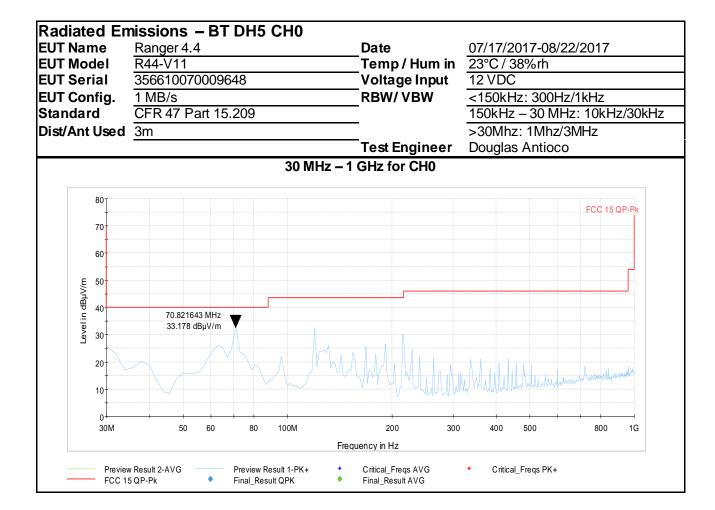
Test Setup:

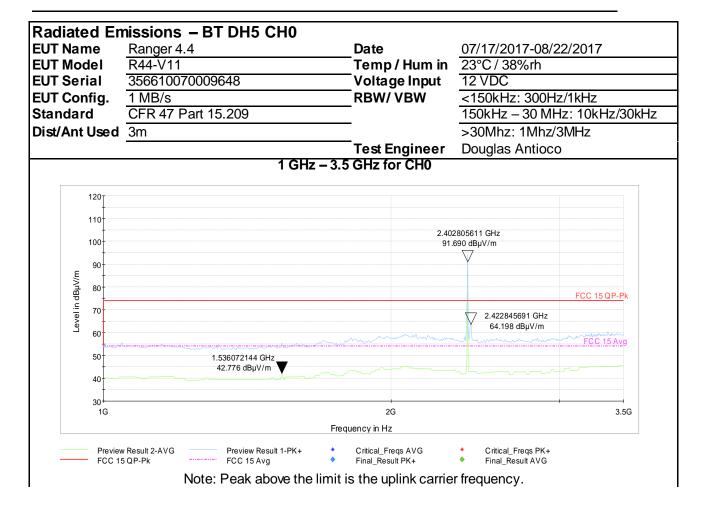
Where h = 80cm for < 1GHz and 150cm for > 1GHz

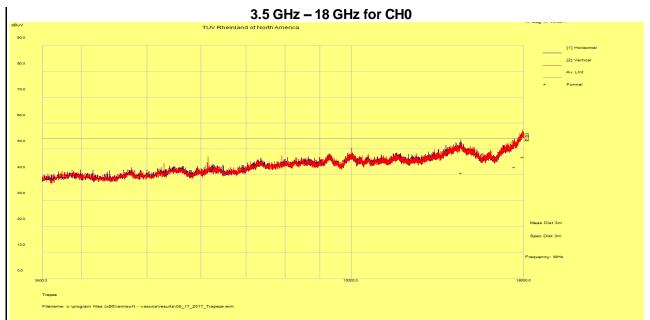
4.1.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

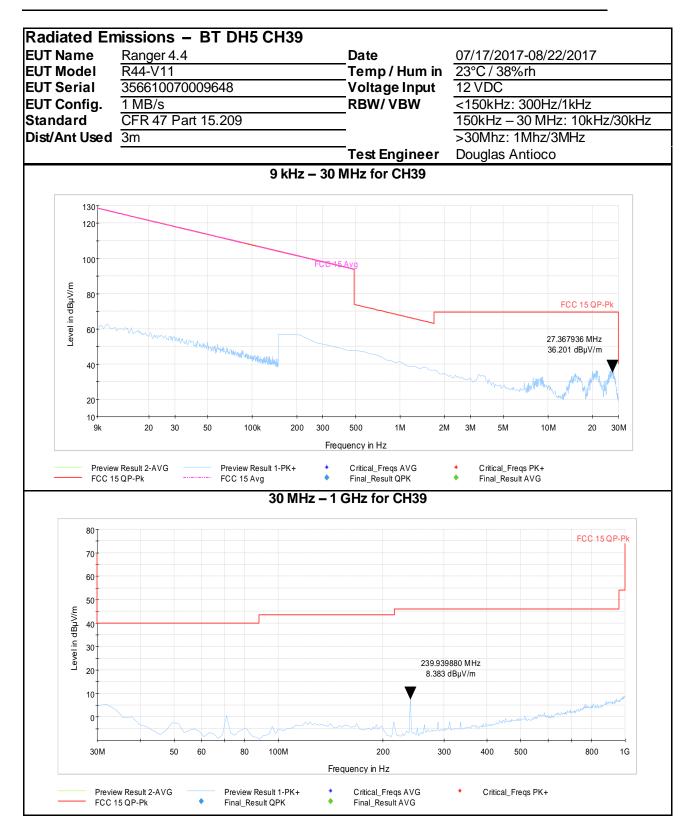

All harmonics and spurious emission which are outside of the restricted band shall be 20dB below the in-band emission.

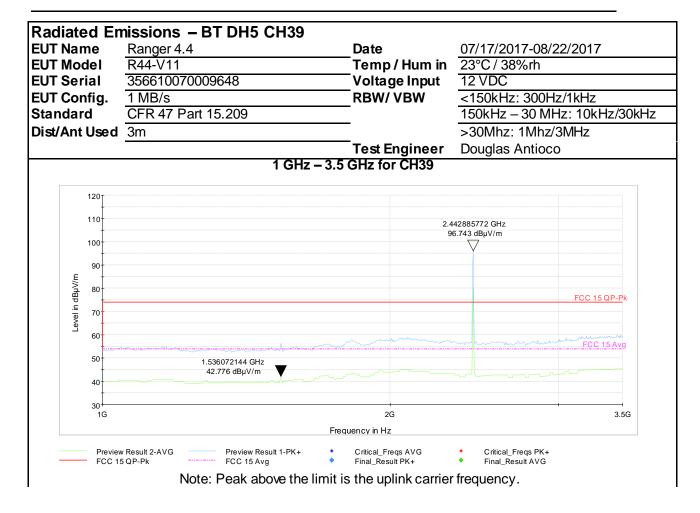

4.1.3 Test Results

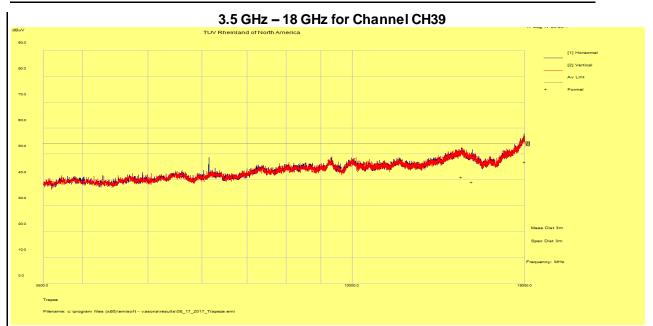

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and test plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Bluetooth:

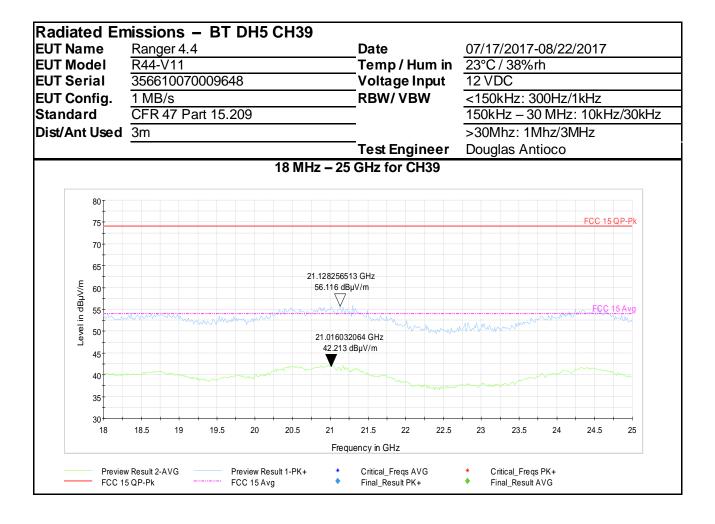


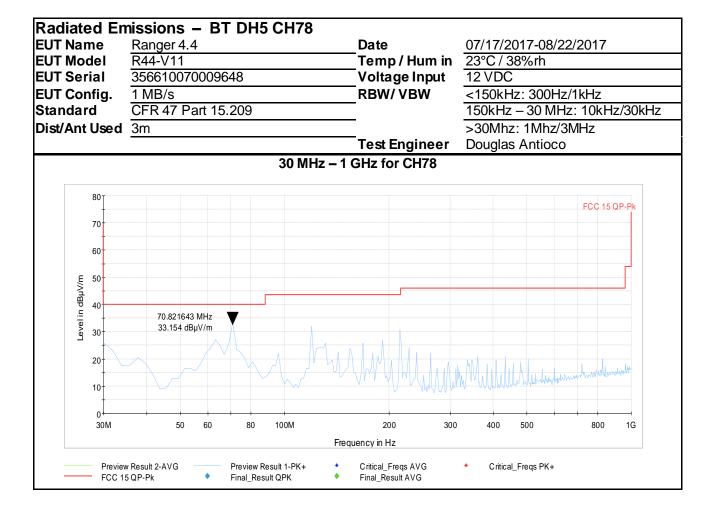

Note: EUT at 90 degree as worst case, not positioner utilized.

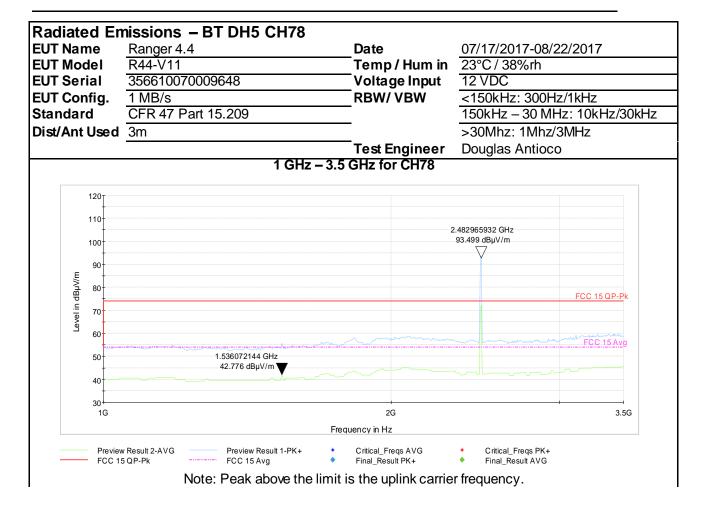

Frequency	Detector	Polarity	Raw	Corrected	Height	Azimuth	Limit	Margin	Result
MHz		H/V	dBuV/m	dBuV/m	cm	deg	dBuV/m	dB	
14537.52	Average Max	Н	23.75	40.82	139	232	54.00	-13.18	Pass
17420.98	Average Max	V	25.02	43.04	260	338	54.00	-10.96	Pass
17933.24	Average Max	V	24.89	46.92	218	272	54.00	-7.08	Pass

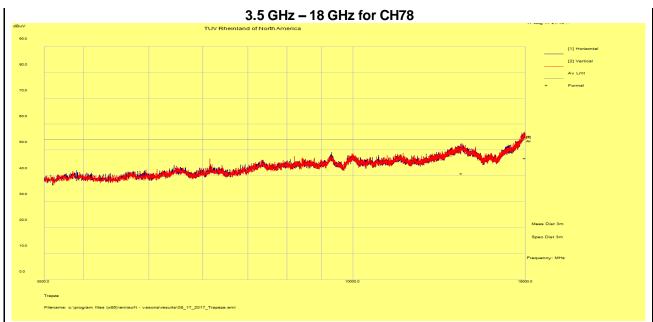
TUV Rheinland

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466

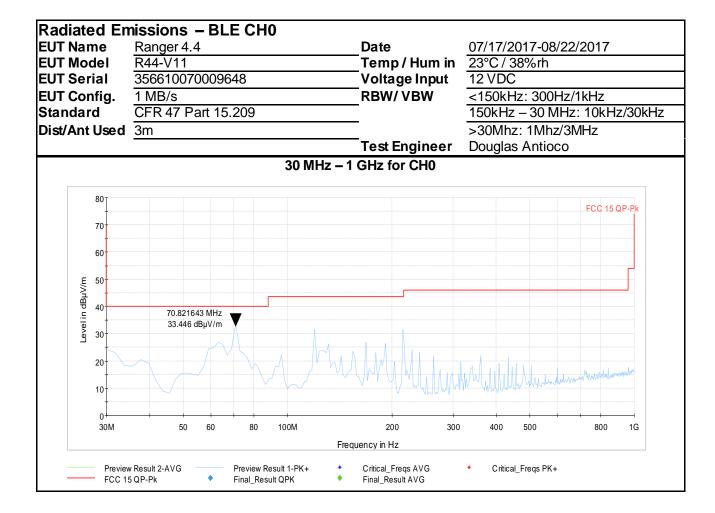


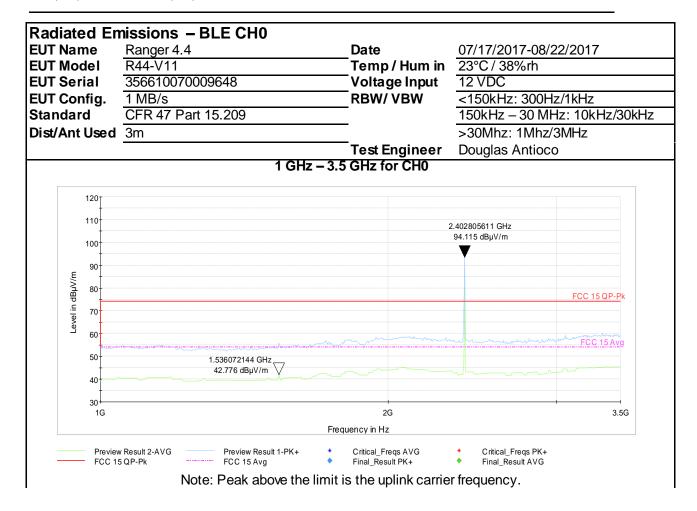


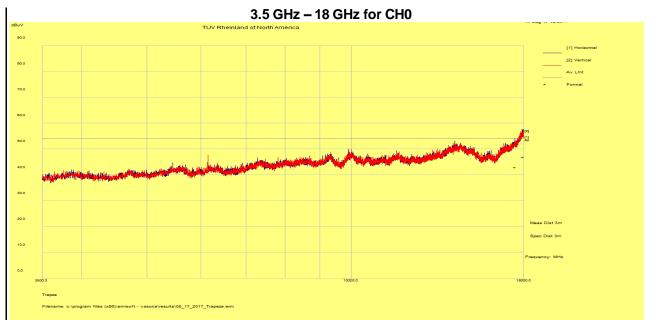



Note: EUT at 90 degree as worst case, not positioner utilized.

Frequency	Detector	Polarity	Raw	Corrected	Height	Azimuth	Limit	Margin	Result
MHz		H/V	dBuV/m	dBuV/m	cm	deg	dBuV/m	dB	
14510.46	Average Max	V	23.64	41.05	283	188	54.00	-12.95	Pass
17910.06	Average Max	V	24.89	46.89	397	224	54.00	-7.11	Pass

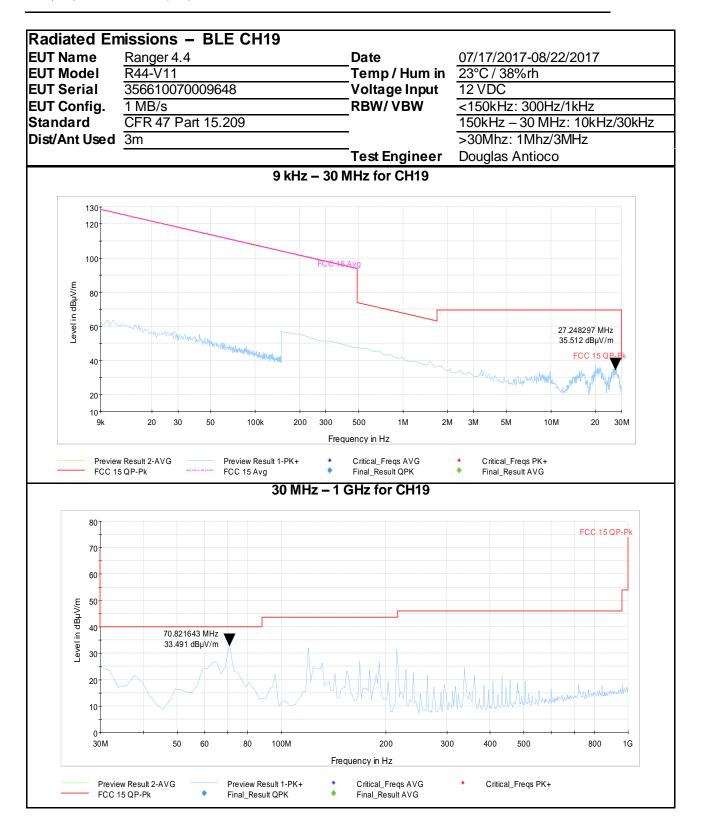


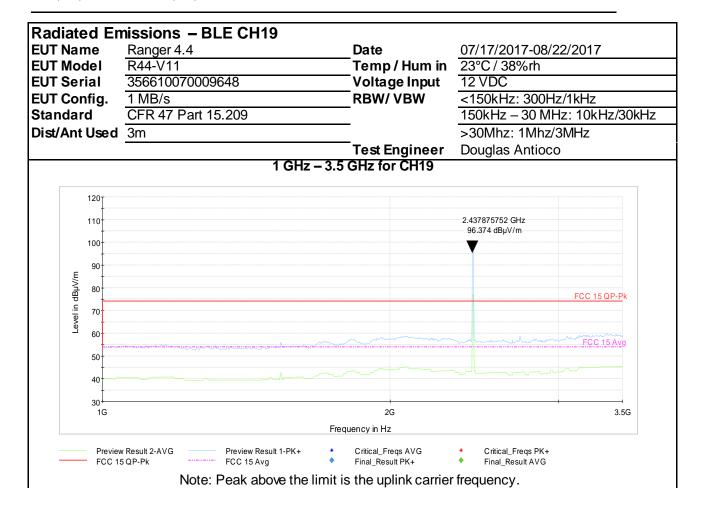


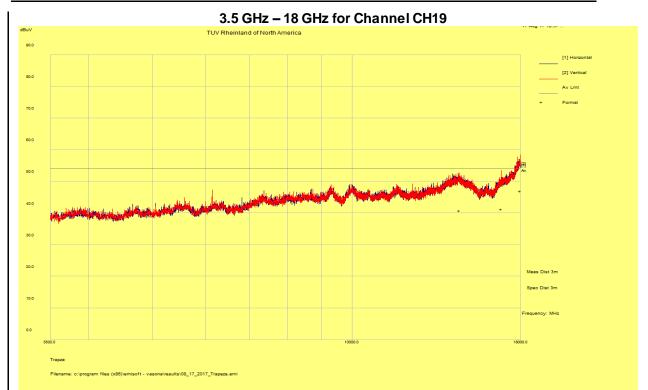

Note: EUT at 90 degree as worst case, not positioner utilized.

Frequency	Detector	Polarity	Raw	Corrected	Height	Azimuth	Limit	Margin	Result
MHz		H/V	dBuV/m	dBuV/m	cm	deg	dBuV/m	dB	
14490.15	Average Max	٧	23.60	40.95	336	178	54.00	-13.05	Pass
17953.37	Average Max	V	24.79	46.85	109	268	54.00	-7.15	Pass

BLE:

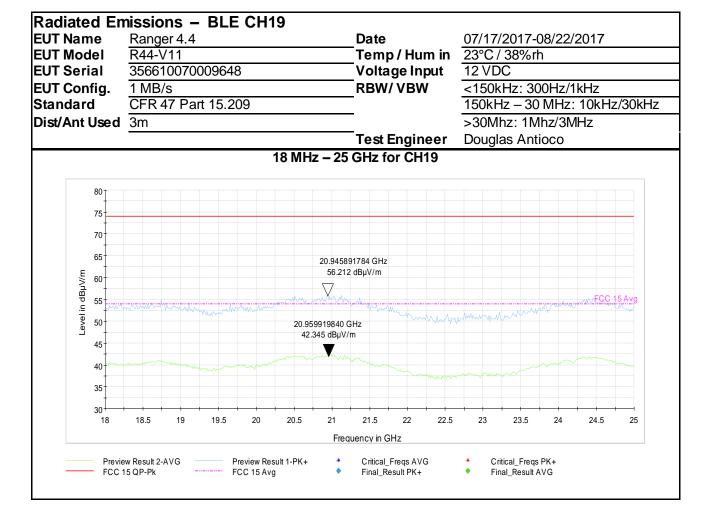


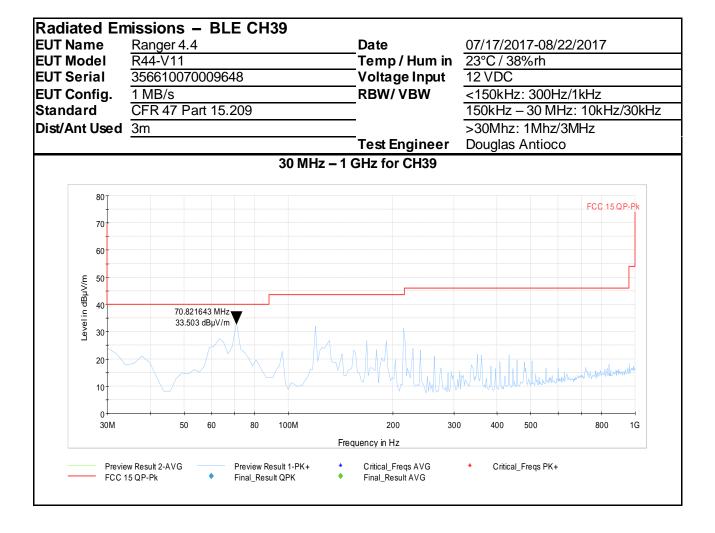


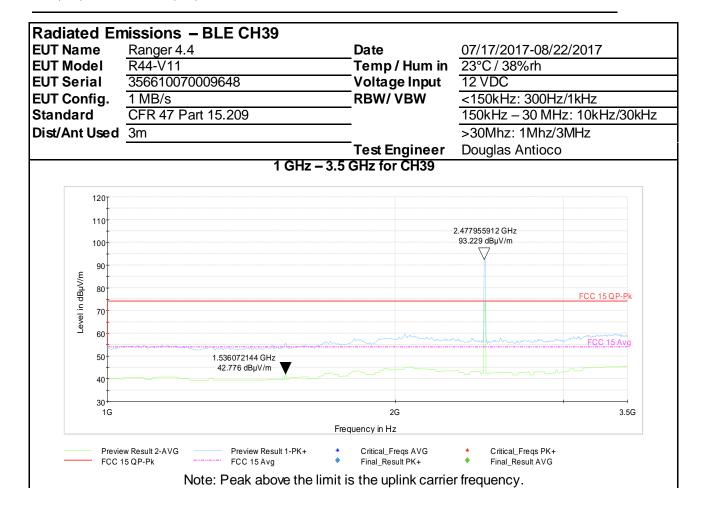


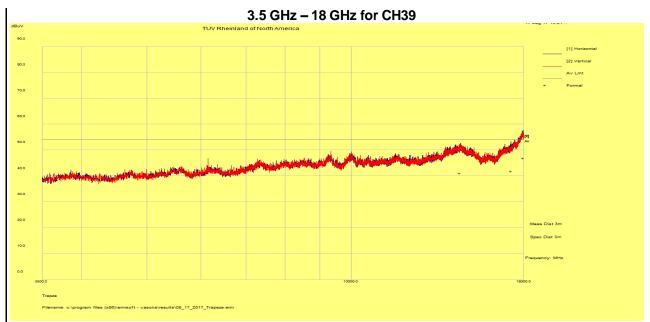
Note: EUT at 90 degree as worst case, not positioner utilized.

	Frequency	Detector	Polarity	Raw	Corrected	Height	Azimuth	Limit	Margin	Result
	MHz		H/V	dBuV/m	dBuV/m	cm	deg	dBuV/m	dB	
ſ	17457.86	Average Max	Н	24.91	43.01	131	192	54.00	-10.99	Pass
	17948.49	Average Max	Н	24.84	46.89	190	360	54.00	-7.12	Pass








Note: EUT at 90 degree as worst case, not positioner utilized.

Frequency	Detector	Polarity	Raw	Corrected	Height	Azimuth	Limit	Margin	Result
MHz		H/V	dBuV/m	dBuV/m	cm	deg	dBuV/m	dB	
14534.38	Average Max	Н	23.73	40.85	384	60	54.00	-13.15	Pass
16838.35	Average Max	٧	25.87	41.18	288	26	54.00	-12.82	Pass
17976.02	Average Max	V	24.70	46.90	322	194	54.00	-7.10	Pass

Note: EUT at 90 degree as worst case, not positioner utilized.

Frequency	Detector	Polarity	Raw	Corrected	Height	Azimuth	Limit	Margin	Result
MHz		H/V	dBuV/m	dBuV/m	cm	deg	dBuV/m	dB	
14495.66	Average Max	Η	23.65	41.10	336	224	54.00	-12.90	Pass
17238.68	Average Max	Н	24.79	41.87	356	262	54.00	-12.13	Pass
17967.15	Average Max	Н	24.79	46.93	187	236	54.00	-7.07	Pass

Equipment List

5 Test Equipment List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst#	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Test Software	Rohde & Schwarz	EMC32 v.10.20.01	N/A	N/	A
Test Software (3.5-18GHz)	EMIsoft	Version 5.0	N/A	N/	A
Signallingantenna	Commscope	CELLMAX-D-CPUSE	L011504152918	N/	A
Maturo Control Unit	Maturo	SCU	246/20571216	N/	A
Maturo EUT Positioner	Maturo	TD1.5-10kg	087/20571216	N/	A
3.5 GHz High Pass Filter	Hewlett Packard	84300-80038	820004	N/A (Se	e Note)
1.6GHz Low Pass Filter	K & L Microwave, Inc	8L120-X1600- 0/09135-0249	UA691-35	N/A (Se	e Note)
DC Block	Mini-Circuits	UNAT-1+	VUU83701027	N/A (Se	e Note)
Amplifier	Sonoma	310N	185516	01/02/2017	01/02/2018
Amplifier	Rohde & Schwarz	TS-PR18	100019/3545.7008.03	01/12/2017	01/12/2018
Active Loop Antenna	EMCO	6502	00062531	05/17/2017	05/17/2019
Bilog Antenna	Sunol Sciences	JB3	A061907	08/04/2016	08/04/2018
Horn Antenna (1-18GHz)	EMCO	3115	9710-5301	10/08/2015	10/08/2017
Horn Antenna (18-26GHz)	Com-Power	AHA-840	105005	05/26/2017	05/26/2019
EMI Receiver	Rohde & Schwarz	ESIB40	100180	01/12/2017	01/12/2018
EMI Receiver	Agilent				
Spectrum Analyzer	Rohde & Schwarz	FSL 6	100169	01/13/2017	01/13/2018
Thermometer	VWR	61161-378	160702310	08/15/2015	08/15/2018

 $Note: Equipment is {\it characterized before use}.$

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017

Page 37 of 40

TUV Rheinland EMC Test Plan

5.2 EMC Test Plan

5.3 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

5.4 Customer

Table 2: Customer Information

Company Name	Trapeze Software Group, Inc.	
Address	5265 Rockwell Drive NE, Cedar Rapids	
City, State, Zip	Iowa 52402, U.S.A.	
Country	USA	

5.5 Equipment Under Test (EUT)

Table 3: EUT Specifications

EUT Specification						
Voltage Input	12 VDC					
Number of Antenna Feeds:	Bluetooth EDR/BDR Transmit: 1 Receive: 1	Bluetooth Low Energy Transmit: 1 Receive: 1				
Hardware Version	4.4					
RF Software Version	1.04P					
Radio Evaluated	Bluetooth EDR/BDR, Bluetooth Low Energy					
Transmit Frequency Band	2400-2484.5MHz					
Max. Power Output for Technology	6.99 dBm (Declared by Manufacturer)					
Antenna Gain	-4 dBi					
Antenna Type	Chip Antenna					
Modulation Type	Bluetooth EDR/BDR GFSK, 8DPSK, π/4 DQPSK	Bluetooth Low energy GFSK				
Type of Equipment	☑ Table Top ☐ Wall-mount ☐ Floor standing cabinet☐ Other:					

Table 4: Antenna Information

Number	Antenna Type	Description	Max Gain (dBi)
1	Internal	Chip	-4

Table 5: Support Equipment

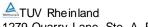
Equipment	Manufacturer	Model	Serial	Used for		
Laptop	Lenovo	75Y4442	R9-AXV2F 11/01	Configure channel		
AC to DC	V-Infinity	ETSA1205	_	To provide power to EUT		
Converter	v mining	00UD		To provide power to he i		
Note: None.						

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 39 of 40

Table 6: Description of Sample used for Testing

Device	Serial	RF Connection	CFR47 Part 15.247
R44-V11	356610070009648	Radiated Sample	Radiated Emissions

Table 7 Accessory Equipment


Equipment	Manufacturer	Model	Serial Number
N/A	N/A	N/A	N/A

5.6 Testing Notes:

The EUT's BT EDR/BDR and LE radios were stimulated for continuous transmission on all applicable channels and modulations via scripts that were toggled by a laptop through the software program CSR BlueSuite3.

For the BT EDR/BDR radio, only GFSK modulation was evaluated since the previously certified module's report shows that this mode has the highest output power which is considered the worst case mode of operation.

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017 Page 40 of 40

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

END OF REPORT

Report Number: 31762446.004 EUT: Ranger 4.4 Model: R44-V11 Issue Date: September 14, 2017

FCC ID: RZ3RAN44V1; IC ID: 2234A-RAN44V1

Testing Notes: