EXHIBIT 6

Part 15 Technical Report SECTION 2.1033 (a) (6)

Introduction	
Device Overview	
Test Rationale	
Subpart A – General	
15.15 General technical requirements	3
15.19 Labeling requirements	3
15.21 Information to user	4
15.27 Special accessories	4
15.31 Measurement standards	4
15.33 Frequency range of radiated measurements	4
15.35 Measurement detector functions and bandwidths	4
Subpart C – Intentional Radiators (section rules as applicable)	4
15.201 Equipment authorization requirement	4
15.203 Antenna requirement	4
15.204 External radio frequency power amplifiers and antenna modifications.	
15.207 Conducted power-line limits	
15.209 Radiated emissions limits	
15.247 Operations within the bands 902-928, 2400-2483.5, and 5725-5850 MHz	5
15.247(a) Operation provisions	
15.247(a)(1) Hopping requirements	
15.247(b)(1) Maximum output power	
15.247(b)(3)(i) Exclusive point-to-point operation.	
15.247(c) Spurious emission requirements, conducted and radiated.	
15.247(g) Hopping for Long/Short periods	8
15.247(h) Hopping intelligence	
Appendix A	9
Hopping Algorithm	9
Hopping Patterns:	9
Appendix B	. 11
20 dB bandwidth	. 11
Appendix C	. 13
Conducted Power-line Emissions Data	
Appendix D	18
Spurious Radiated Emission Data	
Results	
Test Setup	20
Appendix E	
Radiated Emissions Tests (30 - 1000 MHz)	
Test Results	
Highest clock frequency	
Test Setup	
Appendix F	
Test Equipment	24

Introduction

The Lucent Technologies **WaveACCESS NET 2400** remote Wireless Modem (WM) consisting of the SDR232, MDR232, and BR232 has been subjected to the Part 15 requirements judged to be applicable. As an intentional radiator-frequency hopping device operating in the 2400 – 2483.5 MHz band the device falls under 15.247 (subpart C) of the rules. Each applicable rule section has been addressed and is outlined herein.

In addition, the device has been subjected to Part 15, subpart B, where applicable since it contains ITE functionally not directly related to the operation of the intentional radiator.

Device Overview

The Wave ACCESS NET 2400 remote Wireless Modem family consists of several configuration models, all of which are both electrically and physically the same, but can be operated as either a single drop remote standalone LAN adapter (SDR232), a multi-drop remote configuration serving numerous users (MDR232), or as a bridge configuration (BR232). For report purposes the MDS/SDR 232 is referred to as xDR.

The difference between the MDR/SDR units and the BR units is in the transmission protocol: For xDR units there is one transmission in each direction each dwell (20.48 ms), optimizing total system throughput and fairnes for point to multipoint systems.

For the BR there may be multiple alternations between Rx and Tx per dwell, thus optimizing PTP throughput and latency.

WaveACCESS NET xDR232 remote unit (Wireless Modem)

Figure 1

The Wireless Modem unit contains an integral combination antenna, transmitter/receiver, and control computer. It allows a connection from an individual subscriber's computer or small corporate LAN, to a base station and wireless hub. WMs are designed for outdoor installations and can safely operate in all weather conditions. WM temperature rating is -40° C to 46° C. A WM weighs approximately 8 pounds and is approximately 12 inches in width, 14 inches in height, and 4 inches in depth. WM power is provided

over a custom cable. This cable combines Ethernet and electrical power and connects the WM to the power converter.

WaveACCESS NET employs Frequency Hopping Spread-Spectrum (FHSS) technology at data rates of 3.2 and 1.6 Mbps. The Wireless Modem physically attaches to the outside of a home or office and are most often mounted on rooftops or high on the side-walls of buildings. See Figure 2 for typical installation. Features for each device configuration are described as follows:

WaveACCESS NET SDR232: A standalone wireless LAN adapter (remote unit), including a built-in antenna, designed to connect to any computer's Ethernet adapter card and allow fast linking of any workstation to the Internet or Intranet. This allows the user access to the full bandwidth, without having to share the capacity with multiple users on a network.

WaveACCESS NET MDR232: A multidrop remote unit, including a built-in antenna, that provides a bridging function and enables a complete LAN to be connected over a wireless network. This unit has particular application for a small office environment, in which a single **MDR232** would enable all the computers to access the Internet.

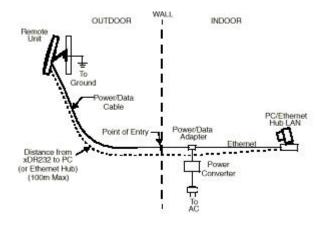


Figure 2

Test Rationale

The Lucent Technologies **WaveACCESS NET xDR232** Wireless Modem was tested in accordance with the guidelines in ANSI C63.4 and with guidance from FCC Public Notice entitled "Guidance on Measurements for Direct Sequence Spread Spectrum Systems".

Subpart A – General

15.15 General technical requirements

The device has NO external controls accessible to the user that can be adjusted and operated in violation of the FCC regulations.

15.19 Labeling requirements

See Exhibit 2 for a drawing of the label.

15.21 Information to user

See Exhibit 3 for information supplied to user. Cautionary statements are provided in accordance with FCC regulations.

15.27 Special accessories

Accessory items are shown in Exhibit 8. Since the system requires professional installation all cautionary statements are provided in the installation guide manual.

15.31 Measurement standards

Measurements were carried out in accordance with ANSI C63.4 as applicable and with guidance provided by FCC Public Notice, entitled, "Guidance on measurements for Direct Sequence Spread Spectrum Systems".

15.33 Frequency range of radiated measurements

Radiated measurement scans were made from 30 to 1000 MHz and from 1000 to 25, 000 MHz (tenth harmonic of the highest operating frequency)

15.35 Measurement detector functions and bandwidths

Measurement detector functions and bandwidths utilized for testing are shown in the table below.

Frequency range (MHz)	Detector	RBW
0.450 - 30	Quasi-peak	9 kHz
30 - 1000	Peak and Quasi-	120 kHz
	peak	
1000 +	Peak and Average	1 MHz

Table 1

Subpart C – Intentional Radiators (section rules as applicable)

15.201 Equipment authorization requirement

The **WaveAccess NET 2400 xDR232** shall be certified pursuant to the procedures in Subpart J of Part 2 prior to marketing

15.203 Antenna requirement

The **WaveACCESS NET 2400 xDR232** device requires professional installation and as such the installer is responsible for ensuring that the proper antenna is employed so that FCC limits in this part are maintained.

15.204 External radio frequency power amplifiers and antenna modifications.

As a transmission system the device is marketed as a complete system to be used strictly in the configuration for which it was authorized.

15.207 Conducted power-line limits

The **WaveACCESS NET xDR232** complies with the conducted requirements in section 15.107 for a Class B device as well as the requirements in section 15.207. Test results are shown in Appendix C

15.209 Radiated emissions limits

The **WaveACCESS NET xDR232** complies with the radiated requirements in section 15.109 for a Class B device as well as the requirements in section 15.207. Test results are shown in Appendix E.

15.247 Operations within the bands 902-928, 2400-2483.5, and 5725-5850 MHz

15.247(a) Operation provisions

The system operates as frequency hopping only, therefore, section 15.247 applies.

15.247(a)(1) Hopping requirements

The device meets all of the requirements for this section. Minimum separation of channel carrier frequencies is greater than the 20 dB bandwidth of the hopping channel. A representative plot showing the 20 dB bandwidth for both QPSK and 16QAM modulation schemes Appendix A.

The system meets the requirements of this section as shown below.

Requirement	Device	FCC requirement
Hopping channels	79 channels	75 channels
Channel dwell (seconds)	0.0248	Maximum 0.4 sec within 30 second time frame
Hopping channel bandwidth (MHz)	0.902 MHz	1.0 MHz maximum
Hopping channel separation	> 20 dB hopping channel bandwidth	Minimum separation of 25 kHz or 20 dB bandwidth, whichever is greater

A discussion of the hopping algorithm and representative data is contained in Appendix A

15.247(b)(1) Maximum output power

Power output at the antenna port does not exceed 0.250 watt (24 dBm).

15.247(b)(3)(i) Exclusive point-to-point operation.

The WaveACCESS NET 2400 meets the requirement in the following manner:

The system is designed to work with a number of optional (**professionally installed**) antennas. The highest gain antenna available is 24 dBi, (See Table 2). At time of installation, the antenna parameters are keyed into the operating software which then adjusts the output power to meet the FCC requirements. (The power, relative to 1.0 watt, is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.)

Antenna	Gain (dBi)
Internal	16
Parabolic Grid (PG24)	24

Table	2
-------	---

15.247(c) Spurious emission requirements, conducted and radiated.

Antenna port conducted results.

Spectrum analyzer measurement scans at the antenna port (from 0 MHz to 25.000 GHz, tenth harmonic) were made at the antenna port for 3 fixed (low, middle, and high) non-hopping frequencies. Both 16QAM and QPSK modulation modes were tested. Test results show all out of band emissions as measured using a 100 kHz RSB¹ were much greater than 20 dB down from the in-band. The reference in-band spectrum plot for combined 16QAM and QPSK modulation schemes are shown in Figure 3. F1 and F2 mark the ISM band frequency edges. Test results are summarized below in Table 3.

¹ Because the results exceeded 20 dB the actual plots are maintained on file at GPCL and available for inspection.

Test Frequency (MHz)	Modulation scheme	Test frequency range (MHz)	Test results Out of band emissions	Compliance statement
2402.0	QPSK 16QAM	0 - 25000	>> 20 dB below in-band	Pass
2440.0	QPSK 16QAM	0 - 25000	>> 20 dB below in-band	Pass
2480.0	QPSK 16QAM	0 - 25000	>> 20 dB below in-band	Pass

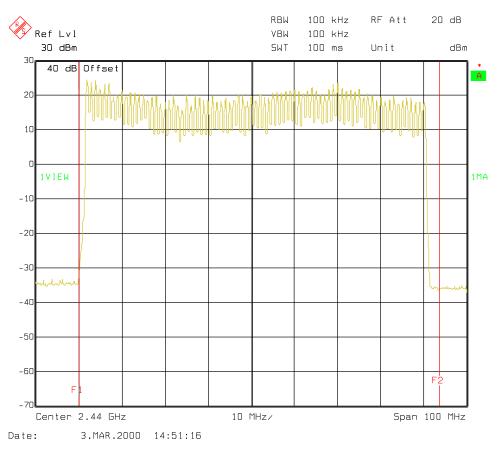


Figure 3

Radiated test results

A radiated search scan was made for spurious/harmonic signals and resulted tabulated against the limits specified in section 15.247(c). Spurious/harmonic emissions meet the requirements of 15.247(c) and 15.209 in cases of emissions falling into the restricted bands. Test results are shown in Appendix D.

15.247(g) Hopping for Long/Short periods

The NET and BR system hop periodically (every 20.48 ms) from frequency to frequency, covering all 79 allowed frequencies, regardless of the data being transmitted.

15.247(h) Hopping intelligence

The transmitter **does not** employ intelligence to effect the hop sequence.

Appendix A

Hopping Algorithm

Hopping Patterns:

There are 78 hopping sequences according to the following formula:

Hopping Sequence $_{k,m}$ [i]=- 2402 + (b [i] + k + 3·m) mod 79 [MHz]

where k=0,1 or 2, m=0,1,2,...,25, i=0,1,2,...,78 and

i	b[i]	i	b[i]	i	b[i]	i	b[i]	i	b[i]	i	b[i]	i	b[i]	i	b[i]
0	0	10	76	20	18	30	34	40	14	50	20	60	48	70	55
1	23	11	29	21	11	31	66	41	57	51	73	61	15	71	35
2	62	12	59	22	36	32	7	42	41	52	64	62	5	72	53
3	8	13	22	23	72	33	68	43	74	53	39	63	17	73	24
4	43	14	52	24	54	34	75	44	32	54	13	64	6	74	44
5	16	15	63	25	69	35	4	45	70	55	33	65	67	75	51
6	71	16	26	26	21	36	60	46	9	56	65	66	49	76	38
7	47	17	77	27	3	37	27	47	58	57	50	67	40	77	30
8	19	18	31	28	37	38	12	48	78	58	56	68	1	78	46
9	61	19	2	29	10	39	25	49	45	59	42	69	28	-	-

Example A: for k=0, m=0, we obtain the following hopping sequence, expressed in MHz:

2402, 2425, 2464, 2410, 2445, 2418, 2473, 2449, 2421, 2463, 2478, 2431, 2461 2424 2454, 2465, 2428, 2400, 2433, 2404, 2420, 2413, 2438, 2474, 2456, 2471, 2423, 2405 2439, 2412, 2436, 2468, 2409, 2470, 2477, 2406, 2462, 2429, 2414, 2427, 2416, 2459 2443, 2476, 2434, 2472, 2411, 2460, 2401, 2447, 2422, 2475, 2466, 2441, 2415, 2435 2457, 2437, 2455, 2426, 2446, 2453, 2407, 2419, 2408, 2469, 2451, 2442, 2403, 2430 2467, 2452, 2458, 2444, 2450, 2417, 2440, 2432 and 2448

Example B: for k=l, m=3, we obtain the following hopping sequence, expressed in MHz:

2412, 2435, 2474, 2420, 2455, 2428, 2404, 2459, 2431, 2473, 2409, 2441, 2471, 2434 2464, 2475, 2438, 2410, 2443, 2414, 2430, 2423, 2448, 2405, 2466, 2402, 2433, 2415 2449, 2422, 2446, 2478, 2419, 2401, 2408, 2416, 2472, 2439, 2424, 2437, 2426, 2469 2453, 2407, 2444, 2403, 2421, 2470, 2411, 2457, 2432, 2406, 2476, 2451, 2425, 2445 2477, 2462, 2468, 2454, 2460, 2427, 2417, 2429, 2418, 2479, 2461, 2452, 2413, 2440 2467, 2447, 2465, 2436, 2456, 2463, 2450, 2442 and 2458

The system changes its carrier frequency at fixed intervals (every 20 msec) under the direction of the coded sequence specified above. The near term distribution of the frequencies appears random, the long term distribution appears evenly distributed over the hop set (2402 to 2480 MHz), and sequential hops are

randomly distributed in both direction and magnitude of change in the hop set. WaveACCESS NET **2400** selects its hopping pattern randomly or enforced by the user.

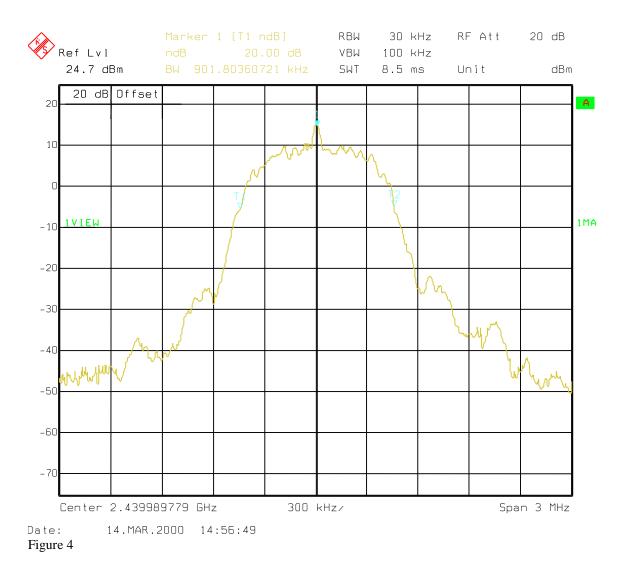
In any case there is no coordination between two links, thus any two links will collide (i.e. use the same channel simultaneously) in a random manner.

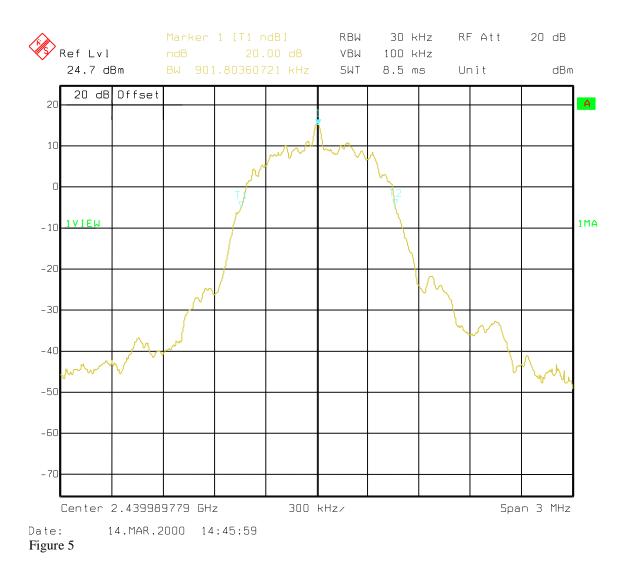
Each transmission starts upon the packet's time of arrival (if channel is free). This could be at any time and at any frequency or frequencies. The transmission frequency changes every 20 msec regardless of when the packet arrives or how long it is, therefore each frequency is used equally, statistically in manner. In other words, the time of arrival and thereby time of transmission, is random and uncoordinated with the hop ping c¹ jannel which by itself is uniformly distributed between 2402 MHz to 2480 MHz. In particular, if the transmitter is presented with a continuous data stream it would distribute its transmissions evenly over the 79 carrier frequencies.

Receiver/Transmitter Matching:

The receivers synchronize with the transmitter when they are powered on and stay synchronized until they are powered down. From this point the receiver hops together with the transmitter as well as all with the other device in the point-to-point link, using the same hopping sequence and channels.

The receiver mixes down the RF frequencies to a constant IF frequency of 350 MHz. Here the receiver bandwidth is set at a constant 1 MHz by a SAW filter (see block diagram and schematic attached). Repeated and multiple packets are synchronized to the transmitter RF frequency and mixed down to the receiver SAW filter.


Dwell Time:


The dwell time is 20.48 msec. The full hopping cycle is 1.618 sec (79 times the dwell time).

Appendix B

20 dB bandwidth

The 20 dB bandwidth was measured for both 16QAM and QPSK modulation schemes as shown in Figures 3 and 4 respectively.

Appendix C

Conducted Power-line Emissions Data

Neutral Conducted Emissions

25. Feb 00 13:13

EUT:	Wireless Modem
Manuf:	Lucent
Op Cond:	
Operator:	SEG
Test Spec:	FCC Class B
Comment:	26 C, 25% RH.
	120 VAC 60 Hz; Power Cable; QPSK

Final Measurement Results:

Frequency MHz	QP Le dBuV	vel QP Limit dBuV
0.47500	35.1	48.0
0.53500	43.0	48.0
0.71500	32.2	48.0
0.77500	33.5	48.0
0.97000	34.5	48.0
1.16500	34.1	48.0
1.25000	32.4	48.0
1.72500	33.4	48.0
1.96500	32.9	48.0
2.38000	35.5	48.0
2.44000	36.0	48.0
3.03500	33.7	48.0
3.51000	34.4	48.0
4.28500	32.2	48.0
4.76000	31.4	48.0
5.66000	25.3	48.0
16.02000	22.5	48.0
21.38000	27.4	48.0
24.35000	20.4	48.0
26.66500	31.3	48.0

Neutral Conducted Emissions

25. Feb 00 12:59

EUT:	Wireless Modem
Manuf:	Lucent
Op Cond:	
Operator:	SEG
Test Spec:	FCC Class B
Comment:	26 C, 25% RH.
	120 VAC 60 Hz; Power Cable; 16QAM

Final Measurement Results:

Frequency MHz	QP Le dBuV	evel QP Limit dBuV
0.47500	35.2	48.0
0.53500	43.0	48.0
0.71500	32.3	48.0
0.77500	33.6	48.0
0.97000	34.6	48.0
1.16500	34.1	48.0
1.25000	31.8	48.0
1.67000	32.7	48.0
2.02500	34.4	48.0
2.38500	35.0	48.0
2.44500	35.1	48.0
2.86000	34.5	48.0
3.51500	35.3	48.0
4.35000	31.9	48.0
4.76500	31.4	48.0
5.60000	27.7	48.0
15.98500	24.6	48.0
21.31000	25.7	48.0
24.34500	19.7	48.0
26.66500	32.0	48.0

Line Conducted Emissions

25. Feb 00 12:49

EUT:	Wireless Modem
Manuf:	Lucent
Op Cond:	
Operator:	SEG
Test Spec:	FCC Class B
Comment:	26 C, 25% RH.
	120 VAC 60 Hz; Power Cable; 16QAM

Final Measurement Results:

Frequency MHz	QP Le dBuV	evel QP Limit dBuV
0.47500	37.1	48.0
0.53500	43.6	48.0
0.65500	34.8	48.0
0.77500	36.0	48.0
0.97500	31.5	48.0
1.07000	34.9	48.0
1.25500	33.2	48.0
1.61000	35.0	48.0
2.03000	34.1	48.0
2.38500	36.1	48.0
2.44500	36.0	48.0
2.86000	34.2	48.0
3.40000	34.1	48.0
4.65000	33.1	48.0
4.77000	31.7	48.0
5.78500	29.6	48.0
16.03500	20.3	48.0
21.33500	27.2	48.0
26.66500	31.6	48.0

LINE Conducted Emissions

25. Feb 00 13:21

EUT:	Wireless Modem
Manuf:	Lucent
Op Cond:	
Operator:	SEG
Test Spec:	FCC Class B
Comment:	26 C, 25% RH.
	120 VAC 60 Hz; Power Cable; QPSK

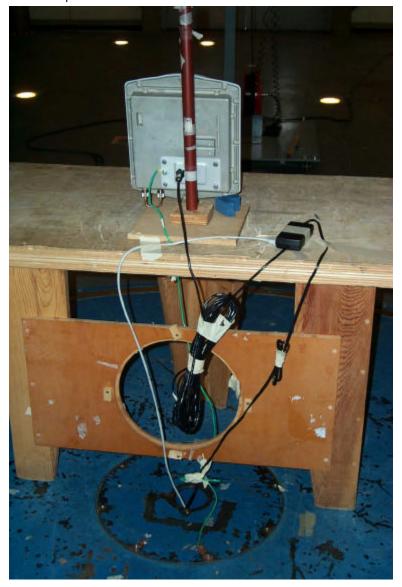
Final Measurement Results:

Frequency MHz	QP Le dBuV	evel QP Limit dBuV
0.47500	37.2	48.0
0.53500	43.6	48.0
0.71500	34.9	48.0
0.77500	35.6	48.0
0.97000	34.4	48.0
1.07000	35.7	48.0
1.37000	33.7	48.0
1.66500	35.0	48.0
1.84500	33.1	48.0
2.38000	36.0	48.0
2.44000	36.1	48.0
3.15500	34.6	48.0
3.51000	35.6	48.0
4.28500	33.1	48.0
4.76000	32.1	48.0
5.65500	28.8	48.0
16.01000	21.6	48.0
21.31500	25.0	48.0
26.66500	31.4	48.0

Appendix D

Spurious Radiated Emission Data

Results


Produ		Wirele	ss Modem				Product test configuration:			Internal antenna, no hopping		
Serial:									14 February, 2000			
-	erature:	22	Celsius				•	44	%			
	uct Class:	A	. 0.47				Test Facility: OATS					
Test	(3 • ,•	FCC pa	art 247				Test Engi	meer:	W. Ander	son		
-	fication: Number:	99-092										
Channe	el Freq	EUT Azimuth (Degrees)	Antenna Height(cm)	Antenna Polarity (H/V)		Meter Reading (peak dBuV)	Cable Loss (dB)	Antenna Factor (dB/m)	Average Field Intensity (dBuV/m)	Peak Field Intensity (dBuV/m)	Signal Type	Av Limit (dBuV/m) @ 3 meters
	2402.0	182	161	V	87	103	N/A	28.5	115.5	131.5	Intentional	
Har #	Freq.(MHz)											
2	4804	0 -360	100-400	v/h	8	18	N/A	33.1	41.1	51.1	Ambient	54
3	7206	0 -360	100-400	v/h	9	19	N/A	35.7	44.7	54.7	Ambient	
4	9608	0 -360	100-400	v/h	11	21	N/A	37.2	48.2	58.2	Ambient	
5	12010	0 -360	100-400	v/h	9	22	N/A	39.5	48.5	61.5	Ambient	54
6	14412	0 -360	100-400	v/h	7	20	N/A	38.7	45.7	58.7	Ambient	
7	16814	0 -360	100-400	v/h	8	18	N/A	39.6	47.6	57.6	Ambient	
3	19216	0 -360	100-400	v/h	2	14	4	40.3	46.3	58.3	Ambient	54
9	21618	0 -360	100-400	v/h	2	14	4.1	40.5	46.6	58.6	Ambient	
10	24020	0 -360	100-400	v/h	2	14	4.4	40.5	46.9	58.9	Ambient	
	2440.0	142	124	V	86	103	N/A	28.5	114.5	131.5	Intentional	
2	4880.0	0 -360	100-400	v/h	8	20	N/A	33.4	41.4	53.4	Ambient	
3	7320.0	0 -360	100-400	v/h	9	20	N/A	35.8	44.8	55.8	Ambient	54
4	9760.0	0 -360	100-400	v/h	9	22	N/A	37.5	46.5	59.5	Ambient	

5	12200.0	0 -360	100-400	v/h	11	20	N/A	39.5	50.5	59.5	Ambient	54
6	14640.0				7			39.3		57.3		54
0		0 -360	100-400	v/h	/	18	N/A		46.3		Ambient	
7	17080.0	0 -360	100-400	v/h	8	18	N/A	40.5	48.5	58.5	Ambient	
8	19520.0	0 -360	100-400	v/h	2	14	4	40.3	46.3	58.3	Ambient	54
9	21960.0	0 -360	100-400	v/h	2	14	4.1	40.5	46.6	58.6	Ambient	
10	24400.0	0 -360	100-400	v/h	2	14	4.4	40.5	46.9	58.9	Ambient	
	2480.0	186	170	v	85	101	N/A	28.6	113.6	129.6	Intentional	
2	4960.0	0 -360	100-400	v/h	9	22	N/A	33.8	42.8	55.8	Ambient	54
3	7440.0	0 -360	100-400	v/h	8	18	N/A	35.9	43.9	53.9	Ambient	54
4	9920.0	0 -360	100-400	v/h	9	22	N/A	37.7	46.7	59.7	Ambient	
5	12400.0	0 -360	100-400	v/h	10	21	N/A	39.5	49.5	60.5	Ambient	54
6	14880.0	0 -360	100-400	v/h	5	17	N/A	39.9	44.9	56.9	Ambient	
7	17360.0	0 -360	100-400	v/h	6	17	N/A	42.3	48.3	59.3	Ambient	
8	19840.0	0 -360	100-400	v/h	2	14	4	40.3	46.3	58.3	Ambient	54
9	22320.0	0 -360	100-400	v/h	2	14	4.2	40.5	46.7	58.7	Ambient	
10	24800.0	0 -360	100-400	v/h	2	14	4.4	40.5	46.9	58.9	Ambient	

Notes: Shaded rows indicate the restricted bands.

APPLICANT: Lucent Technologies Inc.

Test Setup

Appendix E

Radiated Emissions Tests (30 - 1000 MHz)

Radiated emission scans were performed on the Lucent Technologies **WaveACCESS NET xDR232** (Wireless Modem) in order to identify and measure emanations resulting both from the system integrated digital device as a unintentional radiator (subpart B) and from the integrated radio-frequency device (subpart C). The 30 to 1000 MHz frequency range was investigated. Measurements above 1000 MHz are outlined in Appendix D.

Test Results

Test results show that the **WaveACCESS NET xDR232** (Wireless Modem) is compliant with the requirements of 15.109 and 15.209.

Test results are shown in Table 4. All of the emissions detected in the 30 - 1000 MHz range were identified as soured from the EUT integrated unintentional radiator device and therefor are measured in a QP detector. A peak detector would be used to measure identified spurious products of the integrated intentional radiator device.

Highest clock frequency

The highest clock frequency used in the digital device is 80 MHz. The lowest frequency generated for use in the radio frequency device is 32 MHz.

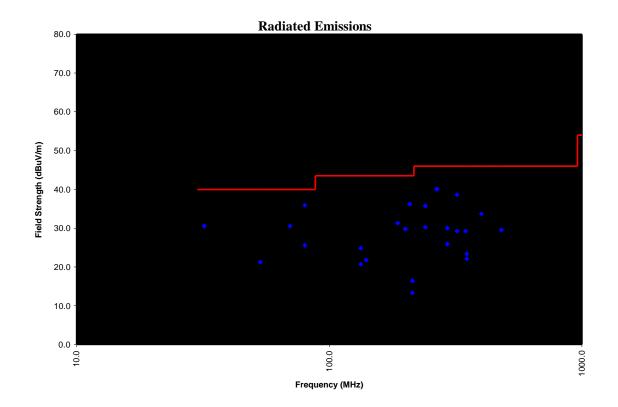
Test Setup

Peripherals and support equipment

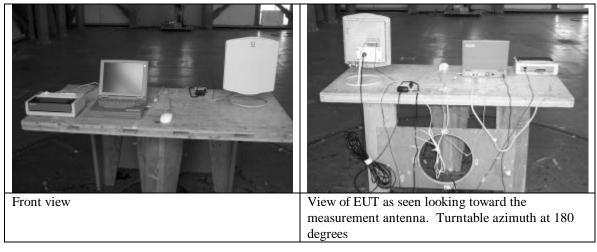
Component	MFG/Serial	FCC ID
Laptop Personal computer	Toshiba model PRS401U;	FCC DoC
	SN:29430969R	
Mouse	Microsoft PS/2; SN5855023	C3KZB2
Printer	HP 2225C+	DS16XU2225
Power supply	Telkoor model LSE9911A24; SN	N/A
	99	
LAN PCMI Card 10BaseT	3COM model 3CCFE574BT	FCC DoC

Cables

Cable type	Shielded - Y/N	Length
Printer cable	Y (metal hood)	1 meter
Power/data interface cable (Madison cable 1418)	Y (plastic hood)	7.4 meter
10BaseT	Ν	1.5 meter
Power cables	Ν	1 meter


Results

Name of EUT: WaceACCESS NET (Wireless Mo	dem xDR232)
Serial Number: 00607C151BDB	Date of Test: 19 February, 2000
Temperature: 21	Relative Humidity: 38%
Product Class: B	Test Facility: Open Area Test Site
Test Specification: 47 CFR, Part 15C	Measurement Distance: 3 meters
File Number: 99092F	Test Engineer: W. Anderson
Detector: Peak and Quasi-peak RSB: 120 kHz	


Table 4

Freq.	EUT Azimuth	Antenna Height	Antenna Polarity	Meter Reading	Cable Loss	Antenna Factor	Ambient Level	Field Intensity	Spec Limit (dBuV/m)	Margin (dB)
(MHz)	(Degrees)	(cm)	(H/V)	(dBuV)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	Quasi-peak	(UB)
								Quasi-peak	_	
32.00	5.9	249	V	16.1	0.8	13.5	*	30.5	40.0	9.5
53.33	251.7	159	V	9.9	1.0	10.3	*	21.2	40.0	18.8
70.00	356.4	106	V	20.7	1.2	8.6	*	30.5	40.0	9.5
80.00	1.3	100	V	27.4	1.2	7.3	11.7	35.9	40.0	4.1
80.00	327.5	136	V	17.1	1.2	7.3	*	25.6	40.0	14.4
133.33	39.2	114	V	10.6	1.6	12.6	*	24.8	43.5	18.7
133.33	268.1	254	Н	6.5	1.6	12.6	*	20.7	43.5	22.8
140.00	290.5	100	V	7.4	1.6	12.8	*	21.8	43.5	21.7
186.67	54.4	196	Η	16.6	1.9	12.8	*	31.3	43.5	12.2
200.00	246.2	100	V	15.3	2.0	12.5	*	29.8	43.5	13.7
208.02	246.2	100	V	22.0	2.1	12.1	*	36.2	43.5	7.3
213.33	287.6	100	Н	2.3	2.1	12.0	*	13.3	43.5	30.2
213.33	333.8	146	V	0.8	2.1	12.0	*	16.4	43.5	27.1
240.00	242.7	106	Н	15.6	2.2	12.4	*	30.2	46.0	15.8
240.00	40.7	100	V	21.1	2.2	12.4	*	35.7	46.0	10.3
266.67	173.0	150	V	23.8	2.4	13.8	*	40.0	46.0	6.0
266.67	111.4	100	Н	23.9	2.4	13.8	*	40.1	46.0	5.9
293.33	267.6	113	Н	13.7	2.5	13.8	*	30.0	46.0	16.0
293.33	242.7	114	V	9.6	2.5	13.8	*	25.9	46.0	20.1
320.00	57.0	100	Н	21.7	2.6	14.3	*	38.6	46.0	7.4
320.00	242.7	114	V	12.3	2.6	14.3	*	29.2	46.0	16.8
346.67	90.6	100	Н	12.0	2.7	14.5	*	29.2	46.0	16.8
350.00	175.3	184	Н	4.1	2.8	15.2	*	22.1	46.0	23.9
350.00	298.1	100	V	5.4	2.8	15.2	*	23.4	46.0	22.6
400.00	323.3	121	V	15.4	3.0	15.3	*	33.7	46.0	12.3
480.00	162.8	139	Н	7.6	3.3	18.6	*	29.5	46.0	16.5

Exhibit 6 Page 22 of 24

Photographs of the radiated test setup are shown Figure 6.

Appendix F

Test Equipment

Manufacturer	Model Number	Serial Number	Description	Last Calibrated mm/dd/yy	Cal Cycle Month
Eaton	96002	2436	Biconical Antenna	08/31/99	12
Electro-Metrics	EM- 2135/EMC-60	44174	Test Receiver	11/19/99	12
EMCO	3146	2082	Log-Periodic Antenna	03/19/99	12
EMCO	3115	9006-3460	Double Ridged Horn 1-18 GHz	05/27/99	12
Rohde & Schwarz	ESVP	879529/047	Test Receiver 20 - 1300MHz	10/26/99	12
Rohde & Schwarz	EPM	883613/014	Panorama Monitor	N/A	N/A
Narda	638	9612	Horn antenna (18 - 26 GHz)	2/2/00	2/2/02
Hewlett Packard	8449	3008A00426	Microwave preamplifier	03/03/99	12
Hewlett Packard	8563E	3728A07536	Spectrum Analyzer (30 Hz-26GHz	05/27/99	12
Rohde & Schwarz	FSEK30	830846/008	Spectrum Analyzer 20HZ-40GHZ - 150-+30DBM	6/30/99	6/30/00