Report on the FCC and IC Testing of the **APTIV Services US, LLC** Vehicle Radar. Model: SRR6PS In accordance with CFR 47, Part 95, Subpart M Prepared for: APTIV Services US, LLC 5725 Innovation Drive Troy, Michigan 48098 USA FCC ID: L2CSRR6PS ## COMMERCIAL-IN-CONFIDENCE Date: 2024-04-02 Document Number: TR-713312046-00 | Revision 1 | RESPONSIBLE FOR | NAME | DATE | SIGNATURE | |----------------------|----------------|------------|----------------------------------| | Project Management | Martin Steindl | 2024-04-02 | Skinell Martin
SIGN-ID 901403 | | Authorised Signatory | | 2024-04-02 | SIGN-ID 901463 | Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules. #### **ENGINEERING STATEMENT** The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 95, Subpart. The sample tested was found to comply with the requirements defined in the applied rules. | RESPONSIBLE FOR | NAME | | DATE | | SIGNATURE | | |--|----------------|---|----------|--------------------------|--------------------|-------| | Testing | Martin Steindl | | 2024-04- | 02 | Skinell
SIGN-ID | | | Laboratory Accreditation DAkkS Reg. No. D-PL-113 | 321-11-03 | Laboratory recognition Registration No. BNetzA-CAB-16 | /21-15 | ISED Canada t
3050A-2 | test site registr | ation | DAkkS Reg. No. D-PL-11321-11-04 #### **EXECUTIVE SUMMARY** A sample of this product was tested and found to be compliant with FCC 47 CFR Part 95, Subpart M (2018). #### **DISCLAIMER AND COPYRIGHT** This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2024 TÜV SÜD Product Service Trade Register Munich VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuev-sued.com/imprint Managing Directors: Walter Reithmaier (CEO) Patrick van Welij Phone: +49 (0) 9421 55 22-0 Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany #### **Summary** # Prüfergebnisse / Test Results Auftragsnummer / Order No. NA Die Prüfungen wurden nach folgenden Vorschriften durchgeführt: Tests were performed according to: CFR 47, Part 95, Subpart M | , | | | |--------------------------------------|-----------------------------|--| | Durchgeführte Prüfung Test performed | Prüfergebnis
Test result | | | Radiated Power | Pass | | | Occupied Bandwidth | Pass | | | Spurious Radiated Emissions | Pass | | | Frequency Stability | Pass | | | Bemerkungen / Remarks: | | |------------------------|--| | | | Die Prüfergebnisse beziehen sich ausschließlich auf das zur Prüfung vorgestellte Prüfmuster. Ohne schriftliche Genehmigung des Prüflabors darf der Prüfbericht auszugsweise nicht vervielfältigt werden. The test results relate only to the individual item which has been tested. Without the written approval of the test laboratory this report may not be reproduced in extracts. ## **Table of Contents** | 1 | Ac | ministrative Data | 4 | |----|------|--|----| | 2 | De | tails about the Test Laboratory | 5 | | 3 | De | scription of the Equipment Under Test | 6 | | 4 | Op | peration Mode and Configuration of EUT | 8 | | 5 | Te | st Setups | 9 | | 6 | Re | ferenced Regulations | 13 | | 7 | Te | st Results | 14 | | | 7.1 | Radiated Power | 15 | | | 7.2 | Occupied Bandwidth | 17 | | | 7.3 | Spurious Radiated Emisions | 19 | | | 7.4 | Frequency Stability | 31 | | 8 | Te | st Equipment used | 37 | | 9 | Me | easurement Uncertainty Values | 38 | | 1(| 0 Re | vision History | 41 | | | | Photographs of Test Setup | | ### **Administrative Data** | Application details | | | |------------------------------|--|--| | Applicant: | APTIV Services US, LLC
5725 Innovation Drive
Troy, Michigan 48098
USA | | | Contact person: | Mr. Dean Farouki | | | Intercompany contact: | TÜV SÜD Product Service GmbH
GMA Straubing | | | | Mr. Thomas Ring | | | Order number: | NA | | | Receipt of EUT: | 2024-02-02 | | | Return of EUT: | | | | Date(s) of test: | 2024-02-09 to 2024-02-22 | | | Note(s): | | | | Responsible for testing: | Mr. Martin Steindl | | | Responsible for test report: | Mr. Martin Steindl | | | Test report checked by: | Mr. Matthias Stumpe | | | Report details | | |----------------|-----------------| | Report number: | TR-713312046-00 | | Revision: | 1 | | Issue date: | 2024-04-02 | ### 2 Details about the Test Laboratory **Details about the Test Laboratory** Company name: TÜV SÜD Product Service GmbH Address: Äußere Frühlingstraße 45 D-94315 Straubing Germany Laboratory accreditation: DAkkS Registration No. D-PL-11321-11-03 DAkkS Registration No. D-PL-11321-11-04 Laboratory recognition: Registration No. BNetzA-CAB-16/21-15 Industry Canada test site registration: 3050A-2 Contact: Mr. Markus Biberger Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 ## 3 Description of the Equipment Under Test | Equipment characteristics | | | |-----------------------------|---|--| | Type designation: | SRR6PS | | | Parts of the system: | Radar ECU | | | Options and accessories: | | | | Type of equipment: | Vehicle Radar | | | Serial number: | NA | | | Manufacturer: | APTIV Services US, LLC | | | Hardware version: | N/A | | | Software version: | N/A | | | Drawing number: | | | | Build status: | | | | Power supply: | Battery supply (regulated lead-ac | id) | | | Nominal: Minimum: Maximum: Nominal frequency: | 12.0 V DC
9 V DC
16.0 V DC
N/A - DC | | Highest internal frequency: | N/A | 20 | #### Marking Plate(s) #### **Technical Description** The Device Under Test (DUT) is a 76-77 GHz vehicular radar. The device employs a dynamic chirp modulated transmit array. Multiple receive antennas are used to determine target angular resolution through digital beam forming. When installed on a vehicle, the device will operate when the vehicle is running. The nominal operating voltage is DC 12.0 V. #### **Modulation characteristics:** Non-pulsed radar The radar is a FMCW radar; modulation type is sawtooth. ## 4 Operation Mode and Configuration of EUT ### **Operation Mode(s)** The operating modes were tested with a single modulation, as provided by the manufacturer. | List | of ports and cables | | | | | |------|--------------------------------|-----------------------------|------------|------------------|------------------------------| | No. | Description | Classification ¹ | Cable type | Cable le
used | ngth
maximum ² | | D1 | DC 12 V supply | dc power | Unshielded | 2 m | < 3 m | | S1 | Wiring harness (CAN, Ethernet) | signal/control port | Unshielded | 2 m | < 3 m | | List | of devices connected to EUT | | | | |------|-----------------------------|------------------|------------------|--------------| | No. | Description | Type designation | Serial no. or ID | Manufacturer | | | | | | | | List | of support devices | | | | |------|--------------------|------------------|------------------|--------------| | No. | Description | Type designation | Serial no. or ID | Manufacturer | | 1 | CAN/LIN-Interface | VN1640A | | Vector | | 2 | Notebook | Latitude 5480 | | Dell | ¹ Ports shall be classified as ac power, dc power or signal/control port. ² As specified by applicant #### 5 Test Setups #### Radiated Emission in Fully or Semi Anechoic Room Fully or semi anechoic room Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33. Measurements are made in both the horizontal and vertical planes of polarization using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz). Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used. All tests below 8.2 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance may be reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary. If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value. Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing. During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions. For final testing below 1 GHz a semi anechoic room complying with the NSA requirements of ANSI C63.4 for alternative test sites is used (see 0). If prescans are recorded in fully anechoic room they are indicated appropriately. TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de According to section 13 of KDB558074 the requirement for radiated emissions on the band edges was performed with a reduced bandwidth of 100 kHz instead of 1 MHz. Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators. Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing. EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions. If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances). Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed. If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value. #### Radiated Emission at Alternative Test Site Alternate test site (semi anechoic room) Radiated emission in the frequency range 30 MHz to 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4 for alternative test sites. A linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected. If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value. Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in fully anechoic room. If no prescan in a fully anechoic room is used first a peak scan is performed in four positions to get the whole spectrum of emission caused by EUT with the measuring antenna raised and lowered from 1 to 4 m to find table position, antenna height and antenna polarization for the maximum emission levels. Data reduction is applied to these results to select those levels having less margin than 10 dB to or exceeding the limit using subranges and limited number of maximums. Further maximization is following. With detector of the test receiver set to quasi-peak final measurements are performed immediately after frequency zoom (for drifting disturbances) and maximum adjustment. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions. In cases where prescans in a fully anechoic room are taken (e. g. if EUT is operating for a short time only or battery is dircharged quickly) final measurements with quasi-peak detector are performed manually at frequencies indicated by prescan with EUT rotating all around and receiving antenna raising and lowering within 1 meter to 4 meters to find the maximum levels of emission. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions. TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade. ## 6 Referenced Regulations | Publication | Title | |----------------------------|---| | CFR 47, Part 2 | Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communications Comission (FCC) | | CFR 47, Part 95, Subpart M | Code of Federal Regulations Part 95 (Personal Radio Services), Subpart M (76 – 77 GHz Band Radar Service) of the Federal Communications Comission (FCC) | | ANSI C63.4-2014 | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz | | ANSI C63.10-2013 | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | ### 7 Test Results | CFR 47, Part 2 | | | | |--------------------------|--------------------|------|-------------| | Section(s) | Test performed | Page | Test Result | | § 2.202 (a);
§ 2.1049 | Occupied Bandwidth | 17 | Test passed | | CFR 47, Part 95, Subpart M, | | | | |-----------------------------|--------------------------|------|-------------| | Section(s) | Test performed | Page | Test Result | | § 95.3367 (a) | Radiated Power – Average | 15 | Test passed | | § 95.3367 (b) | Radiated Power – Peak | 15 | Test passed | | § 95.3379 (a) | Spurious Emissions | 19 | Test passed | | §95.3379 (b) | Frequency Stability | 31 | Test passed | ## 7.1 Radiated Power | Date of Test | 2024-02-20 | Test Result | |--------------|----------------------------------|--------------| | Operator | M. Steindl | | | Test Site | Fully anechoic room, cabin no. 2 | □ Not Passed | | Barometric pressure: | 987 hPa | |----------------------|---------| | Relative humidity: | 38 % | | Ambient temperature: | 22 °C | | Specifications: | Part 95, Subpart M, § 95.3367(a) and (b) | | |-----------------|--|--| | Description: | The fundamental radiated emission limits within the 76 – 81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows: a) The maximum power (EIRP) within the 76 – 81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW). b) The maximum peak power (EIRP) within the 76 – 81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW. | | | Operation mode: | Transmitting continuously on frequency with modulation bandwidth as stated in table below | | | Comment : | Test was performed as radiated test. The test distance was 3 m. A correction factor of -58 dB and mixer conversion loss table were used to account for the test antenna gain, free-space loss and external mixer loss. | | | Detector | Default mode | Limit | Note | |----------|--------------|--------|------| | Average | -6.98 dBm | 50 dBm | 1 | | Average | 21.59 dBm | 50 dBm | 2 | | Peak | 28.27 dBm | 55 dBm | | ### Note(s): - 1 Maximum RMS value - 2 Integrated value within 1 GHz #### Plots taken during test 11:04:16 AM 02/20/2024 Operating mode - Continuously Transmitting - 12.0 V DC power supply ## 7.2 Occupied Bandwidth | Date of Test | 2024-02-20 | Test Result | |--------------|----------------------------------|--------------| | Operator | M. Steindl | □ Passed | | Test Site | Fully anechoic room, cabin no. 2 | ☐ Not Passed | | Barometric pressure: | 987 hPa | |----------------------|---------| | Relative humidity: | 38 % | | Ambient temperature: | 22 °C | | Specifications: | CFR 47, Part 2, Clause 2.1049 and 2.202(a) | |-----------------|---| | Description: | The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. | | Operation mode: | The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. | | Comment: | Transmitting continuously on frequency with modulation bandwidth as stated in table below | | | Occupied Bandwidth | Limit | Note | | |----------------|--------------------|----------|------|--| | fL | 76.01165 GHz | ≥ 76 GHz | NΙΔ | | | f _H | 76.99244 GHz | ≤ 81 GHz | NA | | | Note | e(s): | | | | | N | A | | | | Operating mode - Continuously Transmitting - 12.0 V DC power supply ### 7.3 Spurious Radiated Emisions | Date of Test | 2024-02-09 and 2024-02-20 | Test Result | |--------------|--|--------------| | Operator | M. Steindl | □ Passed | | Test Site | Semi anechoic room, cabin no. 11
Fully anechoic room, cabin no. 2 | ☐ Not Passed | | Barometric pressure: | 975 hPa | |----------------------|---------| | Relative humidity: | 37 % | | Ambient temperature: | 23 °C | | Specifications: | CFR 47, Part 95, Subpart M, § 95.3379(a) | |-----------------|--| | Description: | The power density of any emissions outside the 76 – 81 GHz band shall consist soley of spurious emissions and shall not exceed the following: Radiated emissions below 40 GHz shall not exceed the field strength as shown in the Table 1. The power density of radiated of radiated emissions outside the 76 – 81 GHz band above 40 GHz shall not exceed the power density as shown in the tables on the next page.s | | Operation mode: | This test was performed as radiated test in the frequency range 30 MHz to 300 GHz. No significant spurious emissions were observed. The test distance was 3 m in the frequency ranges 30 MHz to 1 GHz and 40 GHz to 110 GHz, 1 m in the frequency ranges 1GHz to 40 GHz and 110 GHz to 220 GHz and 0.5 m in the frequency range 220 GHz to 300 GHz. | | Comment : | The measurement below was done using EMC 32 V10.40.00 automated software. See plots for details. | #### Sample calculation of field final values: Final Value (dB μ V/m) = Reading Value (dB μ V) +(Antenna Correction Factor (dB/m) + Cable Correction Factor (dB)) #### Sample calculation of e.i.r.p. values: Final Value (dBm, e.i.r.p.) = Reading Value (dBm) +(Antenna Gain Correction Factor (dB) - + External Mixer Correction Factor (dB) - + Cable Correction Factor (dB) - + Free Space Loss Correction Factor (dB)) | | Radiated emission limits 9 kHz – 40 GHz | | |-----------------|---|--------------------------| | Frequency (MHz) | Field strength (μV/m) | Measurement distance (m) | | 0.009 - 0.490 | 2400/f(kHz) | 300 | | 0.490 – 1.705 | 24000/f(kHz) | 30 | | 1.705 – 30 | 30 | 30 | | 30 – 88 | 100 | 3 | | 88 – 216 | 150 | 3 | | 216 – 960 | 200 | 3 | | 960 – 40000 | 500 | 3 | #### Note(s): - 1 In the emissions table the tighter limit applies at the band edges. - The limits are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emission shall not exceed the level of the fundamental frequency. - The emissions limits shown in the table are based on measurement employing CISPR quasi-peak detector except for the frequency bands 9.0 90 kHz, 110.0 490 kHz, and above 1 GHz. Radiated emissions limits in these three bands are based on measurements employing an average detector with 1 MHz RBW. Table 1: Radiated emission limits 9 kHz - 40 GHz | R | Padiated emission limits 40 GHz – 231 GHz | | | | | | | | | |-----------------|---|---|--|--|--|--|--|--|--| | Frequency (GHz) | Frequency (GHz) Power Density (pW/cm²) Measurement distance (m) | | | | | | | | | | 40 – 200 | 600 | 3 | | | | | | | | | above | 1000 | 3 | | | | | | | | #### Note(s): - 1 According to 47 CFR, Part 95, § 95.3379(a)(3) the spectrum shall be investigated up to 231 GHz. - The power density of 600 pW/cm² corresponds to a transmit power of -1.69 dBm, a field strength of 93.5 dB μ V/m for 3 m distance and 103.1 dB μ V/m for 1 m distance - The power density of 1000 pW/cm² corresponds to a field strength of 95.8 dB μ V/m for 3 m distance, 105.3 dB μ V/m for 1 m distance and 111.3 dB μ V/m for 0.5 m distance. Table 2: FCC Radiated emission limits above 40 GHz ## Plots taken during measurement: | ſ | Frequency | QuasiPeak | CAverage | Limit | Margin | Meas. | Bandwidth | Height | Pol | Azimuth | Corr. | |---|-----------|-----------|----------|--------|--------|--------|-----------|--------|-----|---------|-------| | | | | | | | Time | | | | | | | | MHz | dBμV/m | dBμV/m | dBμV/m | dB | ms | kHz | ст | | deg | dB/m | | ſ | 0.183750 | 47.38 | | 102.32 | 54.94 | 1000.0 | 9.000 | 100.0 | V | 113.0 | 19.4 | | | 1.626000 | 22.91 | | 63.38 | 40.47 | 1000.0 | 9.000 | 100.0 | Н | 26.0 | 19.4 | | Frequency | QuasiPeak | Limit | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr. | |------------|-----------|--------|--------|------------|-----------|--------|-----|---------|-------| | MHz | dBμV/m | dBμV/m | dB | ms | kHz | cm | | deg | dB/m | | 30.390000 | 20.44 | 40.00 | 19.56 | 1000.0 | 120.000 | 143.0 | V | -5.0 | 25.0 | | 125.010000 | 17.84 | 43.50 | 25.66 | 1000.0 | 120.000 | 254.0 | Н | -111.0 | 17.0 | | Frequency | MaxPeak | CAverage | Limit | Margin | Meas. | Bandwidth | Height | Pol | Azimuth | Corr. | |--------------|---------|----------|--------|--------|--------|-----------|--------|-----|---------|-------| | | | | | | Time | | | | | | | MHz | dBμV/m | dBμV/m | dBμV/m | dB | ms | kHz | cm | | deg | dB/m | | 7063.500000 | | 53.88 | 63.50 | 9.62 | 1000.0 | 1000.000 | 190.0 | Η | 166.0 | 44.9 | | 7063.500000 | 67.17 | | 83.50 | 16.33 | 1000.0 | 1000.000 | 190.0 | Н | 166.0 | 44.9 | | 7952.000000 | 68.25 | | 83.50 | 15.25 | 1000.0 | 1000.000 | 255.0 | Н | 139.0 | 46.0 | | 7952.000000 | | 55.12 | 63.50 | 8.38 | 1000.0 | 1000.000 | 255.0 | Н | 139.0 | 46.0 | | 17891.250000 | | 60.92 | 63.50 | 2.58 | 1000.0 | 1000.000 | 285.0 | Н | 222.0 | 58.9 | | 17891.250000 | 73.79 | | 83.50 | 9.71 | 1000.0 | 1000.000 | 285.0 | Н | 222.0 | 58.9 | | 17900.000000 | 73.76 | | 83.50 | 9.74 | 1000.0 | 1000.000 | 263.0 | V | -99.0 | 58.9 | | 17900.000000 | | 60.80 | 63.50 | 2.70 | 1000.0 | 1000.000 | 263.0 | V | -99.0 | 58.9 | | Frequency | MaxPeak | CAverage | Limit | Margin | Meas. | Bandwidth | Height | Pol | Azimuth | Corr. | |--------------|---------|----------|--------|--------|--------|-----------|--------|-----|---------|-------| | | | | | | Time | | | | | | | MHz | dBμV/m | dBμV/m | dBμV/m | dB | ms | kHz | cm | | deg | dB/m | | 39946.750000 | 0.00 | 39.78 | 53.98 | 14.20 | 1000.0 | 1000.000 | 175.0 | V | 212.0 | 36.2 | | 39946,750000 | 52.69 | 0.00 | 73.98 | 21.29 | 1000.0 | 1000.000 | 175.0 | V | 212.0 | 36.2 | | Frequency | RMS | Limit | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr. | |--------------|--------|--------|--------|------------|-----------|--------|-----|---------|-------| | MHz | dBm | dBm | dB | ms | kHz | cm | | deg | dB | | 59809.333333 | -40.48 | -30.00 | 10.48 | 2.5 | 1000.000 | 150.0 | V | 154.0 | -66 | | Frequency | RMS | Limit | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr. | |--------------|--------|-------|--------|------------|-----------|--------|-----|---------|-------| | MHz | dBm | dBm | dB | ms | kHz | cm | | deg | dB | | 60012.000000 | -31.12 | -7.70 | 23.42 | 2.5 | 1000.000 | 150.0 | V | 323.0 | -63 | | 63072.000000 | -30.99 | -7.70 | 23.29 | 2.5 | 1000.000 | 150.0 | V | 253.0 | -63 | | 76740.500000 | -3.33 | * | | 2.5 | 1000.000 | 150.0 | Ι | 178.0 | -63 | ^{*:} Carrier emission, not evaluated as spurious emission | Frequency
MHz | RMS
dBm | Limit
dBm | Margin
dB | Meas. Time
ms | Bandwidth
kHz | Height
cm | Pol | Azimuth
deg | Corr.
dB | Comment | |------------------|------------|--------------|--------------|------------------|------------------|--------------|-----|----------------|-------------|---------| | 102221.000000 | -33.43 | -7.70 | 25.73 | 2.5 | 1000.000 | 150.0 | Н | 229.0 | -67 | | | 102425.000000 | -34.81 | -7.70 | 27.11 | 2.5 | 1000.000 | 150.0 | Н | 216.0 | -67 | | | Frequency | RMS | Limit | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr. | |---------------|--------|-------|--------|------------|-----------|--------|-----|---------|-------| | MHz | dBm | dBm | dB | ms | kHz | cm | | deg | dB | | 155062.000000 | -21.71 | -7.70 | 14.00 | 2.5 | 1000.000 | 150.0 | Τ | 39.0 | -55 | | Frequency | RMS | Limit | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr. | Comment | |---------------|--------|-------|--------|------------|-----------|--------|-----|---------|-------|---------| | MHz | dBm | dBm | dB | ms | kHz | cm | | deg | dB | | | 186653.500000 | -12.70 | -7.70 | 4.99 | 2.5 | 1000.000 | 150.0 | V | 146.0 | -50 | | | 191067.500000 | -11.59 | -7.70 | 3.88 | 2.5 | 1000.000 | 150.0 | Η | 26.0 | -50 | | | 193452.500000 | -13.77 | -7.70 | 6.06 | 2.5 | 1000.000 | 150.0 | Н | 254.0 | -50 | | | Г | Frequency | RMS | Limit | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr. | |---|---------------|--------|-------|--------|------------|-----------|--------|-----|---------|-------| | | MHz | dBm | dBm | dB | ms | kHz | ст | | deg | dB | | Γ | 228628.900000 | -11.08 | -5.49 | 5.59 | 2.5 | 1000.000 | 150.0 | V | 83.0 | -52 | | | 229331.875000 | -11.48 | -5.49 | 5.99 | 2.5 | 1000.000 | 150.0 | Н | 344.0 | -52 | | Γ | 324384.700000 | -13.83 | -5.49 | 8.34 | 2.5 | 1000.000 | 150.0 | Τ | 32.0 | -51 | Operation mode: Comment: Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de ## 7.4 Frequency Stability | Date of Test Operator Test Site | 2024-02-22
M. Steindl
Non shielded i | room | Prüfergebnis / Test Result ⊠ Erfüllt / Passed □ Nicht erfüllt / Not passed | | | |---------------------------------|--|--|--|--|--| | | | = | | | | | Barometric pressure: | | 967 hPa | | | | | Relative humidity: | | 39 % | | | | | Ambient temperature: | | 22 °C | | | | | | | | | | | | Specifications: | | CFR 47, Part 95, Subpart M, §95.3379(b) | | | | | Description: | | b) Fundamental emissions must be contained within the frequency bands specified in this section (76 – 81 GHz) during all conditions of operation. Equipment is presumed to operate over the temperature range -20 °C to 50 °C with a input voltage varation of 85 % to 115 % of rated input voltage unless justification is presented to | | | | All emissions are within the 76 – 77 GHz frequency band. See plots for details demonstrate otherwise. See plots of tests for details. Continuously Transmitting - 12.0 V DC power supply #### Plots taken during test Date: 22.FEB.2024 09:59:09 -20 °C, 12 V Date: 22.FEB.2024 10:17:13 -10 °C, 12 V Date: 22.FEB.2024 10:39:36 0 °C, 12 V Date: 22.FEB.2024 10:59:59 10 °C, 12 V Date: 22.FEB.2024 11:54:33 20 °C, 9 V Date: 22.FEB.2024 11:51:28 20 °C, 12 V Date: 22.FEB.2024 11:56:56 20 °C, 16 V Date: 22.FEB.2024 12:27:49 30 °C, 12 V Date: 22.FEB.2024 12:54:16 40 °C, 12 V Date: 22.FEB.2024 13:10:51 50 °C, 12 V ## 8 Test Equipment used | T-ID | Designation | Туре | Last Cal. | Next Cal. | |--------------------|----------------------------|------------------------|-----------------|-----------| | 18874 | Horn antenna | 3160-07 | Verified | | | 18875 | Horn antenna | 3160-08 | Verified | | | 19125 | Horn antenna | 3160-09 | Verified | | | 40089 | Double ridged horn antenna | HF907 | 2022-10 | 2024-10 | | 19442 | Horn antenna | 3160-10 | Verified | | | 19946 Horn antenna | | 24240-20 | Verified | | | 39897 | EMI test receiver | ESW44 | 2023-04 | 2024-04 | | 22553 | Waveguide mixer | FS-Z170 | 2023-06 | 2026-06 | | 25849 | Waveguide mixer | FS-Z60 | 2023-05 | 2026-05 | | 25850 | Waveguide mixer | FS-Z90 | 2023-05 | 2026-05 | | 25851 | Waveguide mixer | FS-Z110 | 2023-06 2026-06 | | | 27898 Horn antenna | | 26240-20 | Verified | | | 27899 | Horn antenna | 27240-20 | Verified | | | 36954 | Harmonic Mixer | FS-Z220 | 2023-05 | 2026-05 | | 36955 | Harmonic Mixer | FS-Z325 | 2023-05 | 2026-05 | | 37863 | Horn antenna | 30240-20 WG30 Verified | | ified | | 37864 | Horn antenna | 32240-20 WG32 | Verified | | | 19918 | TRILOG Broadband antenna | VULP 9163 | 2022-10 | 2025-10 | Test software for: EMC32 V10. ### 9 Measurement Uncertainty Values The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to EN 55016-4-2: 2011 + A1 + A2 + AC and CISPR16-4-2: 2011 + A1 + A2 + Cor1 (UCISPR). This normative regulation means that the measured value is also the value to be assessed in relation to the limit value. For a 95% confidence level, the measurement uncertainties for defined systems are: | Radio Testing | | | | | | |---|------|----------------------|------|--|--| | Test Name | kp | Expanded Uncertainty | Note | | | | Occupied Bandwidth | 2.0 | ±1.14 % | 2 | | | | RF-Frequency error | 1.96 | ±1 · 10-7 | 7 | | | | RF-Power, conducted carrier | 2 | ±0.079 dB | 2 | | | | RF-Power uncertainty for given BER | 1.96 | +0.94 dB / -1.05 | 7 | | | | RF power, conducted, spurious emissions | 1.96 | +1.4 dB / -1.6 dB | 7 | | | | RF power, radiated | | | | | | | 25 MHz – 4 GHz | 1.96 | +3.6 dB / -5.2 dB | 8 | | | | 1 GHz – 18 GHz | 1.96 | +3.8 dB / -5.6 dB | 8 | | | | 18 GHz – 26.5 GHz | 1.96 | +3.4 dB / -4.5 dB | 8 | | | | 40 GHz – 170 GHz | 1.96 | +4.2 dB / -7.1 dB | 8 | | | | Spectral Power Density, conducted | 2.0 | ±0.53 dB | 2 | | | | Maximum frequency deviation | | | | | | | 300 Hz – 6 kHz | 2 | ±2,89 % | 2 | | | | 6 kHz – 25 kHz | 2 | ±0.2 dB | 2 | | | | Maximum frequency deviation for FM | 2 | ±2,89 % | 2 | | | | Adjacent channel power 25 MHz – 1 GHz | 2 | ±2.31 % | 2 | | | | Temperature | 2 | ±0.39 K | 4 | | | | (Relative) Humidity | 2 | ±2.28 % | 2 | | | | DC- and low frequency AC voltage | | | | | | | DC voltage | 2 | ±0.01 % | 2 | | | | AC voltage up to 1 kHz | 2 | ±1.2 % | 2 | | | | Time | 2 | ±0.6 % | 2 | | | | Radio Interference Emission Testing | | | | |---|----|----------------------|------| | Test Name | kp | Expanded Uncertainty | Note | | Conducted Voltage Emission | | | | | 9 kHz to 150 kHz (50Ω/50μH AMN) | 2 | ± 3.8 dB | 1 | | 150 kHz to 30 MHz (50Ω/50μH AMN) | 2 | ± 3.4 dB | 1 | | 100 kHz to 200 MHz (50Ω/5μH AMN) | 2 | ± 3.6 dB | 1 | | Discontinuous Conducted Emission | | | | | 9 kHz to 150 kHz (50Ω/50μH AMN) | 2 | ± 3.8 dB | 1 | | 150 kHz to 30 MHz (50Ω/50μH AMN) | 2 | ± 3.4 dB | 1 | | Conducted Current Emission | | | | | 9 kHz to 200 MHz | 2 | ± 3.5 dB | 1 | | Magnetic Fieldstrength | | | | | 9 kHz to 30 MHz (with loop antenna) | 2 | ± 3.9 dB | 1 | | 9 kHz to 30 MHz (large-loop antenna 2 m) | 2 | ± 3.5 dB | 1 | | Radiated Emission | | | | | Test distance 1 m (ALSE) | | | | | 9 kHz to 150 kHz | 2 | ± 4.6 dB | 1 | | 150 kHz to 30 MHz | 2 | ± 4.1 dB | 1 | | 30 MHz to 200 MHz | 2 | ± 5.2 dB | 1 | | 200 MHz to 2 GHz | 2 | ± 4.4 dB | 1 | | 2 GHz to 3 GHz | 2 | ± 4.6 dB | 1 | | Test distance 3 m | | | | | 30 MHz to 300 MHz | 2 | ± 4.9 dB | 1 | | 300 MHz to 1 GHz | 2 | ± 5.0 dB | 1 | | 1 GHz to 6 GHz | 2 | ± 4.6 dB | 1 | | Test distance 10 m | | | | | 30 MHz to 300 MHz | 2 | ± 4.9 dB | 1 | | 300 MHz to 1 GHz | 2 | ± 4.9 dB | 1 | | Radio Interference Power | | | | | 30 MHz to 300 MHz | 2 | ± 3.5 dB | 1 | | Harmonic Current Emissions | | | 4 | | Voltage Changes, Voltage Fluctuations and Flicker | | | 4 | | Immunity Testing | | | | |--|------|-------------------------|------| | Test Name | kp | Expanded
Uncertainty | Note | | Electrostatic Discharges | | | 4 | | Radiated RF-Field | | | | | Pre-calibrated field level | 2 | +32.2 / -24.3 % | 5 | | Dynamic feedback field level | 2.05 | +21.2 / -17.5 % | 3 | | Electrical Fast Transients (EFT) / Bursts | | | 4 | | Surges | | | 4 | | Conducted Disturbances, induced by RF-Fields | | | | | via CDN | 2 | +15.1 / -13.1 % | 6 | | via EM clamp | 2 | +42.6 / -29.9 % | 6 | | via current clamp | 2 | +43.9 / -30.5 % | 6 | | Power Frequency Magnetic Field | 2 | +20.7 / -17.1 % | 2 | | Pulse Magnetic Field | | | 4 | | Voltage Dips, Short Interruptions and Voltage Variations | | | 4 | | Oscillatory Waves | | | 4 | | Conducted Low Frequency Disturbances | | | | | Voltage setting | 2 | ± 0.9 % | 2 | | Frequency setting | 2 | ± 0.1 % | 2 | | Electrical Transient Transmission in Road Vehicles | | | 4 | +49 9421 5522-0 +49 9421 5522-99 www.tuev-sued.de Phone: Fax: Web: #### Note 1: The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% Note 3: The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2.05, providing a level of confidence of p = 95.45% Note 4: It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95%confidence. #### Note 5: The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%Note 7: The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) to is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of p = 95.45% Note 8: The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of p = 95.45% ## 10 Revision History | Revision History | | | | | | | |------------------|------------|------------|---|--|--|--| | Revision | Date | Issued by | Modifications | | | | | 0 | 2024-03-22 | M. Steindl | First Edition | | | | | 1 | 2024-04-02 | M. Steindl | Added e.i.r.p. test samle calculation on page 19. | | | | | | | | Improved page break on page 40. | | | |