

TEST REPORT

FCC Sub6 n13 Test for TM15FNEUJL1

Certification

APPLICANT

LG Electronics Inc.

REPORT NO.

HCT-RF-2502-FC095-R1

DATE OF ISSUE

April 8, 2025

Tested by Beom Jin Cho

Technical Manager Jong Seok Lee

Ba

Sign

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Brugini Huh BongJai Huh / CEO

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2502-FC095-R1

DATE OF ISSUE April 08, 2025

Applicant	LG Electronics Inc. 128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea
Product Name Model Name	Telematics TM15FNEUJL1
Date of Test	December 9, 2024 ~ February 24, 2025
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, Republic of Korea)
FCC ID	BEJTM15FNEUJL1
FCC Classification	PCS Licensed Transmitter (PCB)
Test Standard Used	FCC Rule Part(s): § 27
Test Results	PASS

F-TP22-03 (Rev. 06) Page 2 of 71

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	February 24, 2025	Initial Release
1	April 08, 2025	Revised the Product Name.

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA.

(KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

F-TP22-03 (Rev. 06) Page 3 of 71

CONTENTS

1. GENERAL INFORMATION	5
1.1. MAXIMUM OUTPUT POWER	6
2. INTRODUCTION	
2.1. DESCRIPTION OF EUT	7
2.2. MEASURING INSTRUMENT CALIBRATION	7
2.3. TEST FACILITY	7
3. DESCRIPTION OF TESTS	8
3.1 TEST PROCEDURE	8
3.2 RADIATED POWER	9
3.3 RADIATED SPURIOUS EMISSIONS	10
3.4 PEAK- TO- AVERAGE RATIO	11
3.5 OCCUPIED BANDWIDTH.	13
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	14
3.7 BAND EDGE	15
3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	17
3.9 WORST CASE(RADIATED TEST)	18
3.10 WORST CASE(CONDUCTED TEST)	19
4. LIST OF TEST EQUIPMENT	20
5. MEASUREMENT UNCERTAINTY	21
6. SUMMARY OF TEST RESULTS	22
7. SAMPLE CALCULATION	24
8. TEST DATA	26
8.1 EFFECTIVE RADIATED POWER	26
8.2 RADIATED SPURIOUS EMISSIONS	27
8.3 PEAK-TO-AVERAGE RATIO	29
8.4 OCCUPIED BANDWIDTH	30
8.5 CONDUCTED SPURIOUS EMISSIONS	31
8.6 BAND EDGE	
8.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	32
9. TEST PLOTS	34
10 ANNEY A TEST SETUD PHOTO	71

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	LG Electronics Inc.
Address:	128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea
FCC ID:	BEJTM15FNEUJL1
Application Type:	Certification
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part(s):	§ 27
EUT Type:	Telematics
Model(s):	TM15FNEUJL1
SCS(kHz):	15
Bandwidth(MHz):	5, 10
Waveform:	CP-OFDM, DFT-S-OFDM
Modulation:	DFT-S-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM
	779.5 MHz –784.5 MHz (Sub6 n13 (5 MHz))
Tx Frequency:	782 MHz (Sub6 n13 (10 MHz))
Date(s) of Tests:	December 9, 2024 ~ February 24, 2025
Carial acceptant	Radiated: 410VIXV000304(NAD)
Serial number:	Conducted: 410VIXV000305(NAD)
Antenna Information	Please refer to the Antenna Specification document.

F-TP22-03 (Rev. 06) Page 5 of 71

1.1. MAXIMUM OUTPUT POWER

Mode	Mode Tx Frequency Emission (MHz) Designator Modula	Emission		Conducted Output Power	
(MHz)		Modulation	Max. Power (W)	Max. Power (dBm)	
		4M51G7D	PI/2 BPSK	0.217	23.36
		4M50G7D	QPSK	0.217	23.36
Sub6 n13 (5)	779.5 –784.5	4M50W7D	16QAM	0.171	22.33
		4M50W7D	64QAM	0.121	20.84
		4M51W7D	256QAM	0.077	18.87
Sub6 n13 (10)		8M95G7D	PI/2 BPSK	0.217	23.37
		8M96G7D	QPSK	0.216	23.34
	782.0	8M96W7D	16QAM	0.168	22.26
		8M95W7D	64QAM	0.119	20.75
		8M96W7D	256QAM	0.075	18.75

F-TP22-03 (Rev. 06) Page 6 of 71

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

Please refer to the [2G3G] Test Report.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **Republic of Korea**

F-TP22-03 (Rev. 06) Page 7 of 71

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 - Section 4.3 - ANSI C63.26-2015 - Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Conducted Output Power	- N/A (See SAR Report)
Peak- to- Average Ratio	- KDB 971168 D01 v03r01 - Section 5.7 - ANSI C63.26-2015 - Section 5.2.3.4
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Radiated Power	- ANSI C63.26-2015 - Section 5.2.4.4 - KDB 971168 D01 v03r01 - Section 5.8
Radiated Spurious and Harmonic Emissions	- ANSI C63.26-2015 - Section 5.5.3 - KDB 971168 D01 v03r01 - Section 5.8

F-TP22-03 (Rev. 06) Page 8 of 71

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3.VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

P_d (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dB)

Where: Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 9 of 71

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- $2. VBW \ge 3 x RBW$
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

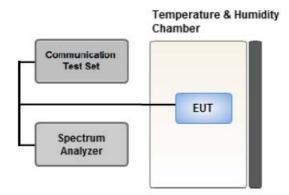
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result $_{(dBm)}$ = Pg $_{(dBm)}$ - cable loss $_{(dB)}$ + antenna gain $_{(dBi)}$

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP $_{(dBm)}$ = ERP $_{(dBm)}$ + 2.15

F-TP22-03 (Rev. 06) Page 10 of 71

3.4 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as P_{Pk} .

Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as P_{Avg} . Determine the P.A.R. from:

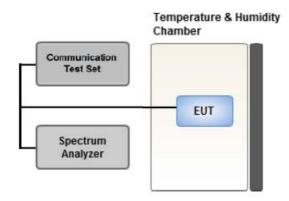
 $P.A.R_{(dB)} = P_{Pk}_{(dBm)} - P_{Avg(dBm)} (P_{Avg} = Average Power + Duty cycle Factor)$

F-TP22-03 (Rev. 06) Page 11 of 71

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW $\geq 3 \times$ RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW $\geq 3 \times RBW$.
- 3. Set span $\geq 2 \times OBW$.
- 4. Sweep time $\geq 10 \times \text{(number of points in sweep)} \times \text{(transmission symbol period)}$.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - Set $\geq [10 \times (\text{number of points in sweep}) \times (\text{transmission period})]$ for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 12 of 71

3.5 OCCUPIED BANDWIDTH.

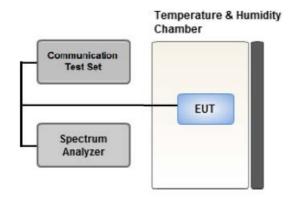
Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1 $5\,\%$ of the 99 % occupied bandwidth observed in Step 7

F-TP22-03 (Rev. 06) Page 13 of 71

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

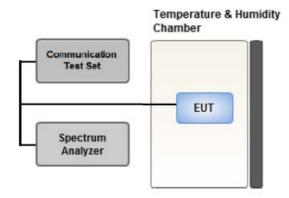
Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- 2. VBW \geq 3 MHz
- 3. Detector = Peak
- 4. Trace Mode = Max Hold
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

F-TP22-03 (Rev. 06) Page 14 of 71

3.7 BAND EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

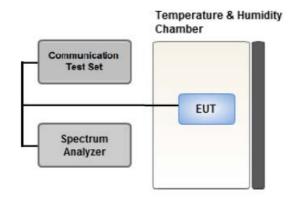
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1 % of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

F-TP22-03 (Rev. 06) Page 15 of 71

Test Notes

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.


All measurements were done at 2 channels(low and high operational frequency range.) The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

Where Margin < 1 dB the emission level is either corrected by $10 \log(1 \, \text{MHz/RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

F-TP22-03 (Rev. 06) Page 16 of 71

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 $^{\circ}$ C to +50 $^{\circ}$ C in 10 $^{\circ}$ C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 17 of 71

3.9 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.

Mode: SA, NSA

Worst case: SA

- JIG was used to test the EUT. (EUT + JIG)
- All simultaneous transmission scenarios of operation were investigated, and the test results showed no additional significant emissions relative to the least restrictive limit were observed.

Therefore, only the worst case(stand-alone) results were reported.

- Radiated Spurious emissions are measured while operating in EN-DC mode with Sub 6 NR carrier as well as an LTE carrier (anchor).

All EN-DC mode of operation (=anchor) were investigated and the test results were measured No Peak Found.

The test results which are attenuated more than 20 dB below the permissible value, so it was not reported.

- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data. (Worst case : 5 MHz)
- Please refer to the table below.

[Worst case]

Test Description	Modulation	RB size	RB offset	Axis
Effective Radiated Power	PI/2 BPSK,			
	QPSK,			
	16QAM,	See Section 8.1		Υ
	64QAM			
	256QAM			
Radiated Spurious and Harmonic Emissions	PI/2 BPSK	See Se	ction 8.2	Υ

F-TP22-03 (Rev. 06) Page 18 of 71

3.10 WORST CASE(CONDUCTED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported.

(Worst case: DFT-S-OFDM)

- Modulation : All Modulation of operation were investigated and the worst case configuration results

are reported.

(Worst case: PI/2 BPSK)

- All modes of operation were investigated and the worst case configuration results are reported.

Mode: SA, NSA Worst case: SA

- JIG was used to test the EUT. (EUT + JIG)

- All RB sizes, offsets of operation were investigated and the worst case configuration results are $\,$

reported.

Please refer to the table below.

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
Occupied Bandwidth	PI/2 BPSK QPSK,				
Peak- to- Average Ratio	16QAM, 64QAM 256QAM	5, 10	Mid	Full RB	0
	PI/2 BPSK	5	Low	1	0
			High	1	24
Band Edge			Low	1	0
Dana Luge			High	1	51
		5, 10	Low, High	Full RB	0
Spurious and Harmonic Emissions at Antenna Terminal	PI/2 BPSK	5, 10	Low, Mid, High	1	0

F-TP22-03 (Rev. 06) Page 19 of 71

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switching System	Switch box(1 G HPF+LNA)	HCT CO., LTD.,	F2L2	12/12/2025	Annual
RF Switching System	Switch box(3 G HPF+LNA)	HCT CO., LTD.,	F2L3	12/12/2025	Annual
RF Switching System	Switch box(LNA)	HCT CO., LTD.,	F2L5	12/12/2025	Annual
RF Switching System	Switch box(6 G HPF+LNA)	HCT CO., LTD.,	F2L14	12/12/2025	Annual
Power Amplifier	CBL18265035	CERNEX	22966	11/07/2025	Annual
Power Amplifier	CBL26405040	CERNEX	25956	02/26/2025	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/17/2025	Annual
DC Power Supply	E3632A	Agilent	MY40010147	08/06/2025	Annual
Dipole Antenna	UHAP	Schwarzbeck	01274	03/10/2026	Biennial
Dipole Antenna	UHAP	Schwarzbeck	01288	08/07/2026	Biennial
Chamber	SU-642	ESPEC	93022487	06/27/2025	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	03197	11/28/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	03201	11/28/2025	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/20/2026	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Signal Analyzer(10 Hz ~ 26.5 GHz)	N9020A	Agilent	MY52090906	04/19/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	ROHDE & SCHWARZ	101733	09/19/2025	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/05/2025	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	08/28/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	08/19/2026	Biennial
Radio Communication Test Station	MT8000A	Anritsu Corp.	6272613402	08/28/2025	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	07/26/2025	Annual
Signal Analyzer(5 Hz ~ 40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/17/2025	Annual
Signal & Spectrum Analyzer (2 Hz~67 GHz)	FSW67	REOHDE & SCHWARZ	101736	05/23/2025	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

F-TP22-03 (Rev. 06) Page 20 of 71

Note:

1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2017).

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±kHz)
Occupied Bandwidth	95 (Confidence level about 95 %, <i>k</i> =2)
Frequency stability	28 (Confidence level about 95 %, <i>k</i> =2)
Parameter	Expanded Uncertainty (±dB)
Block Edge	0.70 (Confidence level about 95 %, <i>k</i> =2)
Conducted Spurious Emissions	1.18 (Confidence level about 95 %, <i>k</i> =2)
Peak- to- Average Ratio	0.68 (Confidence level about 95 %, <i>k</i> =2)
Radiated Power	4.74 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 21 of 71

6. SUMMARY OF TEST RESULTS

Note. The decision rule applies 'simple acceptance'

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 27.53(c)	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions	PASS
On all frequencies between 763-775 MHz and 793-805 MHz.	§ 27.53(c)(4)	< 65 + 10log10 (P[Watts])	PASS (See Note2)
Conducted Output Power	§ 2.1046	N/A	See Note1
Frequency stability / variation of ambient temperature	§ 2.1055, § 27.54	Emission must remain in band	PASS

Note:

- 1. See SAR Report
- 2. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance.
- 3. All conducted tests were tested using 5G Wireless Tester.

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result	
Effective Radiated Power	§ 27.50(b)(10)	< 3 Watts max. ERP	PASS	
Radiated Spurious and	§ 2.1053,	< 43 + 10log10 (P[Watts]) for	PASS	
Harmonic Emissions	§ 27.53(c)	all out-of band emissions	PASS	
Undesirable Emissions in	§ 2.1053,	<-70dBW/MHz EIRP (wideband)	PASS	
the 1559 – 1610 MHz band	§ 27.53(f)	< -80dBW EIRP (narrowband)	PASS	

Note:

1. Radiated tests were tested using 5G Wireless Tester.

F-TP22-03 (Rev. 06) Page 22 of 71

6.3. Data Referencing

Rule Part	Test item	Data Referencing	Comments
§2.1049	Occupied Bandwidth	Υ	-
§2.1051, §27.53(c)	Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	Υ	-
§2.1055, § 27.54	Frequency stability / variation of ambient temperature	Υ	-
§27.50(b)(10)	Effective Radiated Power Equivalent Isotropic Radiated Power	Υ	Spot-check
§2.1053, §27.53(c)	Radiated Spurious and Harmonic Emissions	Υ	Spot-check
§2.1046	Conducted Output Power	Υ	-

F-TP22-03 (Rev. 06) Page 23 of 71

Spot-Check Result

1. Data was leveraged from model TM15FNEUJL0 for the certification of TM15FNEUJL1.

^{2.} Please refer to the [FCC Evaluation] Report

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured Substitute		Ant. Gain	C.L	Pol.	ERP	
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	POI.	w	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	Ch./ Freq.		Substitute	Ant. Gain	C I	Pol.	EIRP	
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	W	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 24 of 71

7.3. Emission Designator

GSM Emission Designator EDGE Emission Designator

Emission Designator = 249KGXW Emission Designator = 249KG7W

GSM BW = 249 kHz GSM BW = 249 kHz G = Phase Modulation X = Cases not otherwise covered T = Quantized/Digital Info W = Combination (Audio/Data) W = Combination (Audio/Data)

WCDMA Emission Designator QPSK Modulation

Emission Designator = 4M17F9W Emission Designator = 4M48G7D

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data) D = Data transmission; telemetry; telecommand

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 25 of 71

8. TEST DATA

8.1 EFFECTIVE RADIATED POWER

	Mod/		Measured	Substitude	Ant.			Limit	EI	RP		RB
Freq (MHz)	Bandwidth [SCS (kHz)]	Modulation	Level (dBm)	Level (dBm)	Gain (dBd)	C.L	Pol.	w	w	dBm	Size	Offset
		PI/2 BPSK	-28.40	33.59	-9.90	1.39	Н		0.170	22.30		
		QPSK	-28.46	33.53	-9.90	1.39	Н		0.168	22.24		
779.5		16-QAM	-29.52	32.47	-9.90	1.39	Н		0.131	21.18	1	1
		64-QAM	-30.93	31.06	-9.90	1.39	Н		0.095	19.77		
		256-QAM	-32.84	29.15	-9.90	1.39	Н		0.061	17.86	5	
		PI/2 BPSK	-28.53	33.66	-9.95	1.40	Н		0.170	22.31		
	Sub6 n13	QPSK	-28.62	33.57	-9.95	1.40	Н		0.167	22.22		
782.0	(5 MHz)	16-QAM	-29.62	32.57	-9.95	1.40	Н	< 3.00	0.132	21.22	1	23
	[15 kHz]	64-QAM	-31.09	31.10	-9.95	1.40	Н		0.094	19.75		
		256-QAM	-32.95	29.24	-9.95	1.40	Н		0.062	17.89		
		PI/2 BPSK	-28.52	33.77	-9.95	1.40	Н		0.175	22.42		
		QPSK	-28.62	33.67	-9.95	1.40	Н		0.171	22.32		
784.5		16-QAM	-29.58	32.71	-9.95	1.40	Н		0.137	21.36	1	12
		64-QAM	-31.10	31.19	-9.95	1.40	Н		0.096	19.84		
		256-QAM	-33.10	29.19	-9.95	1.40	Н		0.061	17.84		

Freq	Mod/		Measured	Substitud	Ant. Gain			Limit	EI	₹P	ı	RB
-	Bandwidth	Modulation	Level	e Level	(dBd)	C.L	Pol.	w	w	dBm	Size	Offset
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(ubu)			VV	VV	ubili	Size	Oliset
		PI/2 BPSK	-28.43	33.76	-9.95	1.40	Н		0.174	22.41		
	Sub6 n13	QPSK	-28.51	33.68	-9.95	1.40	Н		0.171	22.33		
782.0	(10 MHz)	16-QAM	-29.46	32.73	-9.95	1.40	Н	< 3.00	0.137	21.38	1	1
	[15 kHz]	64-QAM	-30.97	31.22	-9.95	1.40	Н		0.097	19.87		
		256-QAM	-33.00	29.19	-9.95	1.40	Н		0.061	17.84		

F-TP22-03 (Rev. 06) Page 26 of 71

8.2 RADIATED SPURIOUS EMISSIONS

■ MODE: Sub6 n13

■ MODULATION SIGNAL: 5 MHz BPSK

■ DISTANCE: 3 meters

Ch	Fuery (1411-1	Measured	Ant. Gain	Substitute	6.1	Del	Result	Limit	F	₿B
Ch	Freq (MHz)	Level [dBm]	(dBi)	Level [dBm]	C.L	Pol.	(dBm)	(dBm)	Size	Offset
	1 559.0	-52.49	8.59	-65.70	1.94	Н	-59.05	-13.00		
	2 338.5	-52.51	10.41	-65.11	2.42	Н	-57.12	-13.00		
155900 (779.5)	3 118.0	-53.23	10.49	-61.10	2.83	Н	-53.44	-13.00	1	1
	3 897.5	-54.79	11.08	-60.93	3.26	Н	-53.11	-13.00		
	4 677.0	-54.03	11.88	-58.21	3.58	Н	-49.91	-13.00		
	1 564.0	-52.21	8.63	-65.48	1.95	Н	-58.80	-13.00		
	2 346.0	-52.66	10.41	-65.18	2.45	Н	-57.22	-13.00		
156400 (782.0)	3 128.0	-53.49	10.49	-61.33	2.86	Н	-53.70	-13.00	1	23
(102.0)	3 910.0	-54.76	11.11	-61.00	3.29	Н	-53.18	-13.00		
	4 692.0	-54.75	11.85	-58.72	3.59	Н	-50.46	-13.00		
	1 569.0	-52.44	8.63	-65.71	1.95	Н	-59.03	-13.00		
	2 353.5	-52.59	10.41	-65.11	2.45	Н	-57.15	-13.00		
156900 (784.5)	3 138.0	-53.80	10.49	-61.64	2.86	Н	-54.01	-13.00	1	12
(104.3)	3 922.5	-54.84	11.11	-61.08	3.29	Н	-53.26	-13.00		
	4 707.0	-54.44	11.85	-58.41	3.59	Н	-50.15	-13.00		

F-TP22-03 (Rev. 06) Page 27 of 71

1559 MHz ~ 1610 MHz BAND

■ OPERATING FREQUENCY: 779.5 MHz, 782.0 MHz, 784.5 MHz

■ MEASURED OUTPUT POWER: 5 MHz BPSK

■ DISTANCE: 3 meters

■ WIDEBAND EMISSION LIMIT: -70 dBW/ MHz (= -40 dBm/ MHz)

Operating Frequency (MHz)	Measured Frequency (MHz)	EMISSION TYPE	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)
779.5	1559~1610		-51.88	8.59	-65.09	1.94	Н	-58.44
782.0	1559~1610	Wide Band	-53.18	8.63	-66.45	1.95	Н	-59.77
784.5	1559~1610		-52.93	8.63	-66.20	1.95	Н	-59.52

Note:

Since the bandwidth of that Spurious emission is greater than 700 Hz, we applied -70 dBW/MHz according to § 27.53(f).

F-TP22-03 (Rev. 06) Page 28 of 71

8.3 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)
			BPSK			3.95
			QPSK	25		4.50
	5 MHz	782.0	16-QAM			5.67
			64-QAM			6.05
C. l. C . 12			256-QAM		0	6.62
Sub6 n13			BPSK		0	3.84
			QPSK			4.71
	10 MHz		16-QAM	50		5.65
			64-QAM			6.07
			256-QAM			6.49

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 45 \sim 54.

F-TP22-03 (Rev. 06) Page 29 of 71

8.4 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
			BPSK			4.5055
			QPSK	25		4.4984
	5 MHz		16-QAM 25		4.5000	
		782.0	64-QAM			4.5042
C. l. C 12			256-QAM		0	4.5046
Sub6 n13			BPSK		0	8.9452
			QPSK			8.9584
	10 MHz		16-QAM	50		8.9560
			64-QAM			8.9503
			256-QAM			8.9559

Note:

F-TP22-03 (Rev. 06) Page 30 of 71

^{1.} Plots of the EUT's Occupied Bandwidth are shown Page 35 ~ 44.

8.5 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)
		779.5	5.9622	27.520	-61.337	-33.817	
Sub6	5	782.0	4.0778	26.600	-61.392	-34.792	12.00
n13		784.5	3.7588	26.600	-61.593	-34.993	-13.00
	10	782.0	5.1745	27.520	-60.943	-33.423	

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 55 \sim 58.
- 2. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0
- 3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 4. Factor (dB) = Cable Loss + Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 - 1	26.080
1 - 5	26.600
5 - 10	27.520
10 - 15	29.120
15 - 20	31.710
Above 20	32.350

8.6 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 59 ~ 70.

F-TP22-03 (Rev. 06) Page 31 of 71

8.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ BandWidth: <u>5 MHz</u>

■ Voltage(100 %): <u>12.000 VDC</u>

■ LIMIT: Emission must remain in band

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
	100 %	+20(Ref)	779 499 996	0.0	0.000 000	0.000
	100 %	-30	779 499 991	-4.7	-0.000 001	-0.006
	100 %	-20	779 500 000	3.6	0.000 000	0.005
	100 %	-10	779 499 999	3.0	0.000 000	0.004
	100 %	0	779 499 998	2.3	0.000 000	0.003
779.5	100 %	+10	779 499 997	1.3	0.000 000	0.002
	100 %	+30	779 499 996	0.5	0.000 000	0.001
	100 %	+40	779 499 996	-0.2	0.000 000	0.000
	100 %	+50	779 499 995	-0.8	0.000 000	-0.001
	85 %	+20	779 499 998	1.6	0.000 000	0.002
	115 %	+20	779 499 999	3.3	0.000 000	0.004
	100 %	+20(Ref)	784 500 008	0.0	0.000 000	0.000
	100 %	-30	784 500 016	8.3	0.000 001	0.011
	100 %	-20	784 500 016	8.1	0.000 001	0.010
	100 %	-10	784 500 016	8.1	0.000 001	0.010
	100 %	0	784 500 016	7.9	0.000 001	0.010
784.5	100 %	+10	784 500 016	8.0	0.000 001	0.010
	100 %	+30	784 500 016	8.0	0.000 001	0.010
	100 %	+40	784 500 016	7.7	0.000 001	0.010
	100 %	+50	784 500 015	7.3	0.000 001	0.009
	85 %	+20	784 500 014	5.9	0.000 001	0.008
	115 %	+20	784 500 016	7.5	0.000 001	0.010

F-TP22-03 (Rev. 06) Page 32 of 71

■ BandWidth: 10 MHz

■ Voltage(100 %): <u>12.000 VDC</u>

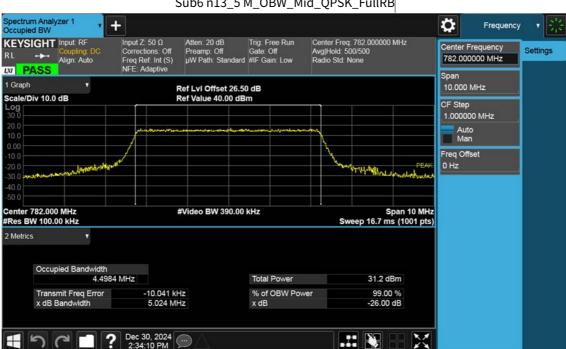
■ LIMIT: <u>Emission must remain in band</u>

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
782.0	100 %	+20(Ref)	782 000 004	0.0	0.000 000	0.000
	100 %	-30	782 000 008	3.9	0.000 000	0.005
	100 %	-20	782 000 008	3.4	0.000 000	0.004
	100 %	-10	782 000 008	3.2	0.000 000	0.004
	100 %	0	782 000 007	2.6	0.000 000	0.003
	100 %	+10	782 000 007	2.4	0.000 000	0.003
	100 %	+30	782 000 006	1.8	0.000 000	0.002
	100 %	+40	782 000 006	1.7	0.000 000	0.002
	100 %	+50	782 000 005	1.1	0.000 000	0.001
	85 %	+20	782 000 005	0.8	0.000 000	0.001
	115 %	+20	782 000 006	2.2	0.000 000	0.003

F-TP22-03 (Rev. 06) Page 33 of 71

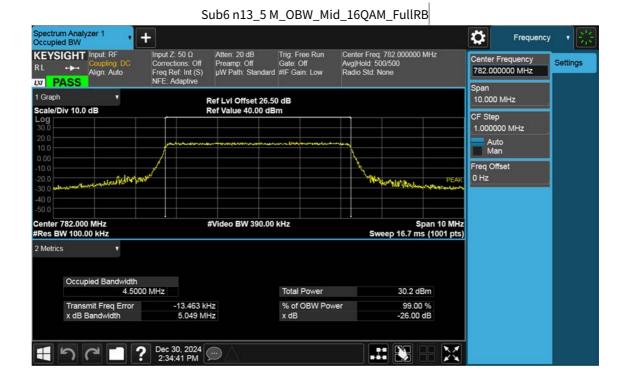
9. TEST PLOTS

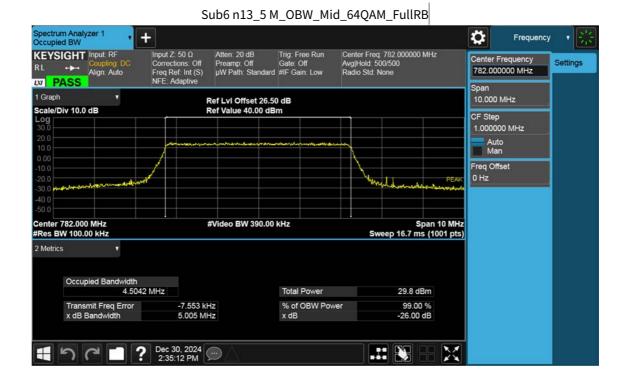
F-TP22-03 (Rev. 06) Page 34 of 71



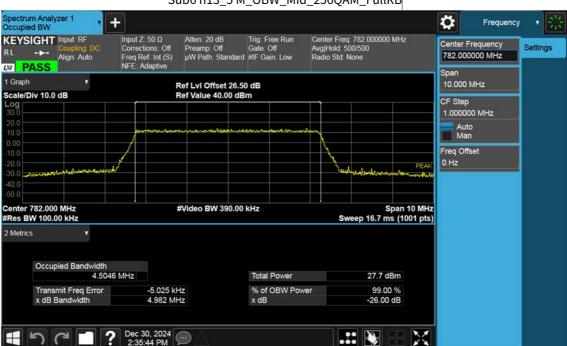
Sub6 n13_5 M_OBW_Mid_ BPSK_FullRB

F-TP22-03 (Rev. 06) Page 35 of 71




Sub6 n13_5 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 36 of 71



F-TP22-03 (Rev. 06) Page 38 of 71

Sub6 n13_5 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 39 of 71



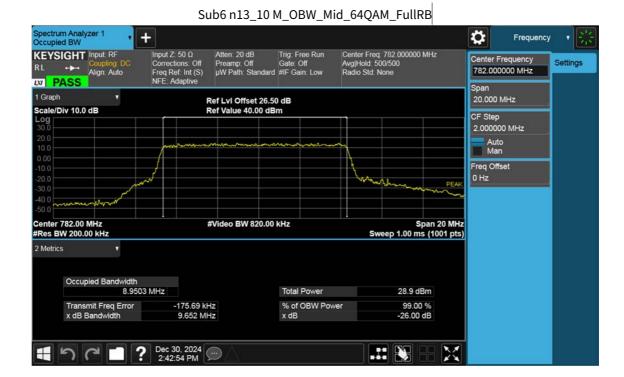
Sub6 n13_10 M_OBW_Mid _BPSK_FullRB

F-TP22-03 (Rev. 06) Page 40 of 71

Sub6 n13_10 M_OBW_Mid_QPSK_FullRB

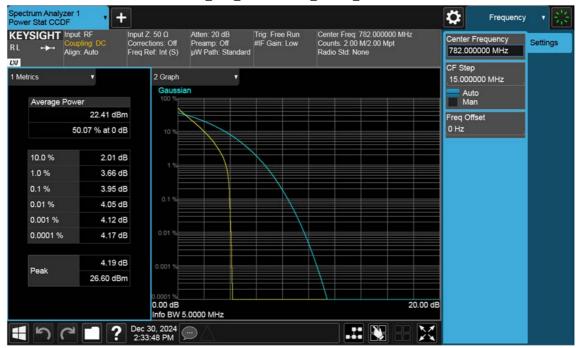
F-TP22-03 (Rev. 06) Page 41 of 71

Page 42 of 71


F-TP22-03 (Rev. 06)

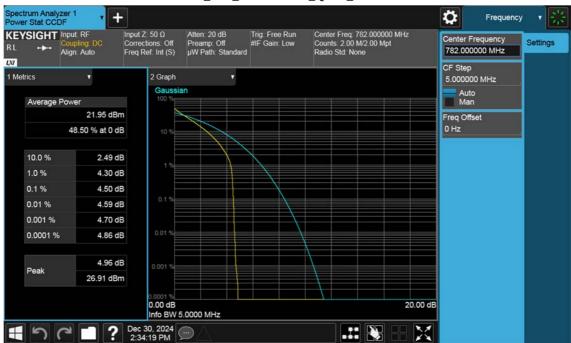
Page 43 of 71

F-TP22-03 (Rev. 06)



Sub6 n13_10 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 44 of 71



5 M_PAR_Mid Channel_ BPSK _FullRB

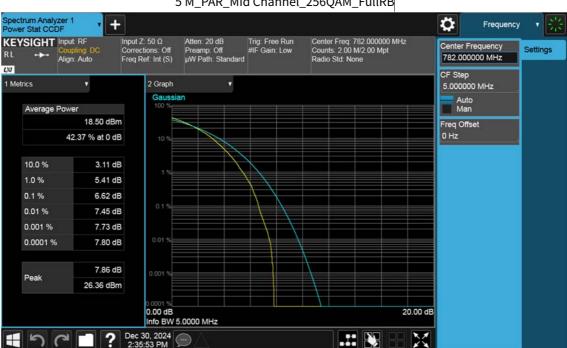
F-TP22-03 (Rev. 06) Page 45 of 71

5 M_PAR_Mid Channel_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 46 of 71

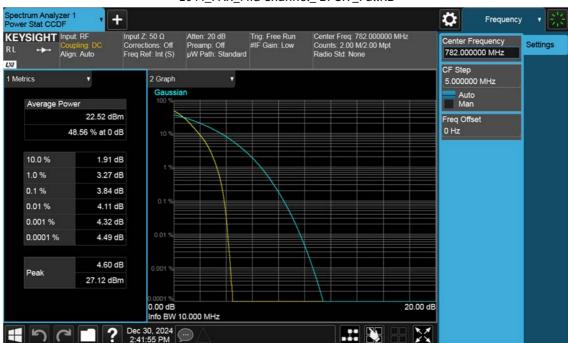
5 M_PAR_Mid Channel_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 47 of 71



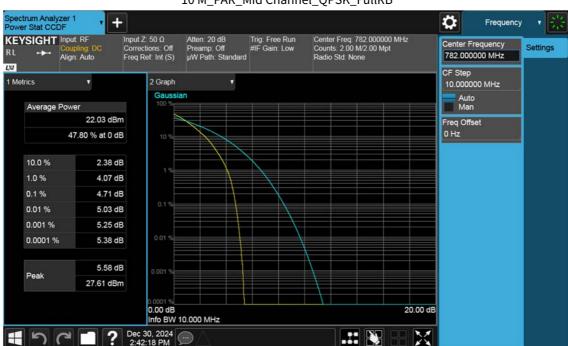
5 M_PAR_Mid Channel_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 48 of 71



5 M_PAR_Mid Channel_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 49 of 71



10 M_PAR_Mid Channel_ BPSK _FullRB

F-TP22-03 (Rev. 06) Page 50 of 71

10 M_PAR_Mid Channel_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 51 of 71

10 M_PAR_Mid Channel_16QAM_FullRB

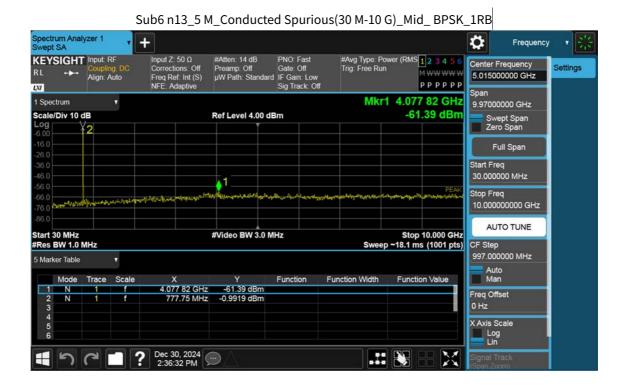
F-TP22-03 (Rev. 06) Page 52 of 71

10 M_PAR_Mid Channel_64QAM_FullRB

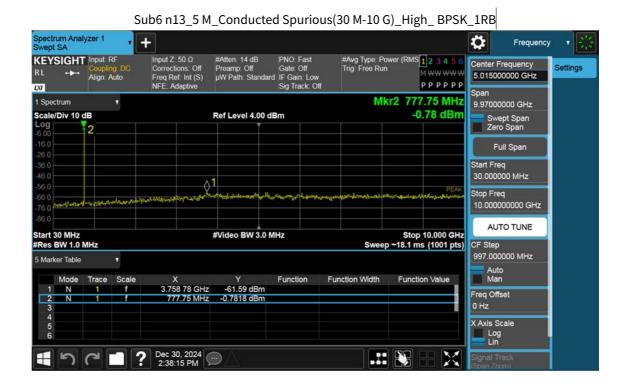
F-TP22-03 (Rev. 06) Page 53 of 71

10 M_PAR_Mid Channel_256QAM_FullRB

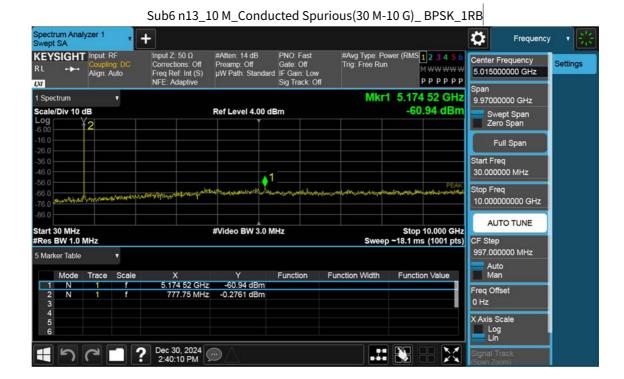
F-TP22-03 (Rev. 06) Page 54 of 71



Sub6 n13_5 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB


F-TP22-03 (Rev. 06) Page 55 of 71

F-TP22-03 (Rev. 06) Page 56 of 71



F-TP22-03 (Rev. 06) Page 57 of 71

Page 58 of 71

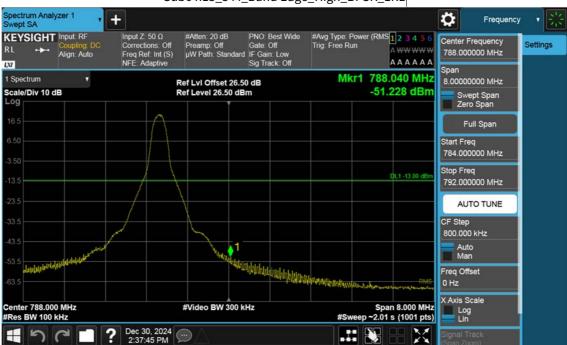
F-TP22-03 (Rev. 06)

Sub6 n13_5 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 59 of 71

Sub6 n13_5 M_Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 60 of 71



Sub6 n13_5 M_Extended Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 61 of 71

Sub6 n13_5 M_Band Edge_High_BPSK_1RB

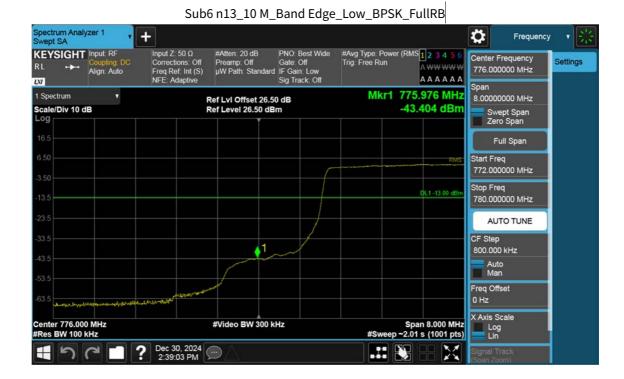
F-TP22-03 (Rev. 06) Page 62 of 71

Sub6 n13_5 M_Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 63 of 71

Sub6 n13_5 M_Extended Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 64 of 71

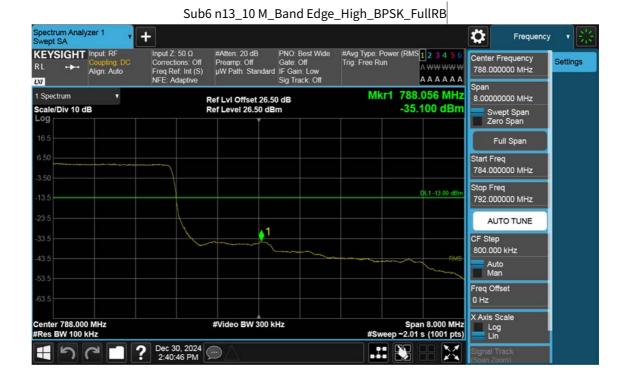


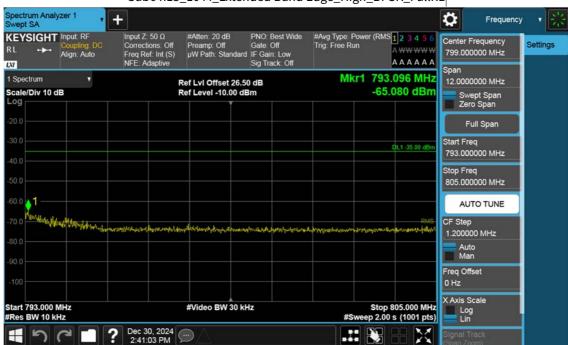
Sub6 n13_10 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 65 of 71

F-TP22-03 (Rev. 06) Page 66 of 71

Sub6 n13_10 M_Extended Band Edge_Low_BPSK_FullRB


F-TP22-03 (Rev. 06) Page 67 of 71


F-TP22-03 (Rev. 06) Page 68 of 71

F-TP22-03 (Rev. 06) Page 69 of 71

Sub6 n13_10 M_Extended Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 70 of 71

10. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2502-FC095-P

F-TP22-03 (Rev. 06) Page 71 of 71