

Leviton Mfg Co, Inc

Zigbee BLE Module C0945

FCC 15.247:2021 Bluetooth Low Energy (DTS) Radio

Report: LEVT0137 Rev. 1, Issue Date: April 15, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: November 10, 2021 Leviton Mfg Co, Inc EUT: Zigbee BLE Module C0945

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2021	ANSI C63.10:2013, KDB 558074
FCC 15.247:2021	ANSI C63. 10.2013, KDB 556074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	N/A	Characterization of radio operation.
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.9.1.1	Equivalent Isotropic Radiated Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.12.1, 11.13.2, 6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Changed the rated power to 19dBm.	2022-04-15	11
01	Renamed the data to DTS bandwidth; removed the reference to the 99% OBW measurement, this is a holdover test description from previous reporting formats	2022-04-15	23-26
	Added the correct updated block diagram that properly shows the calculations.	2022-04-15	7-9

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

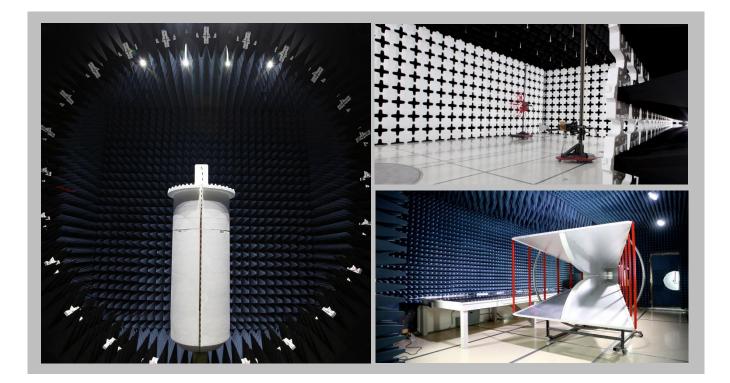
MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.


SCOPE						
	For details on the Scopes of our Accreditations, please visit:					
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
A2LA							
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
VCCI							
A-0029	A-0109	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

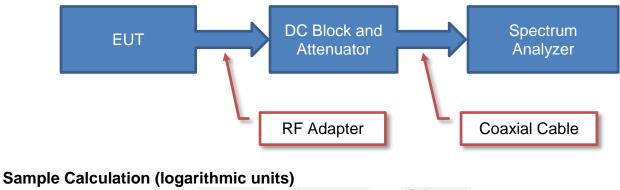
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

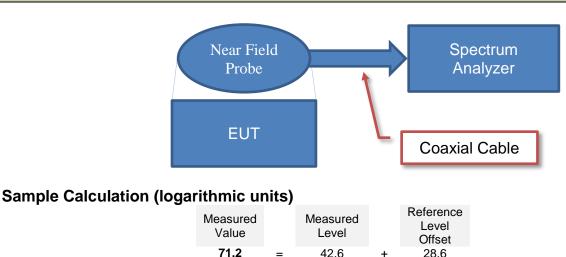
Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS



Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

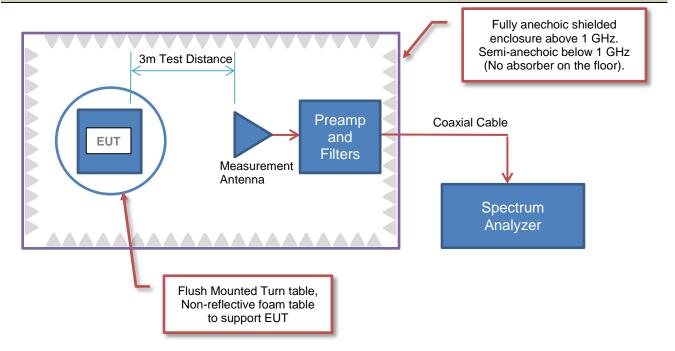
Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

42.6

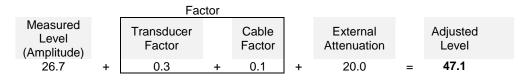
+


=

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

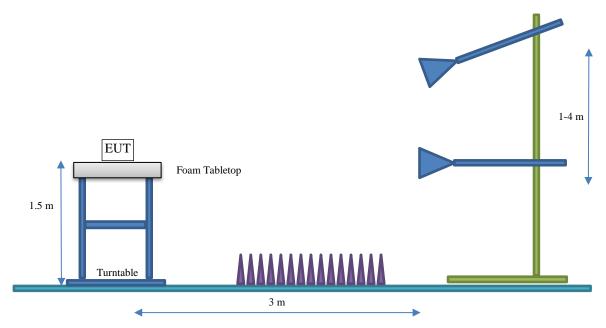


Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:



TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Leviton Mfg Co, Inc
Address:	PO Box 10600
City, State, Zip:	Melville, OR 11747-3138
Test Requested By:	Dmitriy Moskovkin
EUT:	Zigbee BLE Module C0945
First Date of Test:	September 27, 2021
Last Date of Test:	November 10, 2021
Receipt Date of Samples:	November 9, 2021
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Bluetooth LE and Zigbee radio module

Testing Objective:

To demonstrate compliance of the Bluetooth Low Energy (DTS) radio to FCC 15.247 requirements.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

- \ /			
Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Ceramic Chip	Manufacturer	2400 - 2500	1.5

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types / Data Rates	Туре	Channel	Frequency (MHz)	Power Setting
		0 or 37	2402	19 dBm
BLE, GFSK, 1 Mbps	DTS	20 or 18	2440	19 dBm
		39	2480	19 dBm

Configuration LEVT0137-1

Software/Firmware Running During Test	
Description	Version
Rail Test App	2.8.1.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 1

Peripherals in Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1		
Switch Mode Power Supply	V-Infinity	EMSA050100	None		

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Laptop	HP	Probook 640 G3	5CG72466R3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.5 m	No	Host PCB	Switch Mode Power Supply

Configuration LEVT0137-2

Software/Firmware Running During Test	
Description	Version
Rail Test App	2.8.1.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 2

Peripherals in Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1	
Host PCB	Leviton MFG Co Inc.	B2183	Sample 2	

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Switch Mode Power Supply	V-Infinity	EMSA050100	None	
Laptop	HP	Probook 640 G3	5CG72466R3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
FTDI	Yes	1.5 m	No	Host PCB	Laptop
USB	Yes	1.5 m	No	Host PCB	Switch Mode Power Supply

Configuration LEVT0137-3

Software/Firmware Running During Test			
Description	Version		
Rail Test App	2.8.1.0		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 1

Peripherals in Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1		

Remote Equipment Outside of Test Setup Boundary						
Description	Description Manufacturer Model/Part Number Serial Number					
Laptop	HP	Probook 640 G3	5CG72466R3			

Configuration LEVT0136-1

Software/Firmware Running During Test			
Description	Version		
Rail Test App	2.8.1.0		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 1

Peripherals in Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1			
Switch Mode Power Supply	V-Infinity	EMSA050100	None			

Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer Model/Part Number Serial Number					
Laptop	HP	Probook 640 G3	5CG72466R3			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.5 m	No	Host PCB	Switch Mode Power Supply

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	2021-09-27	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Occupied	Tested as	No EMI suppression	EUT remained at
2	2021-11-10	Bandwidth	delivered to	devices were added or	Element following the
		Danuwidth	Test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
3	2021-11-10	Output Power	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Equivalent	Tested as	No EMI suppression	EUT remained at
4	2021-11-10	Isotropic	delivered to	devices were added or	Element following the
		Radiated	Test Station.	modified during this test.	test.
		Power		-	
_		Power	Tested as	No EMI suppression	EUT remained at
5	2021-11-10	Spectral	delivered to	devices were added or	Element following the
		Density	Test Station.	modified during this test.	test.
•		Band Edge	Tested as	No EMI suppression	EUT remained at
6	2021-11-10	Compliance	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
7	0004 44 40	Spurious	Tested as	No EMI suppression	EUT remained at
7	2021-11-10	Conducted	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
0	0004 44 40	Powerline	Tested as	No EMI suppression	Scheduled testing
8	2021-11-10	Conducted	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	· ·

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

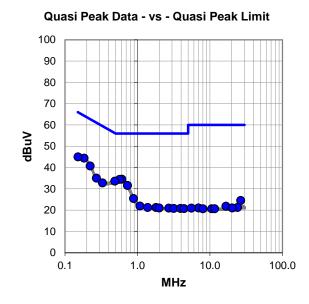
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06
Cable - Conducted Cable Assembly	Northwest EMC	EVG, HHD, RKT	EVGA	2021-01-05	2022-01-05
LISN	Solar Electronics	9252-50-R-24-BNC	LIR	2021-09-10	2022-09-10
Power Supply - DC	Topward	TPS-2000	TPD	NCR	NCR

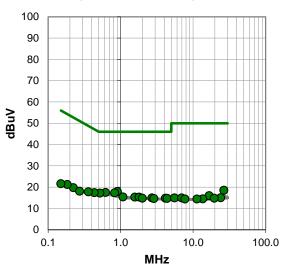
MEASUREMENT UNCERTAINTY

 Description

 Expanded k=2
 3.2 dB
 -3.2 dB

CONFIGURATIONS INVESTIGATED


LEVT0137-3


MODES INVESTIGATED

Continuous TX, BLE GFSK, 1 Mbps, Mid Ch = 2440 MHz

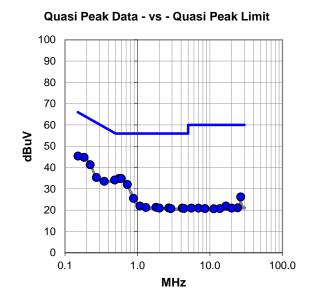
EUT:	Zighoo DI E M		045		Work Order:	LEVT0137	
	Zigbee BLE Me		140				
Serial Number:	Sample 1				Date:	2021-11-10	
Customer:	Leviton Mfg Co	Leviton Mfg Co, Inc			Temperature:	22.3°C	
Attendees:	Vikas Asthana	l			Relative Humidity:	39.6%	
Customer Project:	None				Bar. Pressure (PMSL):	1029 mb	
Tested By:	Jeff Alcoke				Job Site:	EV07	
Power:	3.3VDC via 11	0VAC/60	Hz		Configuration:	LEVT0137-3	
TEST SPECIFI	CATIONS						
Specification:				Method:			
FCC 15.207:2021				ANSI C63	3.10:2013		
TEST PARAME	TERS		-				
Run #: 2	1	Line:	High Line		Add. Ext. Attenuation (dB): 0		
COMMENTS							
Measuring AC main	ns of lab DC pow	er supply					
EUT OPERATI							
Continuous TX, BL	E GFSK, 1 Mbps	, Mid Ch	= 2440 MHz				
DEVIATIONS F	ROM TEST S		RD				
None							

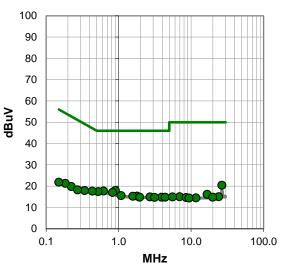
Average Data - vs - Average Limit

RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.184	24.3	20.1	44.4	64.3	-19.9	
0.152	24.9	20.1	45.0	65.9	-20.9	
0.611	14.5	20.0	34.5	56.0	-21.5	
0.570	14.4	20.0	34.4	56.0	-21.6	
0.223	20.6	20.1	40.7	62.7	-22.0	
0.487	13.6	20.0	33.6	56.2	-22.6	
0.728	11.6	20.0	31.6	56.0	-24.4	
0.272	15.0	20.0	35.0	61.1	-26.1	
0.330	12.8	20.0	32.8	59.5	-26.7	
0.884	5.4	20.0	25.4	56.0	-30.6	
1.082	1.9	20.0	21.9	56.0	-34.1	
1.383	1.2	20.0	21.2	56.0	-34.8	
1.802	1.2	20.0	21.2	56.0	-34.8	
1.996	1.0	20.0	21.0	56.0	-35.0	
2.704	0.9	20.0	20.9	56.0	-35.1	
3.176	0.8	20.0	20.8	56.0	-35.2	
3.928	0.8	20.0	20.8	56.0	-35.2	
4.390	0.6	20.1	20.7	56.0	-35.3	
26.609	3.4	21.1	24.5	60.0	-35.5	
16.633	1.2	20.6	21.8	60.0	-38.2	
24.011	0.2	21.0	21.2	60.0	-38.8	
6.934	0.8	20.2	21.0	60.0	-39.0	
20.384	0.2	20.8	21.0	60.0	-39.0	
5.547	0.7	20.2	20.9	60.0	-39.1	
8.020	0.4	20.2	20.6	60.0	-39.4	

Average Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.902	-2.1	20.0	17.9	46.0	-28.1		
0.618	-2.5	20.0	17.5	46.0	-28.5		
0.829	-2.7	20.0	17.3	46.0	-28.7		
0.518	-2.8	20.0	17.2	46.0	-28.8		
0.434	-2.6	20.0	17.4	47.2	-29.8		
1.079	-4.6	20.0	15.4	46.0	-30.6		
1.569	-4.7	20.0	15.3	46.0	-30.7		
1.802	-4.7	20.0	15.3	46.0	-30.7		
0.359	-2.2	20.0	17.8	48.8	-31.0		
2.704	-5.1	20.0	14.9	46.0	-31.1		
1.998	-5.2	20.0	14.8	46.0	-31.2		
4.160	-5.2	20.0	14.8	46.0	-31.2		
4.389	-5.4	20.1	14.7	46.0	-31.3		
2.884	-5.4	20.0	14.6	46.0	-31.4		
26.609	-2.6	21.1	18.5	50.0	-31.5		
0.223	-0.4	20.1	19.7	52.7	-33.0		
0.272	-1.9	20.0	18.1	51.1	-33.0		
0.184	1.1	20.1	21.2	54.3	-33.1		
16.633	-4.6	20.6	16.0	50.0	-34.0		
0.150	1.5	20.1	21.6	56.0	-34.4		
24.011	-6.0	21.0	15.0	50.0	-35.0		
5.547	-5.3	20.2	14.9	50.0	-35.1		
6.934	-5.3	20.2	14.9	50.0	-35.1		
19.653	-6.0	20.8	14.8	50.0	-35.2		
13.577	-6.0	20.5	14.5	50.0	-35.5		


CONCLUSION


Pass

Tested By

EUT.			245		Marte Orders					
EUT:	Zigbee BLE Module C0945				Work Order:	LEVT0137				
Serial Number:	Sample 1				Date:	2021-11-10				
Customer:	Leviton Mfg C	o, Inc			Temperature: 22.3°C					
Attendees:	Vikas Asthana	a			Relative Humidity:	39.6%				
Customer Project:	None				Bar. Pressure (PMSL):	1029 mb				
Tested By:	Jeff Alcoke				Job Site:	EV07				
Power:	3.3VDC via 1	10VAC/60	Hz		Configuration:	LEVT0137-3				
TEST SPECIFIC	ATIONS									
Specification:	Specification: Method:									
FCC 15.207:2021				ANSI C63.	10:2013					
TEST PARAME	TERS		-							
Run #: 3		Line:	Neutral		Add. Ext. Attenuation (dB): 0				
COMMENTS										
Measuring AC main	s of lab DC pov	ver supply								
Continuous TX, BL	E GFSK, 1 Mbp	s, Mid Ch	= 2440 MHz							
DEVIATIONS F	ROM TEST		ARD							
None										

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.184	24.7	20.1	44.8	64.3	-19.5				
0.152	25.3	20.1	45.4	65.9	-20.5				
0.560	14.9	20.0	34.9	56.0	-21.1				
0.597	14.9	20.0	34.9	56.0	-21.1				
0.223	21.2	20.1	41.3	62.7	-21.4				
0.486	14.1	20.0	34.1	56.2	-22.1				
0.727	12.0	20.0	32.0	56.0	-24.0				
0.348	13.5	20.0	33.5	59.0	-25.5				
0.272	15.3	20.0	35.3	61.1	-25.8				
0.884	5.5	20.0	25.5	56.0	-30.5				
26.611	5.1	21.1	26.2	60.0	-33.8				
1.082	1.9	20.0	21.9	56.0	-34.1				
1.804	1.3	20.0	21.3	56.0	-34.7				
1.311	1.2	20.0	21.2	56.0	-34.8				
2.706	1.0	20.0	21.0	56.0	-35.0				
2.005	0.9	20.0	20.9	56.0	-35.1				
4.160	0.9	20.0	20.9	56.0	-35.1				
4.393	0.7	20.1	20.8	56.0	-35.2				
2.895	0.7	20.0	20.7	56.0	-35.3				
16.635	1.3	20.6	21.9	60.0	-38.1				
24.133	0.1	21.0	21.1	60.0	-38.9				
5.545	0.7	20.2	20.9	60.0	-39.1				
6.932	0.7	20.2	20.9	60.0	-39.1				
20.059	0.1	20.8	20.9	60.0	-39.1				
8.551	0.5	20.2	20.7	60.0	-39.3				

Average Data - vs - Average Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.902	-2.1	20.0	17.9	46.0	-28.1				
0.620	-2.3	20.0	17.7	46.0	-28.3				
0.522	-2.6	20.0	17.4	46.0	-28.6				
0.824	-3.0	20.0	17.0	46.0	-29.0				
26.611	-0.7	21.1	20.4	50.0	-29.6				
0.434	-2.4	20.0	17.6	47.2	-29.6				
1.087	-4.5	20.0	15.5	46.0	-30.5				
1.804	-4.7	20.0	15.3	46.0	-30.7				
1.571	-4.8	20.0	15.2	46.0	-30.8				
2.704	-5.1	20.0	14.9	46.0	-31.1				
1.960	-5.2	20.0	14.8	46.0	-31.2				
3.929	-5.2	20.0	14.8	46.0	-31.2				
4.392	-5.3	20.1	14.8	46.0	-31.2				
3.142	-5.3	20.0	14.7	46.0	-31.3				
0.339	-2.1	20.0	17.9	49.2	-31.3				
0.223	-0.3	20.1	19.8	52.7	-32.9				
0.272	-1.8	20.0	18.2	51.1	-32.9				
0.184	1.2	20.1	21.3	54.3	-33.0				
16.635	-4.5	20.6	16.1	50.0	-33.9				
0.150	1.7	20.1	21.8	56.0	-34.2				
6.934	-5.2	20.2	15.0	50.0	-35.0				
24.029	-6.0	21.0	15.0	50.0	-35.0				
5.545	-5.3	20.2	14.9	50.0	-35.1				
19.941	-6.0	20.8	14.8	50.0	-35.2				
8.569	-5.6	20.2	14.6	50.0	-35.4				

CONCLUSION

Pass

Tested By

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

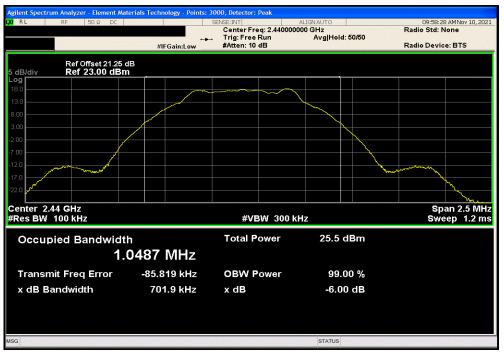
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

TEST DESCRIPTION

The EUT was set to the channels and modes listed in the datasheet.


The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth.



			TbtTx 2021.03.19.1	XMit 2020.12.30.0
EUT: Zigbee BLE Module C0945		Work Order:		
Serial Number: Sample 2		Date:	10-Nov-21	
Customer: Leviton Mfg Co, Inc		Temperature:		
Attendees: Vikas Asthana		Humidity:	39.4% RH	
Project: None		Barometric Pres.:	1030 mbar	
Tested by: Jeff Alcoke	Power: 3.3VDC via 110VAC/60Hz	Job Site:	EV01	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2021	ANSI C63.10:2013			
COMMENTS				
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 2 Signature	Tot the			
			Limit	
		Value	(≥)	Result
BLE/GFSK 1 Mbps Low Channel, 2402 MHz		703.06 kHz	500 kHz	
				Pass
BLE/GFSK 1 Mbps Mid Channel, 2440 MHz		701.908 kHz	500 kHz	Pass Pass

Report No. LEVT0137 Rev. 1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

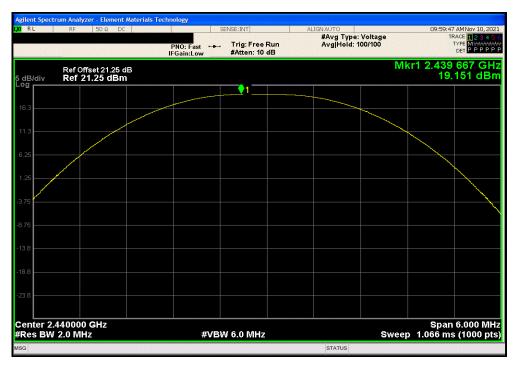
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

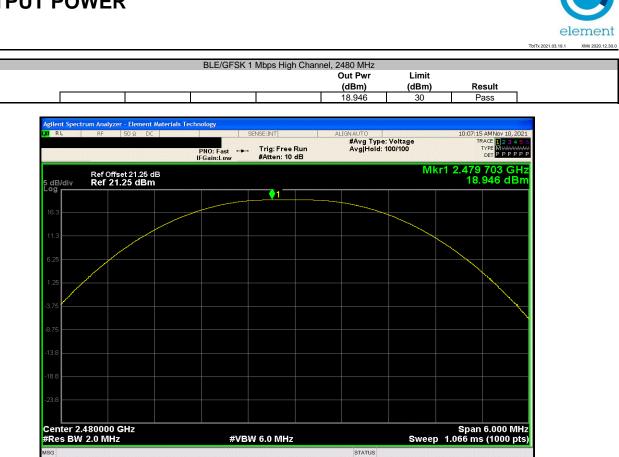
TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.




			TbtTx 2021.03.19.1	XMit 2020.12.30.0
EUT: Zigbee BLE Module C0945		Work Order:		
Serial Number: Sample 2			10-Nov-21	
Customer: Leviton Mfg Co, Inc		Temperature:		
Attendees: Vikas Asthana		Humidity:	39.5% RH	
Project: None		Barometric Pres.:	1030 mbar	
Tested by: Jeff Alcoke	Power: 3.3VDC via 110VAC/60Hz	Job Site:	EV01	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2021	ANSI C63.10:2013			
COMMENTS				
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 2 Signatu	JA			
		Out Pwr (dBm)	Limit (dBm)	Result
BLE/GFSK 1 Mbps Low Channel, 2402 MHz		19.279	30	Pass
BLE/GFSK 1 Mbps Mid Channel, 2440 MHz		19.151	30	Pass
BLE/GFSK 1 Mbps High Channel, 2480 MHz		18.946	30	Pass

Report No. LEVT0137 Rev. 1

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

TEST DESCRIPTION

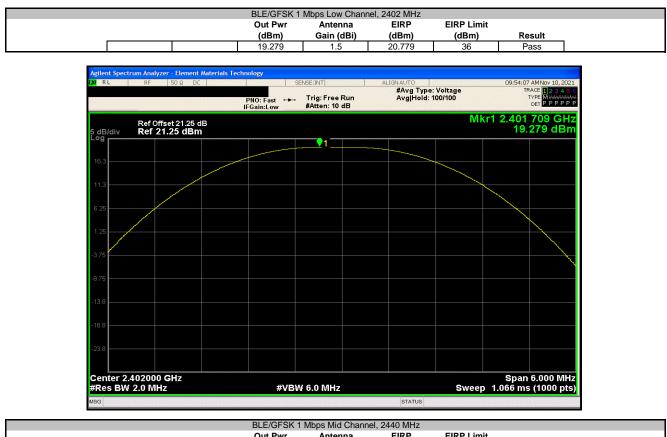
The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)



								TbtTx 2021.03.19.1	XMit 2020.12
	bee BLE Module C0945						Work Order:		
Serial Number: Sar	nple 2							10-Nov-21	
Customer: Lev	/iton Mfg Co, Inc						Temperature:	22.2 °C	
Attendees: Vik								39.4% RH	
Project: Nor							Barometric Pres.:		
	Tested by: Jeff Alcoke Power: 3.3VDC via 110VAC/60Hz						Job Site:	EV01	
TEST SPECIFICATIONS	5			st Method					
FCC 15.247:2021			AN	ISI C63.10:2013					
COMMENTS									
DEVIATIONS FROM TE	ST STANDARD								
None									
Configuration #	2	Signature	Tet 4						
					Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
BLE/GFSK 1 Mbps Low	Channel, 2402 MHz				19.279	1.5	20.779	36	Pass
BLE/GFSK 1 Mbps Mid (Channel, 2440 MHz				19.151	1.5	20.651	36	Pass
BLE/GFSK 1 Mbps High	Channel, 2480 MHz				18.946	1.5	20.446	36	Pass

Report No. LEVT0137 Rev. 1

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)



	Out Pwr	Antenna	EIRP	EIRP Limit	
	(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
	19.151	1.5	20.651	36	Pass

RL RF 50Ω DC	SENSE:	INT	ALIGNAUTO		47 AMNov 10, 202
		ig: Free Run tten: 10 dB	#Avg Type: Voltag Avg Hold: 100/100		TRACE 12345 TYPE MUMANA DET PPPPP
Ref Offset 21.25 dB B/div Ref 21.25 dBm				Mkr1 2.439 19	9 667 GH 151 dBr
		•1			
.3					
.3					
25					
75					
5					
8					
8					
8					
enter 2.440000 GHz Res BW 2.0 MHz	#VBW 6.	0 MHz		Spaı Sweep 1.066 m	n 6.000 MH is (1000 pt
			STATUS	exere or exere or exere or exere	

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

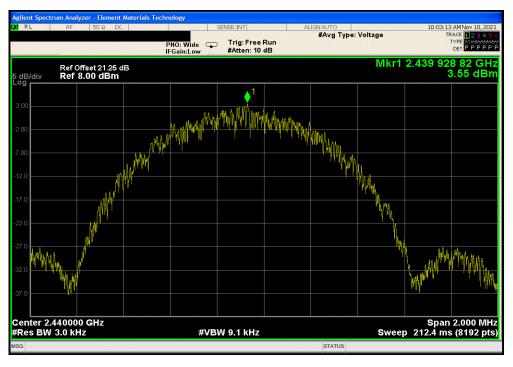
TEST DESCRIPTION

The maximum power spectral density measurements were measured using the channels and modes as called out on the following data sheets.

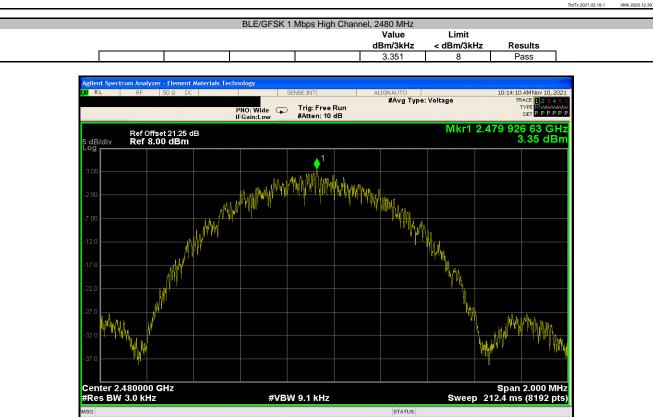
Per the procedure outlined in ANSI C63.10:2013, clause 11.10.2, the peak power spectral density was measured in a 3 kHz RBW.

POWER SPECTRAL DENSITY




							TbtTx 2021.03.19.1	XMit 2020.12.30.
EUT: Zigbee BLE Module C0945						Work Order:		
Serial Number: Sample 2						Date:	10-Nov-21	
Customer: Leviton Mfg Co, Inc						Temperature:	22 °C	
Attendees: Vikas Asthana							39.5% RH	
	Project: None					arometric Pres.:		
Tested by: Jeff	f Alcoke	Power: 3.3VDC via 110VAC/60Hz				Job Site:	EV01	
TEST SPECIFICATIONS Test Method								
FCC 15.247:2021 ANSI C63.10:2013								
COMMENTS								
DEVIATIONS FROM TES	ST STANDARD							
None								
Configuration #	2	Signature						
						Value dBm/3kHz	Limit < dBm/3kHz	Results
BLE/GFSK 1 Mbps Low Channel, 2402 MHz						3.645	8	Pass
BLE/GFSK 1 Mbps Mid Channel, 2440 MHz						3.545	8	Pass
BLE/GFSK 1 Mbps High Channel, 2480 MHz						3.351	8	Pass

Report No. LEVT0137 Rev. 1


POWER SPECTRAL DENSITY

POWER SPECTRAL DENSITY

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

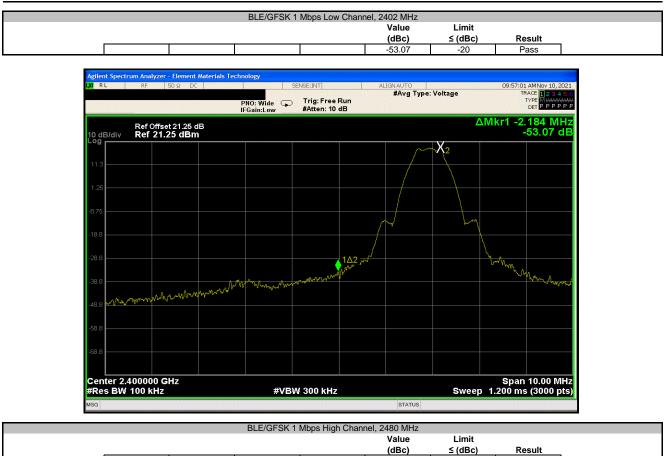
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


BAND EDGE COMPLIANCE



EUT.						TbtTx 2021.03.19.1	
	Zigbee BLE Module C0945					r: LEVT0137	
Serial Number:	Sample 2				Da	e: 10-Nov-21	
Customer:	Leviton Mfg Co, Inc				Temperatu		
	Vikas Asthana					y: 39.3% RH	
Project:	None				Barometric Pre	.: 1030 mbar	
Tested by:	Jeff Alcoke		Power:	3.3VDC via 110VAC/60Hz	Job Si	e: EV01	
TEST SPECIFICATI	IONS			Test Method			
FCC 15.247:2021				ANSI C63.10:2013			
COMMENTS				-			
	set includes: DC Block, 20 dB attenuator,	inu measurement					
	A LEST STANDARD						
DEVIATIONS FROM							
None							
	2	gnature	TAL				
None	2	gnature	1A		Value	Limit	
None	2	gnature C	Tell		Value (dBc)	Limit ≤ (dBc)	Result
None Configuration #	2	gnature	TAL.				Result Pass

BAND EDGE COMPLIANCE

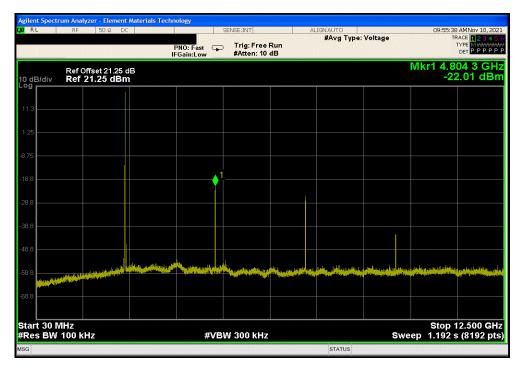
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

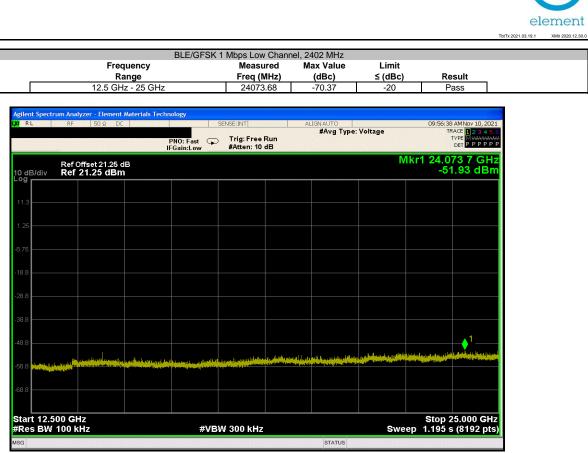
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

TEST DESCRIPTION

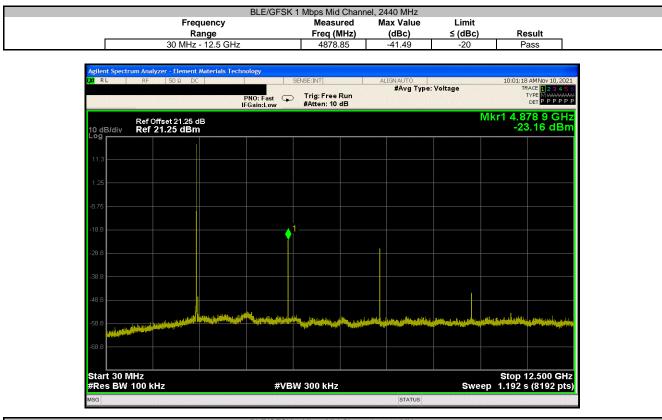
The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.




	Zigbee BLE Module C0945					Work Order:		
Serial Number:	Sample 2						: 10-Nov-21	
Customer:	Leviton Mfg Co, Inc					Temperature: 22 °		
	Vikas Asthana				Humidity: 39.6% RH			
Project:						Barometric Pres.:		
	Jeff Alcoke			3.3VDC via 110VAC/60Hz		Job Site:	EV01	
EST SPECIFICATI	IONS			Test Method				
CC 15.247:2021				ANSI C63.10:2013				
COMMENTS			-					
	M TEST STANDARD							
DEVIATIONS FROM	M TEST STANDARD							
	1 TEST STANDARD	Signature	JA .					
None		Signature	JA "	Frequency	Measured	Max Value	Limit	
None		Signature	JA .	Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
None Configuration #		Signature	JAL,					Result N/A
None Configuration # BLE/GFSK 1 Mbps I	2	Signature	JA .	Range	Freq (MHz)	(dBc)	≤ (dBc)	
None Configuration # BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I	2 Low Channel, 2402 MHz	Signature		Range Fundamental	Freq (MHz) 2402.15	(dBc) N/A	≤ (dBc) N/A	N/A
None Configuration # BLE/GFSK 1 Mbps L BLE/GFSK 1 Mbps L BLE/GFSK 1 Mbps L	2 Low Channel, 2402 MHz Low Channel, 2402 MHz	Signature		Range Fundamental 30 MHz - 12.5 GHz	Freq (MHz) 2402.15 4804.25	(dBc) N/A -40.45	≤ (dBc) N/A -20	N/A Pass
tone Configuration # BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I	2 Low Channel, 2402 MHz Low Channel, 2402 MHz Low Channel, 2402 MHz	Signature		Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	Freq (MHz) 2402.15 4804.25 24073.68	(dBc) N/A -40.45 -70.37	≤ (dBc) N/A -20 -20	N/A Pass Pass
Ione Configuration # BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I	2 Low Channel, 2402 MHz Low Channel, 2402 MHz Low Channel, 2402 MHz Mid Channel, 2440 MHz	Signature	:	Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	Freq (MHz) 2402.15 4804.25 24073.68 2440.15	(dBc) N/A -40.45 -70.37 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
tone Configuration # BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I	2 Low Channel, 2402 MHz Low Channel, 2402 MHz Low Channel, 2402 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz	Signature	:	Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	Freq (MHz) 2402.15 4804.25 24073.68 2440.15 4878.85	(dBc) N/A -40.45 -70.37 N/A -41.49	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
Ione Configuration # BLE/GFSK 1 Mbps I BLE/GFSK 1 Mbps I	2 Low Channel, 2402 MHz Low Channel, 2402 MHz Low Channel, 2402 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz	Signature	:	Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	Freq (MHz) 2402.15 4804.25 2407.3.68 2440.15 4878.85 24113.36	(dBc) N/A -40.45 -70.37 N/A -41.49 -70.6	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass

	Frequency		Measured	Max Value	Limit		
	Range		Freq (MHz)	(dBc)	≤ (dBc)		sult
	Fundamental		2402.15	N/A	N/A	N	I/A
Agilent Spectrum Analyzer	- Element Materials Tech 50 Ω DC				indina mana indina manana indi		
LXI RL RF	SUN DC	56	INSE:INT	ALIGNAUTO #Avg Type:	Voltage	TR	AMNov 10, 2021
		PNO: Wide 🖵 IFGain:Low	Trig: Free Run #Atten: 10 dB			and the second second second	
Ref Offse 10 dB/div Ref 21.2	t 21.25 dB 25 dBm				Mkr1 2	2.402 154 18	4 38 GHz 3.44 dBm
Log							
11.3							
1.25							
-8.75							
-18.8							
-28.8							
-38.8							
-48.8							
-58.8							
-68.8							
Center 2.4020000 #Res BW 100 kHz	GHz	#VBW	/ 300 kHz		Sweep	Span 1.092 ms	1.000 MHz (8192 pts)
MSG				STATUS			, ,

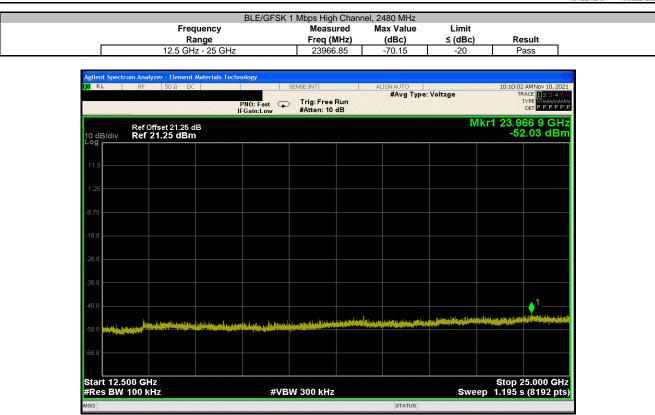
BLE/GFSK 1	I Mbps Low Chanr	nel, 2402 MHz			
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result	
30 MHz - 12.5 GHz	4804.25	-40.45	-20	Pass	



	BLE/GFSI	K 1 Mbps Mid Chanr	nel, 2440 MHz			
Fre	quency	Measured	Max Value	Limit		
F	lange	Freq (MHz)	(dBc)	≤ (dBc)	Result	
Fun	damental	2440.15	N/A	N/A	N/A	

RL RF 50Ω DC	SENSE:INT	ALIGNAUTO	10:00:12 AMNov 10, 202
	PNO: Wide 🖵 Trig: Free R IFGain:Low #Atten: 10 d		TRACE 12345 TYPE MUMUMA DET PPPP
Ref Offset 21.25 dB dB/div Ref 21.25 dBm		Mkı	1 2.440 151 69 GH 18.33 dBi
		no 1 m	
1.3			
25			
75			
3.8			
3.8			
3.8			
3.8			
3.8			
enter 2.4400000 GHz Res BW 100 kHz	#VBW 300 kHz	Swe	Span 1.000 Mi ep 1.092 ms (8192 pt
G		STATUS	

	BLE/GFSK 1 Mbps Mid Channel, 2440 MHz					
Frequency	Measured	Max Value	Limit			
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result		
12.5 GHz - 25 (GHz 24113.36	-70.6	-20	Pass		


RL	RF	50 Ω DC			SENSE:INT	A	LIGNAUTO			2 AMNov 10, 202
			I	PNO: Fast G FGain:Low	Trig: Free #Atten: 10		#Avg Type:	Voltage	1	TYPE MUMANA DET PPPP
0 dB/div	Ref Off Ref 2	set21.25 d 1.25 dBm	iB 1					ſ	vikr1 24.1 -5	13 4 GH 2.27 dBi
1.3										
.25										
.75										
з.в										
3.8										
3.8										
3.8										.1
0.0	1 beau	. Alternative Lander	ور المستولات	al and the second second second second	فلطمه البعر مددوون المنار	and the second state of th		نور في الل <mark>ا</mark> فقاء في ران		
3.8 Maini_n	rest fine of the second	Inc. of the local division in the local divi	and the second	and the second se		in succession in the second	and the particular distribution of			
8.8										
	500 GHz								Stop	25.000 GH
Res BM	/ 100 kH	Z		#V	BW 300 kHz		and a second	SW	eep 1.195	s (8192 pt

	Frequency		Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBc)	≤ (dBc)	Result
	Fundamental		2480.15	N/A	N/A	N/A
Agilent Spectrum Analyzer -			JSE:INT	ALIGNAUTO		10:07:49 AMNov 10, 2021
				#Avg Type:	Voltage	TRACE 12345 TYPE MWWWW
		PNO: Wide 😱 IFGain:Low	Trig: Free Run #Atten: 10 dB			DETPPPP
Ref Offset	21 25 dB				Mkr1 2.4	80 150 59 GH
Ref Offset 10 dB/div Ref 21.2	5 dBm					18.12 dBm
11.3						
1.25						
-8.75						
-18.8						
-28.8						
-38.8						
-48.8						
40.0						
-58.8						
-68.8						
Center 2.4800000 C	Hz					Span 1.000 MH
#Res BW 100 kHz		#VBW	300 kHz		Sweep 1.	.092 ms (8192 pts
MSG				STATUS		

BLE/GF	SK 1 Mbps High Chann	nel, 2480 MHz			
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result	
30 MHz - 12.5 GHz	4959.54	-42.85	-20	Pass	

RL	RF 50Ω E	DC		SENSE:INT	AL	LIGNAUTO		10:08:44	5 AMNov 10, 20
			PNO: Fast 🖵 FGain:Low	- · ·	Run dB	#Avg Type:	Voltage	Т	RACE 12345 TYPE MWWW DET PPPP
dB/div	Ref Offset 21.25 Ref 21.25 dB	dB m						Mkr1 4.9 -24	59 5 GF 4.73 dBi
3									
25									
5									
.8				1					
.8									
8									
8									
8	and a state of the s	المعيدة المجلوبين المسا	المذبيرة البينية والمترجة المتعا	الارجان والمحمد والمحمد والم	Marine States	والمتحوية التوريجية و			
8									
art 30 M	Hz							Stop	12.500 <u>GI</u>
es BW 1			#VB	W 300 kHz			Swe	Stop ep 1.192	s (8192 pt
						STATUS			

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2013). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10:2013, clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08
Antenna - Biconilog	EMCO	3142B	AXJ	2021-03-03	2023-03-03
Antenna - Double Ridge	EMCO	3115	AHC	2020-07-01	2022-07-01
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-09	AIV	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2020-11-17	2021-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2020-11-17	2021-11-17
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2020-11-18	2021-11-18
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2020-11-18	2021-11-18
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	2021-07-16	2022-07-16
Cable	N/A	Bilog Cables	EVA	2020-11-17	2021-11-17
Cable	N/A	Double Ridge Horn Cables	EVB	2020-11-17	2021-11-17
Cable	None	Standard Gain Horn Cables	EVF	2020-11-18	2021-11-18
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	EVY	2021-07-16	2022-07-16
Attenuator	Coaxicom	3910-20	AXZ	2021-02-15	2022-02-15
Filter - Low Pass	Micro-Tronics	LPM50004	LFD	2021-02-15	2022-02-15
Filter - High Pass	Micro-Tronics	HPM50111	HFO	2020-11-17	2021-11-17

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	5.2 dB	-5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 26500 MHz

POWER INVESTIGATED

3.3VDC via 110VAC/60Hz

CONFIGURATIONS INVESTIGATED

LEVT0136-1 LEVT0137-1

MODES INVESTIGATED

Continuous TX, BLE GFSK, 1 Mbps, Low Ch = 2402 MHz, Mid Ch = 2440 MHz, High Ch = 2480 MHz

EUT: Serial Number:	Zigbee BLE Mod Sample 1	ule C0945			Work Ord	ler:	LEVT0 2021-1	
Customer:	Leviton Mfg Co,	Inc			Date: Tempera	turo:	2021-1 22.7°C	
Attendees:	Vikas Asthana				Relative		38.9%	
Customer Project:						sure (PMSL):	1019 m	h
Fested By:	Kam Robertson	& Jeff Alcoke			Job Site:		EV01	~
Power:	3.3VDC via 110\				Configura	ation:	LEVTO	137-1
FEST SPECIF				ľ	0			
Specification:				thod:				
CC 15.247:2021			AN	SI C63.1	0:2013			
TEST PARAM	ETERS							
Run #:	36	Test Distance (m):	3		Ant. H	leight(s) (m):	1 to 4(r	n)
COMMENTS								
	low for channel and	EUT orientation						
EUT OPERAT								
		_ow Ch = 2402 MHz, N	/lid Ch - 244		liah Ch -	2480 MH7		
	· · · · ·		niu On = 244	υ IVII ΙΖ, Γ	iigii Oli =			
	FROM TEST ST	ANDARD						
None								
80								
70								
60								
			 					
5 0								
W/\ng 40								
Ang 40								
D 40					•	-		
30								
20								
10								
0 10	100)	1,000		10),000		100,000
			MHz					
	Run #: 36	5			PK 🖪	AV 😐	QP	

RESULTS - Run #36

ILLOULI		11 #00					(I)						
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
38.058	37.9	-4.1	1.01	159.0	3.0	0.0	Vert	QP	0.0	33.8	40.0	-6.2	Mid Ch, EUT Horz
38.113	37.6	-4.2	1.0	213.0	3.0	0.0	Vert	QP	0.0	33.4	40.0	-6.6	High Ch, EUT Horz
37.927	36.0	-4.1	1.0	197.0	3.0	0.0	Vert	QP	0.0	31.9	40.0	-8.1	Low Ch, EUT Horz
4803.708	40.0	5.1	2.12	240.0	3.0	0.0	Horz	AV	0.0	45.1	54.0	-8.9	Low Ch, EUT on side
4803.808	39.9	5.1	1.0	234.0	3.0	0.0	Horz	AV	0.0	45.0	54.0	-9.0	Low Ch, EUT Horz
4803.783	38.7	5.1	2.72	18.0	3.0	0.0	Vert	AV	0.0	43.8	54.0	-10.2	Low Ch, EUT Horz
4959.867	37.8	5.9	1.3	209.0	3.0	0.0	Vert	AV	0.0	43.7	54.0	-10.3	High Ch, EUT Horz
4959.733	37.2	5.9	2.08	104.0	3.0	0.0	Horz	AV	0.0	43.1	54.0	-10.9	High Ch, EUT on Side
4803.858	37.1	5.1	1.21	274.0	3.0	0.0	Vert	AV	0.0	42.2	54.0	-11.8	Low Ch, EUT Vert
7439.842	28.3	12.2	3.25	147.0	3.0	0.0	Horz	AV	0.0	40.5	54.0	-13.5	High Ch, EUT on Side
4803.708	35.2	5.1	1.83	354.0	3.0	0.0	Vert	AV	0.0	40.3	54.0	-13.7	Low Ch, EUT on side
7439.250	27.8	12.2	1.5	277.0	3.0	0.0	Vert	AV	0.0	40.0	54.0	-14.0	High Ch, EUT Horz
4803.733	33.6	5.1	1.5	355.0	3.0	0.0	Horz	AV	0.0	38.7	54.0	-15.3	Low Ch, EUT Vert
37.868	24.6	-4.0	1.0	300.0	3.0	0.0	Horz	QP	0.0	20.6	40.0	-19.4	Mid Ch, EUT Horz
37.849	24.5	-4.0	1.0	309.0	3.0	0.0	Horz	QP	0.0	20.5	40.0	-19.5	High Ch, EUT Horz
37.979	23.1	-4.1	1.01	225.0	3.0	0.0	Horz	QP	0.0	19.0	40.0	-21.0	Low Ch, EUT Horz
4803.308	47.0	5.1	2.12	240.0	3.0	0.0	Horz	PK	0.0	52.1	74.0	-21.9	Low Ch, EUT on side
7438.967	39.5	12.2	3.25	147.0	3.0	0.0	Horz	PK	0.0	51.7	74.0	-22.3	High Ch, EUT on Side
4804.075	46.1	5.1	1.0	234.0	3.0	0.0	Horz	PK	0.0	51.2	74.0	-22.8	Low Ch, EUT Horz
7439.567	38.8	12.2	1.5	277.0	3.0	0.0	Vert	PK	0.0	51.0	74.0	-23.0	High Ch, EUT Horz
4959.333	44.9	5.9	1.3	209.0	3.0	0.0	Vert	PK	0.0	50.8	74.0	-23.2	High Ch, EUT Horz
4959.608	44.4	5.9	2.08	104.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	High Ch, EUT on Side
4803.375	44.9	5.1	2.72	18.0	3.0	0.0	Vert	PK	0.0	50.0	74.0	-24.0	Low Ch, EUT Horz
4804.317	44.7	5.2	1.21	274.0	3.0	0.0	Vert	PK	0.0	49.9	74.0	-24.1	Low Ch, EUT Vert
12398.690	27.4	1.5	1.16	210.0	3.0	0.0	Vert	AV	0.0	28.9	54.0	-25.1	High Ch, EUT Horz
4803.233	43.8	5.1	1.83	354.0	3.0	0.0	Vert	PK	0.0	48.9	74.0	-25.1	Low Ch, EUT on side
12398.850	27.0	1.5	1.5	9.0	3.0	0.0	Horz	AV	0.0	28.5	54.0	-25.5	High Ch, EUT on Side
12007.670	26.9	1.1	1.5	180.0	3.0	0.0	Horz	AV	0.0	28.0	54.0	-26.0	Low Ch, EUT on side
12007.660	26.8	1.1	1.5	18.0	3.0	0.0	Vert	AV	0.0	27.9	54.0	-26.1	Low Ch, EUT Horz
4803.150	42.7	5.1	1.5	355.0	3.0	0.0	Horz	PK	0.0	47.8	74.0	-26.2	Low Ch, EUT Vert
12398.660	38.5	1.5	1.16	210.0	3.0	0.0	Vert	PK	0.0	40.0	74.0	-34.0	High Ch, EUT Horz
12398.000	38.3	1.5	1.5	9.0	3.0	0.0	Horz	PK	0.0	39.8	74.0	-34.2	High Ch, EUT on Side
12009.660	38.1	1.1	1.5	18.0	3.0	0.0	Vert	PK	0.0	39.2	74.0	-34.8	Low Ch, EUT Horz
12010.790	37.7	1.1	1.5	180.0	3.0	0.0	Horz	PK	0.0	38.8	74.0	-35.2	Low Ch, EUT on side

CONCLUSION

Pass

Tested By

EUT:	Zigbee BLE Module C0945	Work Order:	LEVT0136
Serial Number:	None	Date:	2021-09-27
Customer:	Leviton Mfg Co, Inc	Temperature:	23.1°C
Attendees:	Vikas Asthana	Relative Humidity:	49.1%
Customer Project:	None	Bar. Pressure (PMSL):	1013 mb
Tested By:	Jeff Alcoke	Job Site:	EV01
Power:	3.3VDC via 110VAC/60Hz	Configuration:	LEVT0136-1
TEST SPECIEI	SATIONS		

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2021	ANSI C63.10:2013

TEST PARAMETERS

	Run #:	15	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--	--------	----	--------------------	---	---------------------	-----------

COMMENTS


Bandedge - please reference data comments below for Channel and EUT orientation. Measuring worst case EUT orientation determined from pre-compliance testing.

EUT OPERATING MODES

Continuous TX, BLE GFSK, 1 Mbps, Low Ch = 2402 MHz, Mid Ch = 2440 MHz, High Ch = 2480 MHz

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #15

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.513	35.0	-3.6	1.29	263.0	3.0	20.0	Vert	AV	0.0	51.4	54.0	-2.6	High Ch, EUT on Side
2389.267	31.6	-3.5	1.5	223.0	3.0	20.0	Vert	AV	0.0	48.1	54.0	-5.9	Low Ch, EUT on Side
2483.540	46.0	-3.6	1.29	263.0	3.0	20.0	Vert	PK	0.0	62.4	74.0	-11.6	High Ch, EUT on Side
2389.537	43.0	-3.5	1.5	223.0	3.0	20.0	Vert	PK	0.0	59.5	74.0	-14.5	Low Ch, EUT on Side

CONCLUSION

Pass

Tested By

10	100	MHz	10,000	100,000
0 10	100	1,000	10,000	100,000
10				
20				
30				
ď				
W/Nngp 40				
۳ ۳				
50				
60				
/0				
70				
80				
one		····=		
	FROM TEST STANDA		~	
		= 2402 MHz, Mid Ch = 2440	MHz, High Ch = 2480 MHz	
	data comments below for cl	nannel and EUT orientation.		
	1631			
EST PARAM		Distance (m): 3	Ant. Height(s) (m):	1 to 4(m)
	FTEDO	ANGI	000.10.2010	
pecification: CC 15.247:2021		Meth	od: C63.10:2013	
EST SPECIF	ICATIONS			
ower:	3.3VDC via 110VAC/60	Hz	Configuration:	LEVT0136-1
ested By:	Jeff Alcoke		Job Site:	EV01
ustomer Project:			Bar. Pressure (PMSL):	
ustomer: .ttendees:	Leviton Mfg Co, Inc Vikas Asthana		Temperature: Relative Humidity:	23.1°C 49.1%
erial Number:	None		Date:	2021-09-27

RESULTS - Run #7

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4879.767	38.8	6.0	2.65	236.0	3.0	0.0	Horz	AV	0.0	44.8	54.0	-9.2	Mid Ch, EUT on Side
4879.833	38.6	6.0	1.0	326.0	3.0	0.0	Vert	AV	0.0	44.6	54.0	-9.4	Mid Ch, EUT Vert
4879.742	38.2	6.0	2.24	153.0	3.0	0.0	Horz	AV	0.0	44.2	54.0	-9.8	Mid Ch, EUT Vert
4879.775	37.3	6.0	1.5	192.0	3.0	0.0	Vert	AV	0.0	43.3	54.0	-10.7	Mid Ch, EUT Horz
4879.800	37.0	6.0	3.1	172.0	3.0	0.0	Vert	AV	0.0	43.0	54.0	-11.0	Mid Ch, EUT on Side
4879.733	35.4	6.0	1.92	219.0	3.0	0.0	Horz	AV	0.0	41.4	54.0	-12.6	Mid Ch, EUT Horz
7319.275	28.3	11.7	1.73	266.0	3.0	0.0	Horz	AV	0.0	40.0	54.0	-14.0	Mid Ch, EUT on Side
7319.275	28.2	11.7	1.5	356.0	3.0	0.0	Vert	AV	0.0	39.9	54.0	-14.1	Mid Ch, EUT Vert
7320.825	40.3	11.7	1.73	266.0	3.0	0.0	Horz	PK	0.0	52.0	74.0	-22.0	Mid Ch, EUT on Side
4880.317	45.3	6.0	2.65	236.0	3.0	0.0	Horz	PK	0.0	51.3	74.0	-22.7	Mid Ch, EUT on Side
4879.250	45.1	6.0	1.0	326.0	3.0	0.0	Vert	PK	0.0	51.1	74.0	-22.9	Mid Ch, EUT Vert
4879.700	45.0	6.0	2.24	153.0	3.0	0.0	Horz	PK	0.0	51.0	74.0	-23.0	Mid Ch, EUT Vert
7322.325	39.2	11.7	1.5	356.0	3.0	0.0	Vert	PK	0.0	50.9	74.0	-23.1	Mid Ch, EUT Vert
4880.300	44.5	6.0	3.1	172.0	3.0	0.0	Vert	PK	0.0	50.5	74.0	-23.5	Mid Ch, EUT on Side
4879.058	44.2	6.0	1.5	192.0	3.0	0.0	Vert	PK	0.0	50.2	74.0	-23.8	Mid Ch, EUT Horz
12202.370	28.6	0.9	1.05	310.0	3.0	0.0	Horz	AV	0.0	29.5	54.0	-24.5	Mid Ch, EUT on Side
4880.017	43.4	6.0	1.92	219.0	3.0	0.0	Horz	PK	0.0	49.4	74.0	-24.6	Mid Ch, EUT Horz
12201.830	28.4	0.9	1.01	148.0	3.0	0.0	Vert	AV	0.0	29.3	54.0	-24.7	Mid Ch, EUT Vert
12200.930	39.7	0.9	1.05	310.0	3.0	0.0	Horz	PK	0.0	40.6	74.0	-33.4	Mid Ch, EUT on Side
12197.900	39.4	0.9	1.01	148.0	3.0	0.0	Vert	PK	0.0	40.3	74.0	-33.7	Mid Ch, EUT Vert

CONCLUSION

Pass

Tested By

End of Test Report