FCC TEST REPORT

FOR

LENCENT

Bluetooth FM Transmitter for Car

TEST Model No.: T25

Additional Model No.: Please Refer to Page 6

Prepared for : LENCENT

Address Room1102, No 16 BaoNing Street, Tianhe District Guangzhou 510520

China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Address

Shajing Street, Baoan District, Shenzhen, 518000, China

Tel : (+86)755-82591330 (+86)755-82591332 Fax Web www.LCS-cert.com

Mail webmaster@LCS-cert.com

Date of receipt of test sample : March 22, 2021

Number of tested samples

Sample number : 210322007A-1, 210322007A-2

Serial number : Prototype

: March 22, 2021 ~ April 08, 2021 Date of Test

Date of Report : April 09, 2021

FCC TEST REPORT

FCC CFR 47 PART 15.239

Report Reference No.: LCS210322007AEC

Date of Issue: April 09, 2021

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Shajing Street, Baoan District, Shenzhen, 518000, China

Full application of Harmonised standards ■

Other standard testing method

Applicant's Name.....: LENCENT

Address: Room1102, No 16 BaoNing Street, Tianhe District Guangzhou

510520 China

Test Specification

Standard..... : FCC CFR 47 PART 15.239

Test Report Form No.....: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: Bluetooth FM Transmitter for Car

Trade Mark....: N/A

Model/ Type reference.....: T25

Ratings.....: Input: DC 12V

Result: Positive

Compiled by:

Supervised by:

Approved by:

Cherry Chen / Administrators

Cherry Chen

Jin Wang/ Administrators

Gavin Liang/ Manager

FCC -- TEST REPORT

April 09, 2021 **Test Report No.:** LCS210322007AEC Date of issue

Type / Model..... EUT.....: : Bluetooth FM Transmitter for Car : LENCENT Applicant..... Address..... : Room1102, No 16 BaoNing Street, Tianhe District Guangzhou 510520 China Telephone.....:: : / : / Fax..... : LENCENT Manufacturer..... Address..... Room1102, No 16 BaoNing Street, Tianhe District Guangzhou 510520 China Telephone.....:: : / Fax.....: : / Factory..... Address.....: : / Telephone.....:: : / Fax.....: : /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	April 09, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2 Support equipment List	
1.3 External I/O Cable	
1.4 Description of Test Facility	
1.5 Statement of The Measurement Uncertainty	7
1.6 Measurement Uncertainty	
2. TEST METHODOLOGY	
2.1 EUT Configuration	
2.3 General Test Procedures	
3. SYSTEM TEST CONFIGURATION	
3.1 Justification	
3.2 EUT Exercise Software	
3.3 Special Accessories	
3.4 Block Diagram/Schematics	
3.5 Equipment Modifications	
3.6 Test Setup	
4. SUMMARY OF TEST RESULTS	10
5. 99% AND 20DB BANDWIDTH	11
5.1 Limit	11
5.2 Block Diagram of Test Setup	11
5.3 Test Procedure	
5.4 Test Results	
6. RADIATED MEASUREMENT	13
6.1 Block Diagram of Test Setup	
6.2 Radiated Fundamental Frequency Limit	
5.3 Instruments Setting	
6. POWER LINE CONDUCTED EMISSIONS(NOT APPLICABLE)	
6.1 Standard Applicable	25
6.2 Block Diagram of Test Setup	
7. ANTENNA REQUIREMENT	
8. LIST OF TEST EQUIPMENT	27
9. TEST SETUP PHOTOGRAPHS OF EUT	28
10. EXTERIOR PHOTOGRAPHS OF THE EUT	28
11. INTERIOR PHOTOGRAPHS OF THE EUT	

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Bluetooth FM Transmitter for Car

. T25 Test Model

· BT23, C69S, BT94 Additional Models No.

PCB board, structure and internal of these model(s) are the same, S

o no additional models were tested

: Input: DC 12V **Power Supply**

: V1.0 Hardware Version : V1.0 Software Version

Bluetooth

Models Declaration

Frequency Range : 2402MHz ~ 2480MHz

Channel Number : 79 channels for Bluetooth V5.0(BR/EDR)

40 channels for Bluetooth V5.0(BT LE/BT 2LE)

Channel Spacing : 1MHz for Bluetooth V5.0(BR/EDR)

2MHz for Bluetooth V5.0(BT LE/BT 2LE)

Modulation Type : GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.0(BR/EDR)

GFSK for Bluetooth V5.0(BT LE/BT 2LE)

Bluetooth Version : V5.0

Antenna Description : PCB Antenna , 1.2dBi(Max.)

FM

Frequency Range : 88.1MHz~107.9MHz

Channel number : 199

Channel Spacing : 100KHz

Channel frequency : 88.1MHz~107.9MHz(Channel Number: 199,

Channel Frequency=88.1+0.1(K-1), K=1, 2, 3199)

: FM Modulation Type

: Spring Antenna, 1.2 dBi(Max.) Antenna Description

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
	-	-		-

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
USB Port	2	N/A

1.4 Description of Test Facility

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10:2013 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty		150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

The FM Transmitter is powered by a battery which is DC 12V. In the audio port and MIC port give a 2.5 kHz tone at a level 16 dB higher than that required to produce a frequency deviation of 75 KHz and make it works in TX mode (88.1 MHz, 98.0 MHz and 107.9 MHz).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209 and 15.239.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.239 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

N/A

2.3.2 Radiated Emissions

The EUT is placed on a turn table 0.8 meter above ground for below 1GHz and 1.5m for above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(210322007A-1)	Engineer sample – continuous transmit
Sample 2(210322007A-2)	Normal sample – Intermittent transmit

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmit condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the related document.

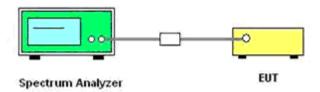
3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS


Applied Standard: FCC CFR 47 PART 15.239				
FCC Rules	FCC Rules Description of Test Test Sample Result			
§15.239 (a)	Occupied Bandwidth	Occupied Bandwidth Sample 2 Compliant		
§15.239 (b)	Field Strength of Fundamental frequency Sample 1 Compliant		Compliant	
§15.205 (a) §15.209 (a)	Radiated Spurious Emissions	Sample 1	Compliant	
§15.207 (a)	AC Conducted Emissions	N/A	N/A	
§15.203	Antenna Requirements	Sample 1	Compliant	

5. 99% AND 20DB BANDWIDTH

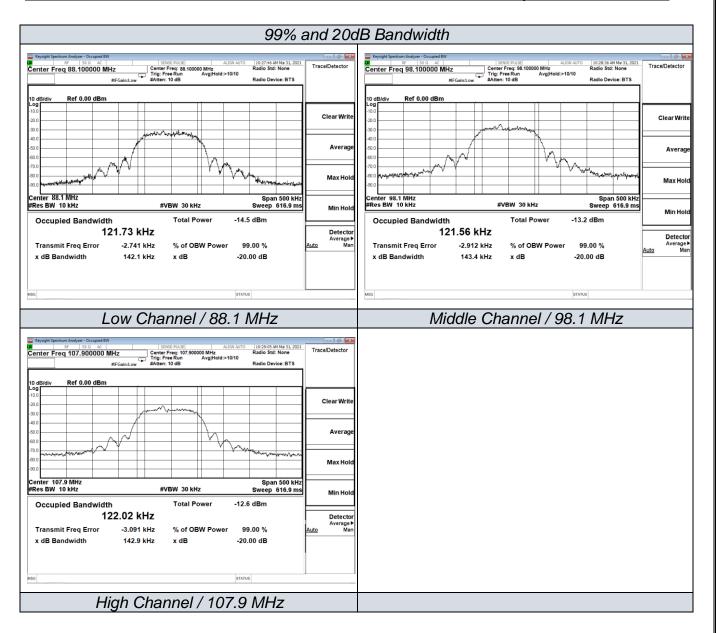
5.1 Limit

According to §15.239 (a) Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108MHz.

5.2 Block Diagram of Test Setup

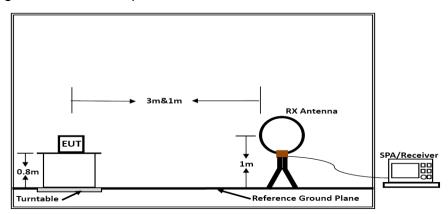
5.3 Test Procedure

- 1) The transmitter shall be operated at its maximum carrier power measured under normal test conditions
- 2) The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- 3) The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.
- 4) Detector function = peak.
- 5) Trace = max hold.

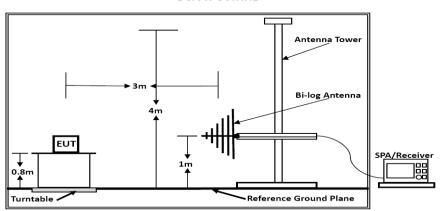

5.4 Test Results

Frequency (MHz)	20dB Bandwidth (KHz)	99% Bandwidth (KHz)	Limit (KHz)	Conclusion
88.1	142.1	121.73	200.00	PASS
98.0	143.4	121.56	200.00	PASS
107.9	142.9	122.02	200.00	PASS

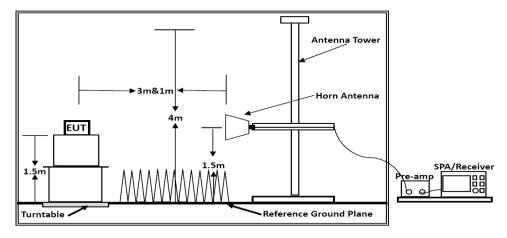
Remark:


- 1. Test results including cable loss;
- 2. Please refer to the following page.

Temperature	24.2℃	Humidity	53.7%
Test Engineer	Carl Fu	Configurations	FM



6. RADIATED MEASUREMENT


6.1 Block Diagram of Test Setup

Below 30MHz

Below 1GHz

Above 1GHz

6.2 Radiated Fundamental Frequency Limit

According to §15.239 (b): The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Remark: (1) Emission level dB μ V = 20 log Emission level μ V/m;

- (2) The smaller limit shall apply at the cross point between two frequency bands;
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

5.3 Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	1000 MHz
RB / VB (Emission in restricted band)	120KHz / 1MHz for Peak, 120 KHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	120KHz / 1MHz for Peak, 120 KHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.4 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

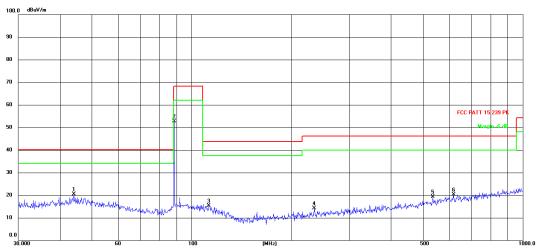
Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

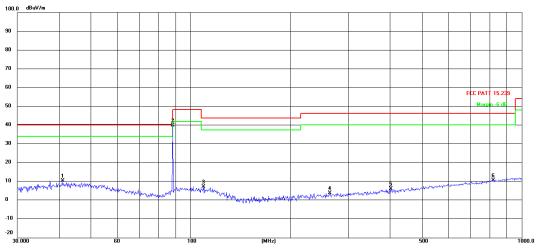
5.5 Results for Radiated Emissions

PASS.

Only record the worst test result in this report.

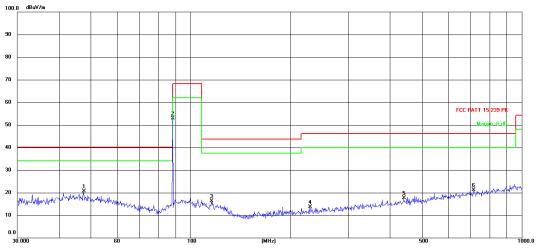

The test data please refer to following page:

Temperature	23.5℃	Humidity	51.7%
Test Engineer	Carl Fu	Configurations	FM

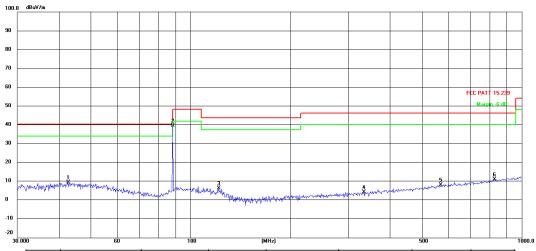

Below 1GHz

TX-88.1MHz

Horizontal

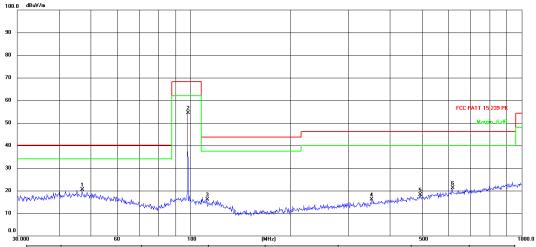


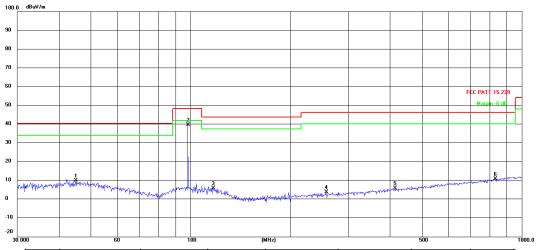
No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	44.1202	49.54	-29.10	20.44	40.00	-19.56	peak
2 *	88.1524	82.46	-29.64	52.82	68.00	-15.18	peak
3	112.9196	43.58	-28.20	15.38	43.50	-28.12	peak
4	234.9909	43.93	-29.74	14.19	46.00	-31.81	peak
5	535.7073	42.45	-23.19	19.26	46.00	-26.74	peak
6	618.5368	41.93	-21.60	20.33	46.00	-25.67	peak



No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	40.9881	40.03	-29.67	10.36	40.00	-29.64	AVG
2 *	88.1421	69.63	-29.75	39.88	48.00	-8.12	AVG
3	109.4116	34.83	-27.64	7.19	43.50	-36.31	AVG
4	263.8190	33.01	-29.01	4.00	46.00	-42.00	AVG
5	403.2500	31.99	-25.79	6.20	46.00	-39.80	AVG
6	821.7103	30.00	-19.28	10.72	46.00	-35.28	AVG

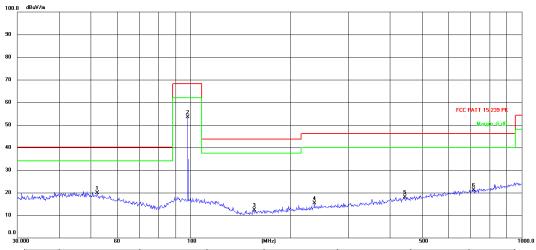
Vertical


No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	47.4918	49.54	-28.85	20.69	40.00	-19.31	peak
2 *	88.1421	82.60	-29.75	52.85	68.00	-15.15	peak
3	115.7256	44.96	-28.71	16.25	43.50	-27.25	peak
4	229.2931	43.54	-29.87	13.67	46.00	-32.33	peak
5	440.1963	42.81	-25.12	17.69	46.00	-28.31	peak
6	716.6820	41.86	-20.64	21.22	46.00	-24.78	peak

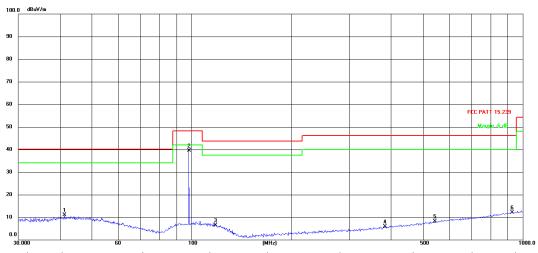

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	42.6000	38.93	-29.37	9.56	40.00	-30.44	AVG
2 *	88.1421	69.39	-29.75	39.64	48.00	-8.36	AVG
3	121.5486	36.42	-29.98	6.44	43.50	-37.06	AVG
4	333.6867	31.79	-27.44	4.35	46.00	-41.65	AVG
5	568.6127	30.77	-22.47	8.30	46.00	-37.70	AVG
6	827.4934	30.24	-19.21	11.03	46.00	-34.97	AVG

TX-98MHz

Horizontal

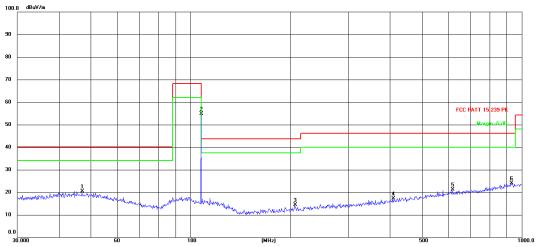


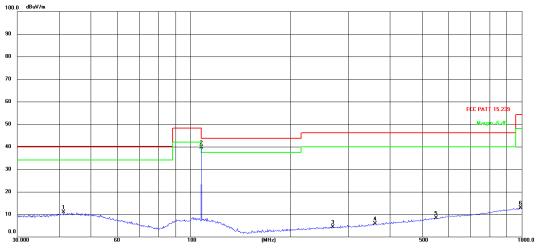
No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	46.9948	49.41	-28.86	20.55	40.00	-19.45	peak
2 *	98.1419	82.15	-27.68	54.47	68.00	-13.53	peak
3	112.1305	44.10	-28.05	16.05	43.50	-27.45	peak
4	352.9433	43.13	-26.99	16.14	46.00	-29.86	peak
5	494.1984	42.26	-24.08	18.18	46.00	-27.82	peak
6	616.3718	42.76	-21.62	21.14	46.00	-24.86	peak



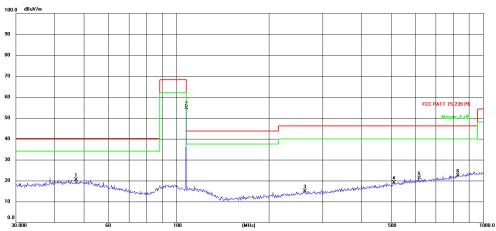
No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	45.0583	38.90	-28.92	9.98	40.00	-30.02	AVG
2 *	98.1419	67.38	-27.68	39.70	48.00	-8.30	AVG
3	116.9495	34.90	-28.93	5.97	43.50	-37.53	AVG
4	256.5211	33.10	-29.17	3.93	46.00	-42.07	AVG
5	414.7223	31.41	-25.58	5.83	46.00	-40.17	AVG
6	830.4002	30.16	-19.18	10.98	46.00	-35.02	AVG

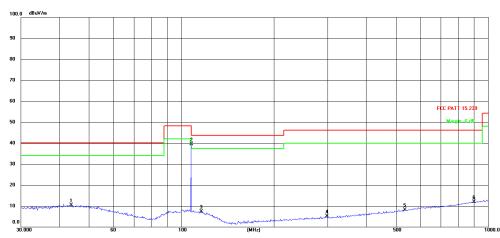
Vertical


No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	52.3912	48.96	-29.11	19.85	40.00	-20.15	peak
2 *	98.1418	81.09	-27.68	53.41	68.00	-14.59	peak
3	155.9101	45.28	-32.97	12.31	43.50	-31.19	peak
4	236.6447	45.03	-29.69	15.34	46.00	-30.66	peak
5	443.2943	43.17	-25.06	18.11	46.00	-27.89	peak
6	716.6820	41.94	-20.64	21.30	46.00	-24.70	peak


No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	41.4215	40.59	-29.59	11.00	40.00	-29.00	AVG
2 *	98.1419	67.20	-27.68	39.52	48.00	-8.48	AVG
3	118.1862	35.61	-29.19	6.42	43.50	-37.08	AVG
4	383.9318	32.13	-26.23	5.90	46.00	-40.10	AVG
5	543.2742	31.24	-23.01	8.23	46.00	-37.77	AVG
6	925.7563	30.18	-18.09	12.09	46.00	-33.91	AVG

TX-107.9MHz


Horizontal


No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	46.9948	49.41	-28.86	20.55	40.00	-19.45	peak
2 *	107.5101	82.44	-27.60	54.84	68.00	-13.16	peak
3	206.3976	44.82	-30.36	14.46	43.50	-29.04	peak
4	408.9460	43.04	-25.69	17.35	46.00	-28.65	peak
5	616.3718	42.76	-21.62	21.14	46.00	-24.86	peak
6	929.0082	42.05	-18.06	23.99	46.00	-22.01	peak

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	41.4215	40.59	-29.59	11.00	40.00	-29.00	AVG
2 *	107.6877	67.28	-27.61	39.67	48.00	-8.33	AVG
3	268.4853	33.40	-28.91	4.49	46.00	-41.51	AVG
4	360.4476	32.76	-26.80	5.96	46.00	-40.04	AVG
5	550.9480	31.23	-22.85	8.38	46.00	-37.62	AVG
6	989.5355	30.47	-17.60	12.87	54.00	-41.13	AVG

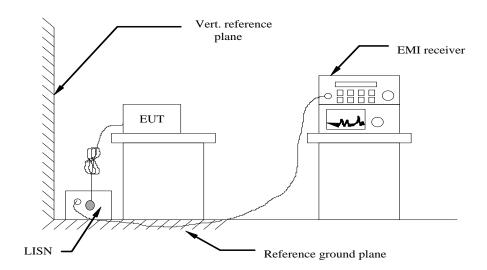
No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	46.9948	49.41	-28.86	20.55	40.00	-19.45	peak
2 *	107.5101	82.38	-27.60	54.78	68.00	-13.22	peak
3	262.8955	44.09	-29.03	15.06	46.00	-30.94	peak
4	510.0436	42.85	-23.75	19.10	46.00	-26.90	peak
5	616.3718	42.76	-21.62	21.14	46.00	-24.86	peak
6	827.4934	41.68	-19.21	22.47	46.00	-23.53	peak

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	43.8119	39.58	-29.14	10.44	40.00	-29.56	AVG
2 *	107.5101	67.22	-27.60	39.62	48.00	-8.38	AVG
3	116.1321	36.18	-28.79	7.39	43.50	-36.11	AVG
4	298.2681	33.43	-28.26	5.17	46.00	-40.83	AVG
5	535.7073	31.38	-23.19	8.19	46.00	-37.81	AVG
6	900.1474	30.24	-18.28	11.96	46.00	-34.04	AVG

Note: 1) The result below 30MHz and above 1GHz is too low so there is no record. The test setup show in the test setup photograph is the worst case.

- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3). Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level.

6. POWER LINE CONDUCTED EMISSIONS(Not Applicable)


6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

6.2 Block Diagram of Test Setup

6.3 Test Results

DC power, not applicable.

7. ANTENNA REQUIREMENT

7.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

7.2 Antenna Connected Construction

7.2.1. Standard Applicable

According to § 15.203 & RSS-Gen Issue 4, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 1.2dBi, and the antenna is an internal antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

7.2.3. Results: Compliance.

8. LIST OF TEST EQUIPMENT

Ite m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R&S	NRVS	100444	2020-06-22	2021-06-21
2	Power Sensor	R&S	NRV-Z81	100458	2020-06-22	2021-06-21
3	Power Sensor	R&S	NRV-Z32	10057	2020-06-22	2021-06-21
4	Test Software	Tonscend	JS1120-2	/	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-2	N/A	2020-06-22	2021-06-21
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2020-11-22	2021-11-21
7	DC Power Supply	Agilent	E3642A	N/A	2020-11-13	2021-11-12
8	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
9	3m Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2020-06-22	2021-06-21
10	Positioning Controller	MF	MF7082	MF78020803	2020-06-22	2021-06-21
11	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-07-26	2021-07-25
12	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
13	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
14	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020-09-20	2021-09-19
15	Broadband Preamplifier	SCHWARZBECK	BBV9745	9719-025	2020-06-22	2021-06-21
16	EMI Test Receiver	R&S	ESR 7	101181	2020-06-22	2021-06-21
17	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2020-11-13	2021-11-12
18	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-22	2021-06-21
19	RF Cable-R03m	Jye Bao	RG142	CB021	2020-06-22	2021-06-21
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2020-06-22	2021-06-21
21	6dB Attenuator	/	100W/6dB	1172040	2020-06-22	2021-06-21
22	3dB Attenuator	/	2N-3dB	/	2020-06-22	2021-06-21
23	EMI Test Receiver	R&S	ESPI	101840	2020-06-22	2021-06-21
24	Artificial Mains	R&S	ENV216	101288	2020-06-22	2021-06-21
25	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001- 0032	2020-06-22	2021-06-21

Note: All equipment is calibrated through CHINA CEPREI LABORATORY and GUANGZHOU LISAI CALIBRATION AND TEST CO., LTD.

9. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

10. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

11. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----