Maximum Permissible Exposure Report

1. Product Information

EUT : Wireless data logger

Model Number : FlashLink RTL

Model Difference Declaration

Test Model : FlashLink RTL

Power Supply : DC 3.70V by Battery

Hardware version : A80MR41C

Software version : A90_DeltaTrak_L02

GSM

⊠GSM 850

⊠PCS 1900 **BAND** \boxtimes GSM 900

⊠DCS 1800

US-Bands:

GSM 850(UL: 824 – 848 MHz/DL: 869 – 894 MHz)

GSM 1900(UL: 1850 –1910 MHz/DL: 1930 – 1990 MHz) GSM FCC Operation Frequency:

NON US-bands:

GSM 900(UL: 880 – 915 MHz/DL: 925 – 960 MHz) GSM 1800(UL: 1710 – 1785 MHz/DL: 1805 – 1880 MHz)

Channel Separation : 0.2MHz

Modulation Technology : GMSK, 8PSK

> Internal Antenna GSM900: -0.05dBi

Antenna Type And Gain : DCS1800: -0.14dBi

> GSM850: -0.53dBi PCS1900: -0.8dBi

Note: Antenna position refer to EUT Photos.

henzhen HUAK Testing Technology Co., Ltd.	FCC ID: 2ATXY-22361
2. Refer evaluation method	
NSI C95.1–1999: IEEE Standard for Safety Levels with Reselectromagnetic Fields, 3 kHz to 300 GHz. CC KDB publication 447498 D01 General 1 RF Exposure xposure Procedures and Equipment Authorization Policies. CC CFR 47 part1 1.1310: Radiofrequency radiation exposu	Spect to Human Exposure to Radio Frequency Guidance v06: Mobile and Portable Devices R
xposure Procedures and Equipment Authorization Policies. CC CFR 47 part1 1.1310: Radiofrequency radiation exposu	re limits.

3. Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
Limits for Occupational/Controlled Exposure				
0.3 - 3.0	614	1.63	(100) *	6
3.0 - 30	1842/f	4.89/f	(900/f ²)*	6
30 - 300	61.4	0.163	1.0	6
300 – 1500	/	/	f/300	6
1500 - 100,000	/	/	5	6

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
	Limits for Oc	cupational/Control	led Exposure	
0.3 - 3.0	614	1.63	(100)_*	30
3.0 - 30	824/f	2.19/f	(180/f ²)*	30
30 - 300	27.5	0.073	0.2	30
300 – 1500	/	/	f/1500	30
1500 – 100,000	/	/	1.0	30

F=frequency in MHz

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

This Product can only use antennas certificated as follows provided by manufacturer;

Note: The Antenna gain shows in section 1 of this file

^{*=}Plane-wave equivalent power density

6. Max Conducted Power

	Max. Peak Conducted Power (dBm)	Max. Average Burst Power (dBm)
GSM 850	32.89	31.70
PCS 1900	29.12	27.70

7. Manufacturing Tolerance

GSM850

Maximum Output Powe	er(Average)		
Frequency (MHz)	824.2	836.6	848.8
Target (dBm)	31.0	31.0	31.0
Tolerance +(dB)	1.0	1.0	1.0

PCS1900

Maximum Output Po	ower(Average)		
Frequency (MHz)	1850.2	1880	1909.8
Target (dBm)	27.5	27.5	27.5
Tolerance ±(dB)	1.0	1.0	1.0

8. Measurement Results

8.1 Standalone MPE

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

GSM850:

CC 111.0001							
	Outpu	t power	Antenna	Antenna	Duty	MPE	MPE
Frequency(MHz)	dBm	mW	Gain	Gain	Cycle	(mW/cm ²)	Limits
	UDIII	IIIVV	(dBi)	(linear)	Cycle	(IIIVV/CIII)	(mW/cm ²)
824.2	32.00	1584.8932	-0.53	0.8851	100%	0.2792	0.5495
836.6	32.00	1584.8932	-0.53	0.8851	100%	0.2792	0.5577
848.8	32.00	1584.8932	-0.53	0.8851	200%	0.2792	0.5659

PCS1900:

	Output	power	Antenna	Antenna	Duty	MPE	MPE
Frequency(MHz)	dBm	mW	Gain (dBi)	Gain (linear)	Cycle	(mW/cm ²)	Limits (mW/cm ²)
1850.2	28.50	707.9458	-0.80	0.8318	100%	0.1172	1.0000
1880	28.50	707.9458	-0.80	0.8318	100%	0.1172	1.0000
1909.8	28.50	707.9458	-0.80	0.8318	200%	0.1172	1.0000

Remark:

- 1. Output power including tune-up tolerance;
- 2. MPE evaluate distance is 20cm from user manual provide by manufacturer;

8.2 Simultaneous Transmission MPE

N/A

_	^		
u	1 'An	~lii	CIAN
J.	CUII	u	sion

Compliance	THE END OF REPORT
	TIL END OF INET ONT