Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Shenzhen Certificate No. D750V3-1099_Dec24 #### CALIBRATION CERTIFICATE Object D750V3 - SN: 1099 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date December 13, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | l ID | Cal Date (Certificate No.) | Scheduled Cal | |------------|--|--| | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | SN: 1249 | | Sep-25 | | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | SN: 1836 | | Oct-25 | | | SN: 101859
SN: 101832
SN: 1152
SN: 1016
SN: 1249
SN: 7349 | SN: 100967 28-Mar-24 (No. 217-04038) SN: 101859 22-Jul-24 (No. 4030A315008547) SN: 101832 25-Jan-24 (No. 4030-315007551) SN: 1152 28-Mar-24 (No. 217-04050) SN: 1016 24-Sep-24 (No. OCP-DAK12-1016_Sep24) SN: 1249 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) SN: 7349 03-Jun-24 (No. EX3-7349_Jun24) | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch: SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch_SMA-240522) | May-25 | Name Function Signature Calibrated by Krešimir Franjić Laboratory Technician Approved by Sven Kühn Technical Manager Issued: December 13, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1099_Dec24 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation DASY System Handbook ## Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. December 13, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 6mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 750MHz ±1MHz | | ## Head TSL parameters at 750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.890 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 41.8 ±6% | 0.870 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 2.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.28 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 1.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.37 W/kg ±16.5% (k = 2) | Certificate No: D750V3-1099_Dec24 December 13, 2024 ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 750 MHz | Impedance | 54.7 Ω – 1.5 jΩ | | |-------------|-----------------|--| | Return Loss | -26.5 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.035 ns | |------------------------------------|----------| | Liectifical Delay (offe direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D750V3-1099_Dec24 Page 4 of 6 ### System Performance Check Report | Summary | | | | | | |---------------------------------------|-----------------|---------------------------------|-------------------|------------------------|------------------| | Dipole | Frequency [MHz] | TSL | Power [dBm] | | | | D750V3 - SN1099 | 750 | HSL | 24 | | | | Exposure Conditions | | , | | | | | at a series was Took Distance [cont.] | Rand Croup IIID | Fraguency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 15 | | CW, 0 | 750, 0 | 9.9 | 0.87 | 41.8 | | Hardware Setup | | | | |----------------|--------------------|-----------------------------|---------------------------| | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | Flat V4.9 mod | HSL, 2024-12-13 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-10-28 | | | Zoom Scan | |---------------------|-----------------| | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 x 6.0 x 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection
 VMS + 6p | | Scan Method | Measured | | | Zoom Scan | |---------------------|---------------------| | Date | 2024-12-13 | | psSAR1g [W/Kg] | 2.08 | | psSAR10g [W/Kg] | 1.35 | | Power Drift [dB] | 0.01 | | Power Scaling | Disabled | | Scaling Factor [d8] | | | TSL Correction | Positive / Negative | 0 dB = 3.21 W/Kg December 13, 2024 ## Impedance Measurement Plot for Head TSL Certificate No: D750V3-1099_Dec24 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Kunshan City** Certificate No. D835V2-4d298 Jan24 ## CALIBRATION CERTIFICATE Object D835V2 - SN:4d298 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 26, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | DAE4 | SN: 601 | 30-Jan-24 (No. DAE4-601_Jan24) | Jan-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | farther > | | Approved by | 0 1/21 | | X | | Approved by: | Sven Kühn | Technical Manager | 1/1000 | | | | / | V. COS | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d298_Jan24 Issued: January 31, 2024 Report No.: FA531202 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d298 Jan24 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.6 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.89 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.45 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d298_Jan24 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.6 Ω - 2.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.5 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.393 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | SFLAG | Certificate No: D835V2-4d298_Jan24 Appendix C Report No.: FA531202 ### DASY5 Validation Report for Head TSL Date: 26.01.2024 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d298 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 42.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 03.11.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 03.10.2023 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.40 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.68 W/kg ## SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.62 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 67% Maximum value of SAR (measured) = 3.25 W/kg Certificate No: D835V2-4d298 Jan24 ## Impedance Measurement Plot for Head TSL # Appendix: Transfer Calibration at Four Validation Locations on SAM Head1 #### **Evaluation Condition** | For usage with cSAR3DV2-R/L | |-----------------------------| | | ## SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W
| 9.40 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.87 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Neck ≅ H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.38 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Ear ≅ D90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 8.06 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | Certificate No: D835V2-4d298_Jan24 Additional assessments outside the current scope of SCS 0108 # D835V2, Serial No. 4d298 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | 1 / | | | <u> </u> | | | | |---------------------------|-----------------|----------------------------|----------------|-------|---------------------|-------| | D835V2 – serial no. 4d298 | | | | | | | | | | | 835 | Head | | | | Date of | Return-Loss | Delta | Real Impedance | Delta | Imaginary Impedance | Delta | | Measurement | (dB) | (dB) (%) (ohm) (ohm) (ohm) | | | | | | 2024.1.26 | -30.5 48.6 -2.6 | | | | | | | 2025.1.25 | -31.9 | 4.6% | 48.4 | 0.2 | -3.7 | 1.1 | | | | | | | | | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> 835V2, serial no. 4d298 835MHz - Head----2025.1.25 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst s Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen Certificate No. D1750V2-1137_Oct24 ### CALIBRATION CERTIFICATE Object D1750V2 - SN: 1137 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date October 15, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | OCP DAK-3.5 | SN: 1249 | 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) | Sep-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 10-Jan-24 (No. DAE4ip-1836_Jan24) | Jan-25 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch: SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch SMA-240522) | May-25 | Signature Name Function Calibrated by Paulo Pina Laboratory Technician Approved by Sven Kühn Technical Manager Issued: October 15, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528,"Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation** · DASY System Handbook ### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. D1750V2 - SN: 1137 October 15, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | | | |------------------------------|--------------------------|-------------------------------------|------------------------|--| | Extrapolation | Advanced Extrapolation | | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | | | Distance Dipole Center - TSL | 10 mm | with spacer | | | | Zoom Scan Resolution | dx, dy = 6mm, dz = 1.5mm | Graded Ratio = 1.5 mm (Z direction) | | | | Frequency | 1750MHz ±1MHz | | | | ## Head TSL parameters at 1750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 40.6 ±6% | 1.33 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 1750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 9.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.8 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 4.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.6 W/kg ±16.5% (k = 2) | Certificate No: D1750V2-1137_Oct24 D1750V2 - SN: 1137 October 15, 2024 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 1750 MHz | Impedance | 49.2 Ω – 1.6 jΩ | |-------------|-----------------| | Return Loss | -34.9 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.222 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the
dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by SPEAG | Manufactured by | SPEAG | |-----------------------|-----------------|-------| |-----------------------|-----------------|-------| Certificate No: D1750V2-1137_Oct24 Page 4 of 6 D1750V2 - SN: 1137 October 15, 2024 #### System Performance Check Report | Su | m | m | a | rv. | |----|---|---|----|-----| | ъч | | | 44 | ı y | | Dipole | Frequency [MHz] | TSL | Power [dBm] | |------------------|-----------------|-----|-------------| | D1750V2 - SN1137 | 1750 | HSL | 24 | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 10 | | CW, 0 | 1750, 0 | 7.96 | 1.33 | 40.6 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |----------------|--------------------|-----------------------------|---------------------------|--| | MFP V8.0 Right | HSL, 2024-10-15 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-01-10 | | #### Scans Setup | | Zoom Scan | |---------------------|-----------------| | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 x 6.0 x 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | #### Measurement Results | | Zoom Scan | |---------------------|---------------------| | Date | 2024-10-15 | | psSAR1g [W/Kg] | 9.24 | | psSAR10g [W/Kg] | 4.93 | | Power Drift [d8] | 0.01 | | Power Scaling | Disabled | | Scaling Factor (dB) | | | TSL Correction | Positive / Negative | 0 dB = 16.0 W/Kg D1750V2 - SN: 1137 October 15, 2024 ## Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1137_Oct24 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen Certificate No. D1900V2-5d182_Dec24 #### **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d182 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date December 16, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | OCP DAK-3.5 | SN: 1249 | 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) | Sep-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 28-Oct-24 (No. DAE4ip-1836_Oct24) | Oct-25 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch; SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch_SMA-240522) | May-25 | Name Function Signature Calibrated by Claudio Leubler Laboratory Technician Approved by Sven Kühn Technical Manager Issued: December 18, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d182_Dec24 Page 1 of 6 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation** DASY System Handbook ## Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d182_Dec24 Page 2 of 6 December 16, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 6mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 1900MHz ±1MHz | | ## Head TSL parameters at 1900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 39.6 ±6% | 1.41 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 1900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.8 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 5.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 W/kg ±16.5% (k = 2) | Certificate No: D1900V2-5d182_Dec24 D1900V2 - SN: 5d182 December 16, 2024 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 1900 MHz | Impedance | 52.1 Ω+3.9 jΩ | |-------------|---------------| | Return Loss | -27.2 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the
dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D1900V2-5d182_Dec24 Page 4 of 6 D1900V2 - SN: 5d182 December 16, 2024 #### System Performance Check Report #### Summary | Dipole | Frequency [MHz] | TSL | Power [dBm] | | |-------------------|-----------------|-----|-------------|--| | D1900V2 - SN5d182 | 1900 | HSL | 24 | | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 10 | | CW, 0 | 1900, 0 | 7.73 | 1.41 | 39.6 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |----------------|--------------------|-----------------------------|---------------------------|--| | MFP V8.0 Right | HSL, 2024-12-16 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-10-28 | | #### Scans Setup | | Zoom Scan | |---------------------|-----------------| | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 x 6.0 x 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | #### Measurement Results | | Zoom Scan | |---------------------|---------------------| | Date | 2024-12-16 | | psSAR1g [W/Kg] | 10.0 | | psSAR10g [W/Kg] | 5.27 | | Power Drift [dB] | 0.02 | | Power Scaling | Disabled | | Scaling Factor [dB] | | | TSL Correction | Positive / Negative | 0 dB = 18.3 W/Kg ## Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d182_Dec24 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Sporton **Kunshan City** Certificate No. D2450V2-1095_Feb24 ## CALIBRATION CERTIFICATE Object D2450V2 - SN:1095 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 08, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | DAE4 | SN: 601 | 30-Jan-24 (No. DAE4-601_Jan24) | Jan-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | tan () | | Approved by: | Sven Kühn | Technical Manager | | Issued: February 9, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Report No.: FA531202 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-1095_Feb24 Page 2 of 7 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3 Ω + 6.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.147 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | · · | | |-----------------|-------| | Manufactured by | SPEAG | Appendix C Report No.: FA531202 ### **DASY5 Validation Report
for Head TSL** Date: 08.02.2024 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1095 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.01.2024 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 26.7 W/kg #### SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.27 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.38 dBW/kg ## Impedance Measurement Plot for Head TSL ## Appendix: Transfer Calibration at Four Validation Locations on SAM Head1 #### **Evaluation Condition** | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| |---------|------------------|-----------------------------| ## SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 56.1 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 57.2 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Neck ≅ H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 53.9 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ## SAR result with SAM Head (Ear \cong D90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 34.5 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | Additional assessments outside the current scope of SCS 0108 ## D2450V2, Serial No. 1095 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | D2450V2 - | - serial no. 109 | 95 | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------|----------------| | | 2450 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2024.2.8 | -24.264 | | 51.343 | | 6.0670 | | | 2025.2.7 | -24.840 | 2% | 52.727 | 1.384 | 6.5740 | 0.507 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ## Dipole Verification Data> D2450V2, serial no. 1095 2450MHz – Head-2025.2.7 ## Calibration Laboratory of Schmid & Partner Engineering AG Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Kunshan City** Certificate No. D2600V2-1112_Dec23 ## CALIBRATION CERTIFICATE Object D2600V2 - SN:1112 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: December 18, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | DAE4 | SN: 601 | 03-Oct-23 (No. DAE4-601_Oct23) | Oct-24 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Krešimir Franjić | Laboratory Technician | X | | Approved by: | Sven Kühn | Technical Manager | | Issued: December 18, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1112 Dec23 Page 1 of 6 Report No.: FA531202 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1112 Dec23 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 2.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | ## SAR result with Head TSL |
SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1112_Dec23