

FCC Test Report

Test report
On Behalf of

Hangzhou Tanlink Technology Co.,Ltd.

For

Dash Cam

Model No.: ViewClear 70, ViewClear 70 Pro, ViewClear 70 Pro 3CH, A3, F77, F77 V2, X3 Pro, F17 Pro, F17 Elite, VisionPano 20, VisionPano 30, VisionPano 40, VisionPano 40 Lite, VisionPano 360, VisionPano 360X

FCC ID: 2BBBN-VC70

Prepared For: Hangzhou Tanlink Technology Co.,Ltd.

Room 701, South Building, Building 3, No.16 Longtan Road, Canggian Street,

Yuhang District, Hangzhou, Zhejiang, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Dec. 23, 2024 ~ Jan. 08, 2025

Date of Report: Jan. 08, 2025

Report Number: HK2412237988-2E

Test Result Certification

Applicant's name:	Hangzhou Tanli	nk Technology C	o.,Ltd.

Room 701, South Building, Building 3, No.16 Longtan Road, Address.....

Canggian Street, Yuhang District, Hangzhou, Zhejiang, China

Report No.: HK2412237988-2E

Manufacturer's Name.....: Hangzhou Tanlink Technology Co.,Ltd.

Room 701, South Building, Building 3, No.16 Longtan Road, Address.....

Cangqian Street, Yuhang District, Hangzhou, Zhejiang, China

Product description

Standards.....

Trade Mark: Redtiger

Product name Dash Cam

ViewClear 70, ViewClear 70 Pro, ViewClear 70 Pro 3CH, A3,

F77, F77 V2, X3 Pro, F17 Pro, F17 Elite, VisionPano 20, Model and/or type reference:

VisionPano 30, VisionPano 40, VisionPano 40 Lite, VisionPano

360, VisionPano 360X

FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

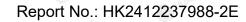
Date (s) of performance of tests.....: Dec. 23, 2024 ~ Jan. 08, 2025

Date of Issue: Jan. 08, 2025

Test Result..... **Pass**

Testing Engineer

(Len Liao)


Technical Manager

(Sliver Wan)

Authorized Signatory:

(Jason Zhou)

Table of Contents

1.		Result Summary			
	1.1. T	est Procedures and Results	TSTING.	J. F. STIN	5
	1.2. lı	nformation of the Test Laboratory	ALIAN.	(A) HUAN	5
	1.3. N	leasurement Uncertainty			6
2.		Description			
		General Description of EUT			
	2.2. C	Operation Frequency Each of Channel	TSTING .		8
	2.3. C	peration of EUT During Testing		THE STATE	8
	2.4. D	Description of Test Setup	WINK TES	HUAK	9
	2.5. C	Description of Support Units			10
3.	Gen	era Information			11
	3.1. T	est Environment and Mode	TESTING	TESTIN	11
4.		Results and Measurement Data			
	4.1. C	Conducted Emission	N. F.STING		14
		laximum Conducted Output Power			
		db Emission Bandwidth			
	4.4. 2	6db Bandwidth and 99% Occupied Bandwidth	(ESTIL		27
	4.5. P	ower Spectral Density	TETING	AK TESTING	28
	4.6. E	and Edge	HUAK.	M HUM	35
	4.7. S	purious Emission			48
		requency Stability Measurement			
	4.9. A	Intenna Requirement	WORK TESTING	TESTIN	68
5.	Test	Setup Photos of the EUT			69
C TING	Dhai	too of the EUT			70

Page 4 of 70 Report No.: HK2412237988-2E

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jan. 08, 2025	Jason Zhou
STNG	STNG	STING	

1. Test Result Summary

1.1. Test Procedures and Results

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	N/A
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A MAKTE
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
^G 1	Conducted Emission	±0.37dB
2	RF power, conducted	±3.35dB
3	Spurious emissions, conducted	±2.20dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2. EUT Description

2.1. General Description of EUT

Equipment:	Dash Cam
Model Name:	ViewClear 70
Serial Models:	ViewClear 70 Pro, ViewClear 70 Pro 3CH, A3, F77, F77 V2, X3 Pro, F17 Pro, F17 Elite, VisionPano 20, VisionPano 30, VisionPano 40, VisionPano 40 Lite, VisionPano 360, VisionPano 360X
Model Difference:	All model's the function, software and electric circuit are the same, only with a product model named different. Test sample mode: ViewClear 70.
Trade Mark:	Redtiger
FCC ID:	2BBBN-VC70
Operation Frequency:	IEEE 802.11a/n/ac (HT20)5.745GHz-5.825GHz IEEE 802.11n/ac (HT40)5.755GHz-5.795GHz
Modulation Technology:	IEEE 802.11a/n/ac
Modulation Type:	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM
Antenna Type:	FPC Antenna
Antenna Gain:	1.08dBi
Power Source:	DC 12V From Car Charger
Power Supply:	DC 12V From Car Charger
Hardware Version:	V2.0
Software Version:	V2.0

Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

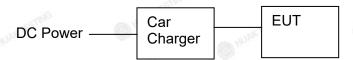
2.2. Operation Frequency Each of Channel

802.11a/802.11n(HT20) 802.11ac(HT20)			1n(HT40) Iac(HT40)
Channel	Frequency	Channel	Frequency
149	5745	151	5755
153	5765	159	5795
157	5785	AKTES	(a)
161	5805		THE
165	5825		HUAKTES

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT During Testing


Band IV (5725 - 5850 MHz)						
For	For 802.11a/n (HT20)/ac(HT20)					
Channel Number	Channel	Frequency (MHz)				
149	Low	5745				
157	Mid	5785				
165	High	5825				

- L N		4	4	4.1			
For 802.11n (HT40)/ ac(HT40)							
	annel mber	ut The Ch	annel	Frequency (N	MHz)		
HUAK TES	151		_OW	5755	HUAKTES		
	159	m ^G		5795			

2.4. Description of Test Setup

Operation of EUT during testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
pie	1	Dash Cam	Redtiger	ViewClear 70	N/A	TESTING EUT
0.5	2	Car Charger	N/A	N/A	Input: DC 12-24V USB Output: DC 5V 2.0A LINE Output: DC 5V 2.5A	Accessory
Ī	HUAKTE	HUAKTL		WAK TES!	HUAKTES	HUAKTE

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6db Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

3. Genera Information

3.1. Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations
101-7	100

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

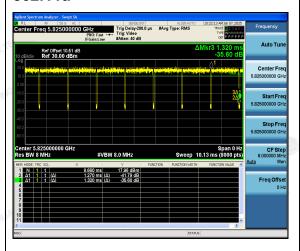
	Mode	-nG	Data rate	
TEST	802.11a	HUAKTES	6 Mbps	HUAKTES
MG	802.11n(HT20)		MCS0	
	802.11n(HT40)	W TESTING	MCS0	K TESTING
	802.11ac(HT20)/ac(HT40)	NOW.	MCS0	(1) HUAN

Final Test Mode:

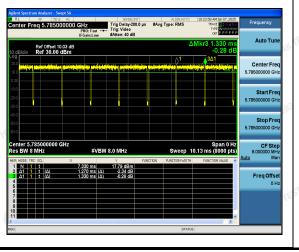
Operation mode:	Keep the EUT in continuous transmitting
operation meas:	with modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



Mode Test Duty Cycle:


Mode	Duty Cycle	Duty Cycle Factor (dB)
802.11a	0.96	-0.18
802.11n(HT20)	0.95	-0.22
802.11n(HT40)	0.93	-0.32
802.11ac(HT20)	0.95	-0.22
802.11ac(HT40)	0.93	-0.32

Test plots as follows:

802.11a

802.11n(HT20)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4. Test Results and Measurement Data

4.1. Conducted Emission

4.1.1. Test Specification

CETHE CETHER	W. C. C. The	V FGTI	- V (S)	III TESTI			
Test Requirement:	FCC Part15 C	Section	15.207	HUAR			
Test Method:	ANSI C63.10:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz,	VBW=30	kHz, Sweep time	=auto			
Limits:	Frequency (MHz 0.15-0 0.5-5 5-30	.5		Average 56 to 46* 46 50			
Test Setup:	Remark E.U.T Equipment U LISN Line Impeden Test table height=0.	ce Stabilization Ne	EMI Receiver	— AC power			
Test Mode:	Tx Mode						
Test Procedure:	power throu (L.I.S.N.). impedance 2. The periphe power throu coupling im refer to the	igh a line This pro for the mo eral device ugh a LIS pedance e block	lators are connectimpedance stab vides a 50ohm easuring equipments are also connects SN that provides with 50ohm term diagram of the	ilization network /50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please			
	conducted in emission, the interface	of A.C. interferen ne relative cables	line are checke ce. In order to fire positions of eque must be chang on conducted me	nd the maximum ipment and all of ed according to			

4.1.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESR	HKE-005	Feb. 20, 2024	Feb. 19, 2025	
LISN	R&S	ENV216	HKE-002	Feb. 20, 2024	Feb. 19, 2025	
LISN	R&S	ENV216	HKE-059	Feb. 20, 2024	Feb. 19, 2025	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 20, 2024	Feb. 19, 2025	
EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	N/A	N/A	
10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 20, 2024	Feb. 19, 2025	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Report No.: HK2412237988-2E Page 16 of 70

4.1.3. Test data

Not applicable Note: Since EUT is only for on-car use, so this test item not applicable.

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E				
Limit:	Frequency Band (MHz)				
	5725-5850 1 W				
Test Setup:	Power meter EUT				
	Hr. OHr. OHr.				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS				
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.2.2. Test Instruments

2007		2007	10323	75/8/ r. 10	(0)		
RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025		
Power meter	Agilent	E4419B	HKE-085	Feb. 20, 2024	Feb. 19, 2025		
Power Sensor	Agilent	E9300A	HKE-086	Feb. 20, 2024	Feb. 19, 2025		
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025		
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

	Configura	tion Band IV (5725 - 5850 M	Hz)		
Mode	Mode Test Maximun Channel Output P		FCC Limit (dBm)	Result	
802.11a	CH149	8.93	30	PASS	
802.11a	CH157	6.40	30	PASS	
802.11a	CH165	7.20	30	PASS	
802.11n(HT20)	CH149	7.30	30	PASS	
802.11n(HT20)	© CH157	6.79	30	PASS	
802.11n(HT20)	CH165	7.95	30	PASS	
802.11n(HT40)	CH151	6.68	30	PASS	
802.11n(HT40)	CH159	8.49	30	PASS	
802.11ac(HT20)	CH149	7.74	30	PASS	
802.11ac(HT20)	CH157	6.84	30	PASS	
802.11ac(HT20)	CH165	7.63	30	PASS	
802.11ac(HT40)	CH151	6.61	30	PASS	
802.11ac(HT40)	CH159	6.88	30	PASS	
Note: 1.The test res	sults including	g the cable lose.	TESTING	TESTI	

4.3. 6db Emission Bandwidth

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

4.3.2. Test Instruments

200		RF Test R	oom.	26.237	2000 -
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.3.3. Test data

	Band IV (5725 - 5850 MHz)					
Mode	Test Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result	
802.11a	CH149	5745	16.40	0.5	PASS	
802.11a	CH157	5785	16.40	0.5	PASS	
802.11a	CH165	5825	16.36	0.5	PASS	
802.11n(HT20)	CH149	5745	17.64	(STINE) 0.5	PASS	
802.11n(HT20)	CH157	5785	17.60	0.5	PASS	
802.11n(HT20)	CH165	5825	17.60	0.5	PASS	
802.11n(HT40)	CH151	5755	36.40	0.5	PASS	
802.11n(HT40)	CH159	5795	36.24	0.5	PASS	
802.11ac(HT20)	CH149	5745	17.60	0.5	PASS	
802.11ac(HT20)	CH157	5785	17.60	0.5	PASS	
802.11ac(HT20)	CH165	5825	17.60	0.5	PASS	
802.11ac(HT40)	CH151	5755	36.40	0.5	PASS	
802.11ac(HT40)	CH159	5795	36.24	0.5	PASS	

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.4. 26db Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	No restriction limits
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	N/A TESTING THE THE THE THE THE THE THE THE THE

4.4.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025	
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025	
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.5. Power Spectral Density

4.5.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F				
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 				
Test Result:	PASS				

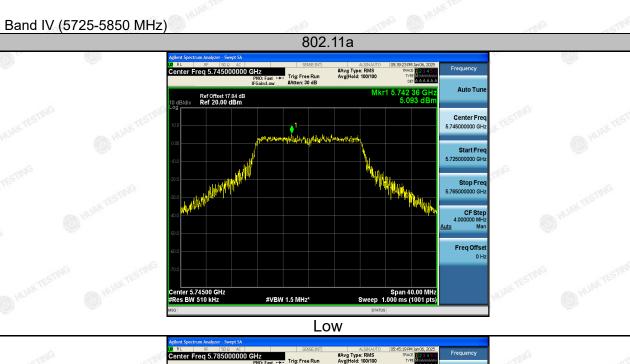
4.5.2. Test Instruments

RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025			
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025			
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025			
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A			

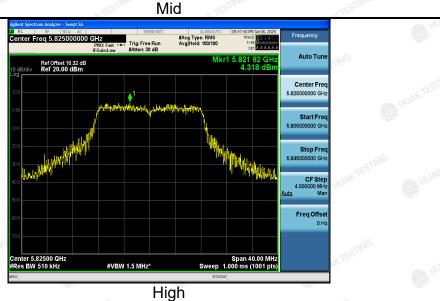
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.5.3. Test data

Configuration Band IV (5725 - 5850 MHz)								
Mode	Test Channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result		
802.11a	CH149	5.09	-0.086	5.004	30 1151	PASS		
802.11a	CH157	5.20	-0.086	5.114	30	PASS		
802.11a	CH165	4.32	-0.086	4.234	30	PASS		
802.11n(HT20)	CH149	5.68	-0.086	5.594	30	PASS		
802.11n(HT20)	CH157	4.94	-0.086	4.854	30	PASS		
802.11n(HT20)	CH165	4.03	-0.086	3.944	30	PASS		
802.11n(HT40)	CH151	4.89	-0.086	4.804	30 string	PASS		
802.11n(HT40)	CH159	4.85	-0.086	4.764	30	PASS		
802.11ac(HT20)	CH149	5.00	-0.086	4.914	30	PASS		
802.11ac(HT20)	CH157	4.99	-0.086	4.904	30 ,,,,	PASS		
802.11ac(HT20)	CH165	3.67	-0.086	3.584	30	PASS		
802.11ac(HT40)	CH151	5.04	-0.086	4.954	30	PASS		
802.11ac(HT40)	CH159	4.54	-0.086	4.454	30	PASS		

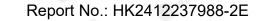

Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

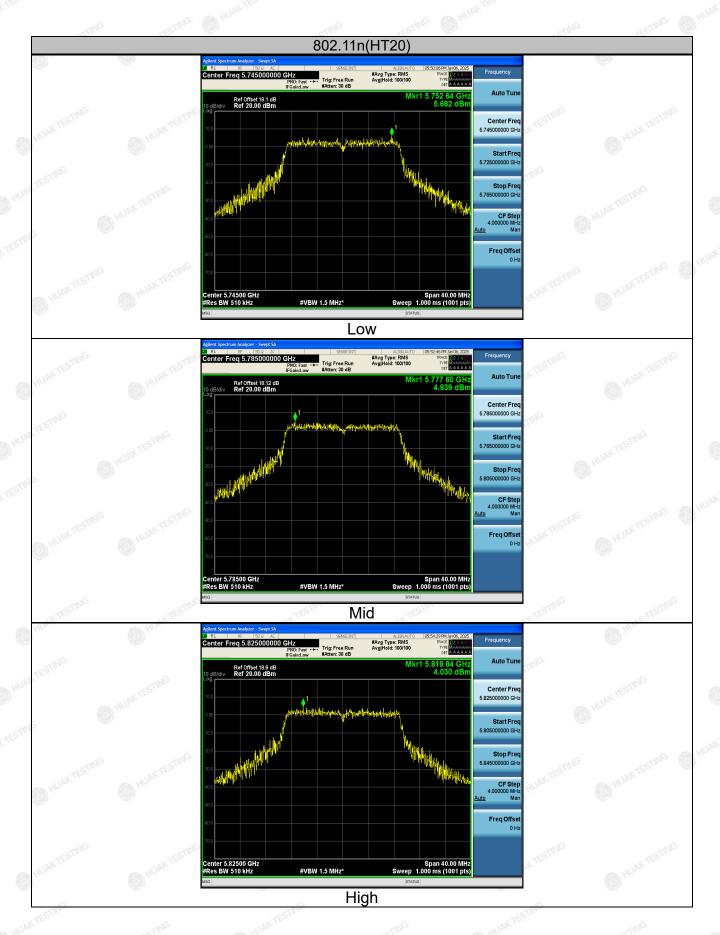
Test plots as follows:

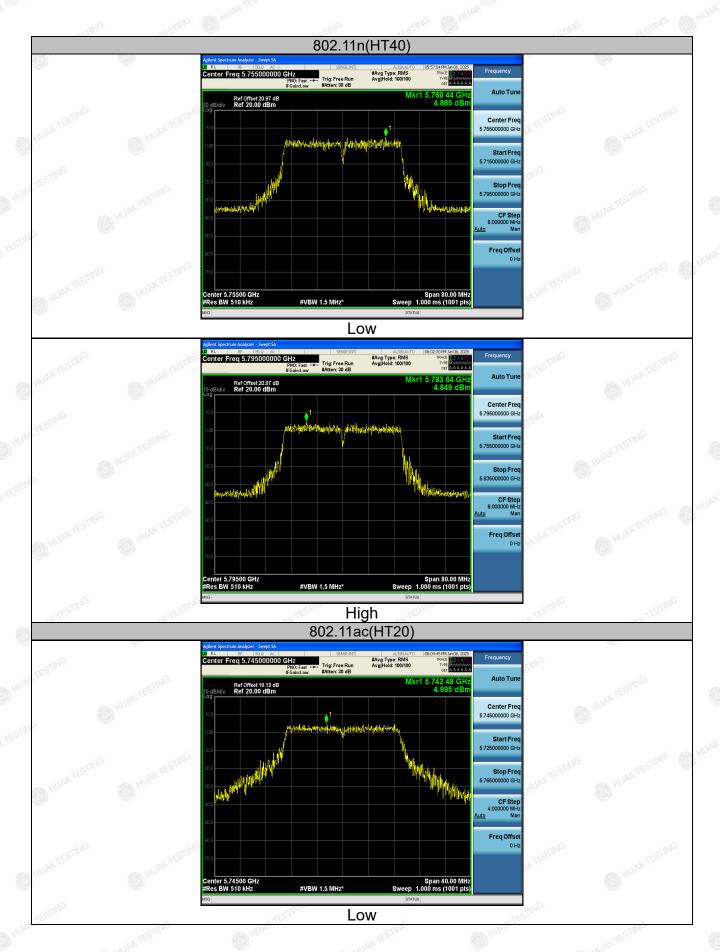


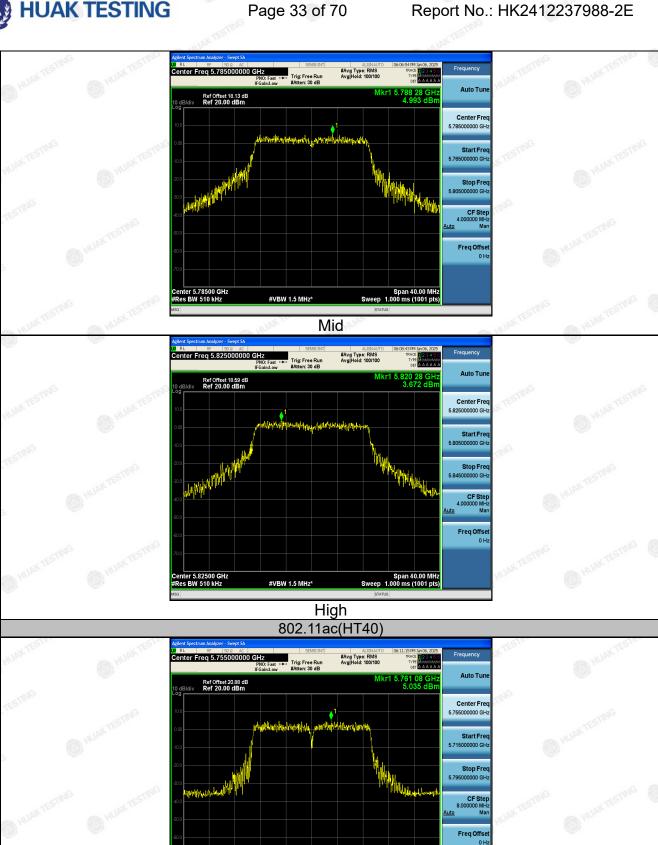
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

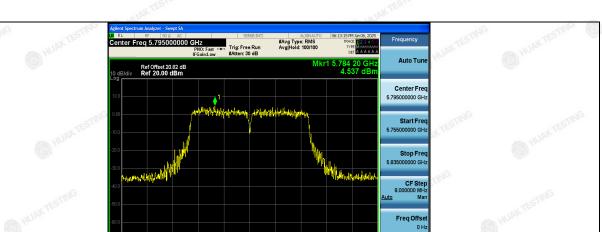







The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Low

Page 34 of 70

High

Report No.: HK2412237988-2E

4.6. Band Edge

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407			
Test Method:	ANSI C63.10 2013			
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.			
Test Setup:	Ant. feed point 1.4 m Ground Plane Receiver Amp.			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	1. The EUT was placed on the top of a rotating table of meters above the ground at a 3 meter camber. The tawas rotated 360 degrees to determine the position of highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted of the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arrang to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hole Mode.			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.

Test Result:

PASS

Report No.: HK2412237988-2E

4.6.2. Test Instruments

	Ra	diated Emission	Test Site (96	6)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A
RSE Test Software	Tonscend	JS36-RSE 5.0.	HKE-184	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	50.96	-2.06	48.9	68.2	-19.3	peak
5700	82.14	-1.96	80.18	105.2	-25.02	peak
5720	85.34	-2.87	82.47	110.8	-28.33	peak
5725	101.21	-2.14	99.07	122.2	-23.13	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.16	-2.06	48.1	68.2	-20.1	peak
5700	76.91	-1.96	74.95	105.2	-30.25	peak
5720	84.72	-2.87	81.85	110.8	-28.95	peak
5725	100.64	-2.14	98.5	122.2	-23.7	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at St. Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	101.53	-1.97	99.56	122.2	-22.64	peak
5855	82.85	-2.13	80.72	110.8	-30.08	peak
5875	83.17	-2.65	80.52	105.2	-24.68	peak
5925	50.39	-2.28	48.11	68.2	-20.09	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	94.91	-1.97	92.94	122.2	-29.26	peak
5855	86.72	-2.13	84.59	110.8	-26.21	peak
5875	77.04	-2.65	74.39	105.2	-30.81	peak
5925	51.71	-2.28	49.43	68.2	-18.77	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: 802.11n/HT20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.46	-2.06	48.4	68.2	-19.8	peak
5700	80.24	-1.96	78.28	105.2	-26.92	peak
5720	91.56	-2.87	88.69	110.8	-22.11	peak
5725	106.11	-2.14	103.97	122.2	-18.23	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.67	-2.06	50.61	68.2	-17.59	peak
5700	88.02	-1.96	86.06	105.2	-19.14	peak
5720	91.65	-2.87	88.78	110.8	-22.02	peak
5725	103.86	-2.14	101.72	122.2	-20.48	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	sw [©] Limits	Margin	Data atom Tisma
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	102.63	-1.97	100.66	122.2	-21.54	peak
5855	87.29	-2.13	85.16	110.8	-25.64	peak
5875	83.72	-2.65	81.07	105.2	-24.13	peak
5925	50.85	-2.28	48.57	68.2	-19.63	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

1100	100	1 1/2	* VI-		100	100
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.63	-1.97	95.66	122.2	-26.54	peak
5855	85.38	-2.13	83.25	110.8	-27.55	peak
5875	82.69	-2.65	80.04	105.2	-25.16	peak
5925	50.38	-2.28	48.1	68.2	-20.1	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11n/HT40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at a Tyra
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.66	-2.06	50.6	68.2	-17.6	peak
5700	89.41	-1.96	87.45	105.2	-17.75	peak
5720	83.76	-2.87	80.89	110.8	-29.91	peak
5725	104.61	-2.14	102.47	122.2	-19.73	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.73	-2.06	48.67	68.2	-19.53	peak
5700	87.61	-1.96	85.65	105.2	-19.55	peak
5720	83.25	-2.87	80.38	110.8	-30.42	peak
5725	101.69	-2.14	99.55	122.2	-22.65	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. A. 46 TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.46	-1.97	96.49	122.2	-25.71	peak
5855	85.15	-2.13	83.02	110.8	-27.78	peak
5875	83.89	-2.65	81.24	105.2	-23.96	peak
5925	51.52	-2.28	49.24	68.2	-18.96	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
TIM	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5850	101.43	-1.97	99.46	122.2	-22.74	peak
	5855	90.61	-2.13	88.48	110.8	-22.32	peak
	5875	84.23	-2.65	81.58	105.2	-23.62	peak
10	5925	50.58	-2.28	48.3	68.2	-19.9	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac/HT20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor Emission Level		Limits	Margin	- Detector Type
(MHz)	Hz) (dBµV) ((dBµV/m)	(dBµV/m)	(dB)	
5650	51.69	-2.06	49.63	68.2	-18.57	peak
5700	77.21	-1.96	75.25	105.2	-29.95	peak
5720	87.86	-2.87	84.99	110.8	-25.81	peak
5725	100.29	-2.14	98.15	122.2	-24.05	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

135	175	172	7.7		170	175
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	50.51	-2.06	48.45	68.2	-19.75	peak
5700	84.36	-1.96	82.4	105.2	-22.8	peak
5720	87.62	-2.87	84.75	110.8	-26.05	peak
5725	102.13	-2.14	99.99	122.2	-22.21	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	ency Meter Reading Factor		Emission Level	Limits	Margin	Data at TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.89	-1.97	97.92	122.2	-24.28	peak
5855	85.65	-2.13	83.52	110.8	-27.28	peak
5875	78.76	-2.65	76.11	105.2	-29.09	peak
5925	51.94	-2.28	49.66	68.2	-18.54	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits 🔍	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5850	100.67	-1.97	98.7	122.2	-23.5	peak
5855	87.04	-2.13	84.91	110.8	-25.89	peak
5875	76.74	-2.65	74.09	105.2	-31.11	peak
5925	50.55	-2.28	48.27	68.2	-19.93	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11ac/HT40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	g Factor Emission Level		Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.24	-2.06	49.18	68.2	-19.02	peak
5700	77.25	-1.96	75.29	105.2	-29.91	peak
5720	89.76	-2.87	86.89	110.8	-23.91	peak
5725	102.42	-2.14	100.28	122.2	-21.92	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

U Co. 1	and the National Control of the Cont	- G-V	a Co		La Cara No.	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	50.56	-2.06	48.5	68.2	-19.7	peak
5700	83.86	-1.96	81.9	105.2	-23.3	peak
5720	90.24	-2.87	87.37	110.8	-23.43	peak
5725	101.29	-2.14	99.15	122.2	-23.05	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	uency Meter Reading Factor		Emission Level	Limits	Margin	D. A. A. TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.38	-1.97	96.41	122.2	-25.79	peak
5855	85.43	-2.13	83.3	110.8	-27.5	peak
5875	80.69	-2.65	78.04	105.2	-27.16	peak
5925	51.21	-2.28	48.93	68.2	-19.27	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

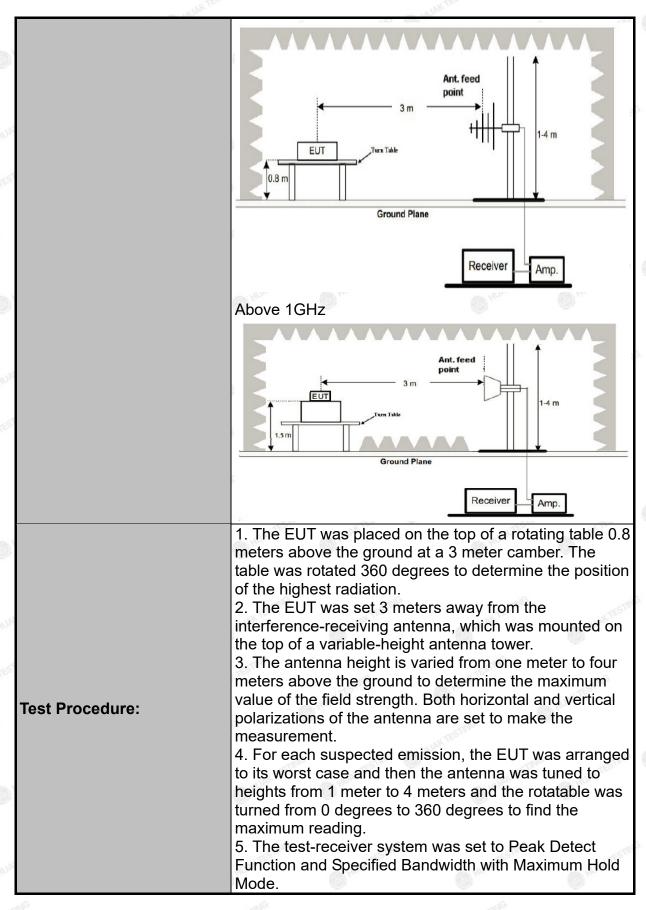
Frequency	Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5850	109.92	-1.97	107.95	122.2	-14.25	peak
5855	87.61	-2.13	85.48	110.8	-25.32	peak
5875	80.72	-2.65	78.07	105.2	-27.13	peak
5925	52.97	-2.28	50.69	68.2	-17.51	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.7. Spurious Emission

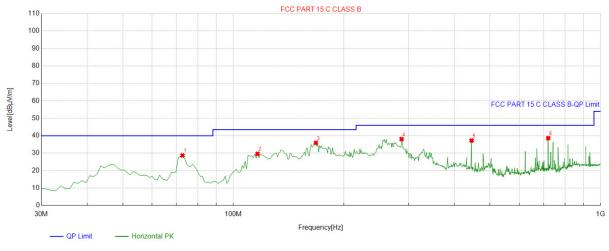

4.7.1.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ction 15	.407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02r0)1		
Frequency Range:	9kHz to 40G	Hz		TESTING	
Measurement Distance:	3 m	CANTESTING	Ø ™	Jan.	LAKTESTING
Antenna Polarization:	Horizontal &	Vertical		m/G	0,110
Operation mode:	Transmitting	mode with	modulat	ion	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz	Detector Quasi-peak Quasi-peak	RBW 200Hz 9kHz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value
receiver octup.	30MHz-1GHz Above 1GHz	Quasi-peak Peak Peak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value
Limit:	an e.i.r.p. of -2 (2) For transmemissions outs an e.i.r.p. of -2 (3) For transmemissions outs an e.i.r.p. of -2 (4) For transmemission MHz or more at to 10 dBm/MH from 25 MHz at to a level of 15 edge, and from linearly to a level.	side of the 5. 27 dBm/MHz itters operaticide of the 5. 27 dBm/MHz itters operaticide of the 5. 27 dBm/MHz itters operaticide of the 5. 27 dBm/MHz itters operatics shall be linus above or belowed to 5. 26 dBm/MHz 27 dBm/MHz 28 dbove or belowed to 5 dBm/MHz 29 dbove or belowed to 5 dBm/MHz 20 dbove or belowed to 5 dBm/MHz 20 dbove or belowed to 5 dBm/MHz 21 dbove or belowed to 5 dBm/MHz 22 dbove or belowed to 5 dBm/MHz 23 dbove or belowed to 5 dBm/MHz 24 dbove or belowed to 5 dBm/MHz 25 dbove or belowed to 5 dBm/MHz 26 dbove or belowed to 5 dBm/MHz 27 dBm/MHz 28 dbove or belowed to 5 dBm/MHz 28 dbove or belowed to 5 dBm/MHz 38 dbove or belowed to 5 dBm/M	15-5.35 G . ng in the { 15-5.35 G . ng in the { 47-5.725 c . ng in the { nited to a l bw the bar above or bw the bar at 5 MHz we or belo n/MHz at 1 w 1GHz a	EHz band 5.25-5.35 EHz band 5.47-5.72 GHz band 6.725-5.8 evel of -2 nd edge in below the nd edge in above on w the band the band	shall not exceed GHz band: All shall not exceed 5 GHz band: All d shall not exceed 5 GHz band: 27 dBm/MHz at 75 ncreasing linearly e band edge, and ncreasing linearly r below the band id edge increasing
Test setup:	For radiated	3 m Turn Table Ground Pla		RX Antenna Receiver	JANA TESTINE
	30MHz to 10	SHz	THE PARTY OF THE P	AKTES	COTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 50 of 70 Report No.: HK2412237988-2E

		6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using pea quasi-peak or average method as specified and then reported in a data sheet.
Test result	s:	PASS

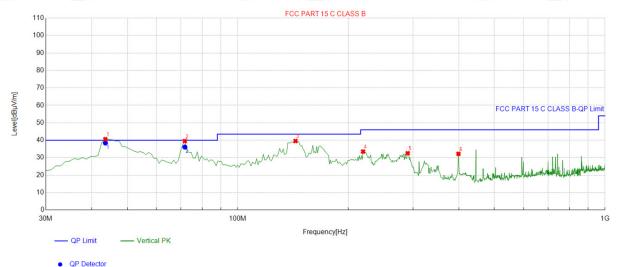

4.7.2. Test Data

Test mode: TX 802.11a 5745MHz

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Below 1GHz


Horizontal


QP Detector

Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	72.722723	-17.59	46.28	28.69	40.00	11.31	100	207	Horizontal		
2	116.41641	-15.95	45.59	29.64	43.50	13.86	100	62	Horizontal		
3	167.87787	-17.31	53.23	35.92	43.50	7.58	100	62	Horizontal		
4	287.30730	-12.28	50.36	38.08	46.00	7.92	100	125	Horizontal		
5	445.57557	-8.66	45.93	37.27	46.00	8.73	100	359	Horizontal		
6	720.36036	-4.25	42.88	38.63	46.00	7.37	100	212	Horizontal		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Suspe	ected List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
110.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	lolanty
1	43.593594	-13.30	53.89	40.59	40.00	-0.59	100	336	Vertical
2	71.751752	-17.38	56.91	39.53	40.00	0.47	100	98	Vertical
3	143.60360	-18.35	57.91	39.56	43.50	3.94	100	359	Vertical
4	219.33933	-14.60	48.12	33.52	46.00	12.48	100	226	Vertical
5	290.22022	-12.03	44.58	32.55	46.00	13.45	100	226	Vertical
6	398.96896	-9.70	41.91	32.21	46.00	13.79	100	268	Vertical
Final	Data List								
NO.	Freq.	Factor	QP Reading	QP Value	QP Limit	QP Margin	Height	Angle	Polarity
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	
1	43.59359	-13.30	51.74	38.44	40.00	1.56	100	336	Vertical
2	71.75175	-17.38	53.48	36.10	40.00	3.90	100	98	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

- 46	403	- N. A.	A D3**		100	
Fre	equency (MHz)	Level@3n	n (dBµV/m)	Limit@3m (dBµV/m)		
			-		700	
			-			
STING	csting	-STING	STING	ESTING.	-STI	
by.	HEAK	HUAK I	HUAK	HUAK I	HUAK	

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	52.33	-4.59	47.74	68.2	-20.46	peak
11096	41.98	4.21	46.19	74	-27.81	peak
11096	40.85	4.21	45.06	54	-8.94	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

West					- Miles	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	52.91	-4.59	48.32	68.2	-19.88	peak
11096	44.95	4.21	49.16	74	-24.84	peak
11096	40.36	4.21	44.57	54	-9.43	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Fragueney	Motor Dooding	Costor	Emission Level	Limita	Morgin	TESTING
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	31
3172	53.94	-4.59	49.35	68.2	-18.85	peak
10523	50.81	4.21	55.02	68.2	-13.18	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.11	-4.59	47.52	68.2	-20.68	peak
10523	50.54	4.21	54.75	68.2	-13.45	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D WAKTEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
2705	52.69	-4.59	48.1	74	-25.9	peak
2705	44.36	-4.59	39.77	54	-14.23	AVG
11717	51.22	4.84	56.06	74	-17.94	peak
11717	40.01	4.84	44.85	54	-9.15	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

1.74	11.14	1.17	1777			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.83	-4.59	49.24	74	-24.76	peak
2705	43.24	-4.59	38.65	54	-15.35	AVG
11717	50.88	4.84	55.72	74	-18.28	peak
11717	40.12	4.84	44.96	54	-9.04	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n/HT20 Mode

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3368	55.77	-4.59	51.18	68.2	-17.02	peak
11096	48.76	4.21	52.97	74	-21.03	peak
11096	40.25	4.21	44.46	54	-9.54	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.38	-4.59	48.79	68.2	-19.41	peak
11096	52.73	4.21	56.94	74	-17.06	peak
11096	41.63	4.21	45.84	54	-8.16	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	56.47	-4.59	51.88	68.2	-16.32	peak
10523	50.81	4.21	55.02	68.2	-13.18	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3172	52.85	-4.59	48.26	68.2	-19.94	peak
10523	50.11	4.21	54.32	68.2	-13.88	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector True
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	52.43	-4.59	47.84	74	-26.16	peak
2705	43.11	-4.59	38.52	54	-15.48	AVG
11717	50.62	4.84	55.46	74 TEST	-18.54	peak
11717	40.26	4.84	45.1	54	-8.9	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = _evel-Limit.

Vertical:

- 4/ /-	1 /2	- 4/ / 1	1		- 17	11
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.52	-4.59	49.93	74	-24.07	peak
2705	42.77	-4.59	38.18	54	₆ -15.82	AVG
11717	53.06	4.84	57.9	74	-16.1	peak
11717	41.54	4.84	46.38	54	-7.62	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed

5.8G 802.11n/HT40 Mode

LOW CH 151

Horizontal:

	ATTING THE PARTY OF THE PARTY O	ACCION PARTY	ACCION AND	.00	Die Alexander	ATTION AND ADDRESS OF THE PARTY
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	56.93	-4.59	52.34	68.2	-15.86	peak
11096	52.42	4.21	56.63	74	-17.37	peak
11096	30.04	4.21	34.25	54	-19.75	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

176	11 7 1	1,7	11/2/2		11 7 2	11
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	59.42	-4.59	54.83	68.2	-13.37	peak
11096	50.69	4.21	54.9	74	_o -19.1	peak
11096	36.58	4.21	40.79	54	-13.21	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

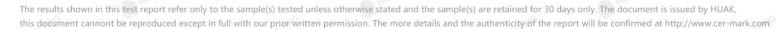
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	60.47	-4.59	55.88	68.2	-12.32	peak
10523	50.92	4.21	55.13	68.2	-13.07	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.


Vertical:

1377	WV		and UV		100	are VVV
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.37	-4.59	47.78	68.2	-20.42	peak
10523	51.55	4.21	55.76	68.2	-12.44	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac/HT20 Mode

LOW CH 149

Horizontal:

474.27	4007	637	400		660	682
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	52.73	-4.59	48.14	68.2	-20.06	peak
11096	45.38	4.21	49.59	74	-24.41	peak
11096	41.74	4.21	45.95	54	-8.05	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	OKTEST
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
53.14	-4.59	48.55	68.2	-19.65	peak
50.45	4.21	54.66	74	-19.34	peak
40.99	4.21	45.2	54	-8.8	AVG
	53.14	(dBµV) (dB) 53.14 -4.59 50.45 4.21	(dBμV) (dB) (dBμV/m) 53.14 -4.59 48.55 50.45 4.21 54.66	(dBμV) (dB) (dBμV/m) (dBμV/m) 53.14 -4.59 48.55 68.2 50.45 4.21 54.66 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 53.14 -4.59 48.55 68.2 -19.65 50.45 4.21 54.66 74 -19.34

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.36	-4.59	49.77	68.2	-18.43	peak
10523	47.66	4.21	51.87	68.2	-16.33	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3172	54.44	-4.59	49.85	68.2	-18.35	peak
10523	50.41	4.21	54.62	68.2	-13.58	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

HIGH CH165

Horizontal:

Frequency	y Meter Reading	Factor	Emission Level	Limits	Margin	D. WAKTEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.46	-4.59	48.87	74	-25.13	peak
2705	41.72	-4.59	37.13	54	-16.87	AVG
11717	52.04	4.84	56.88	74 TEST	-17.12	peak
11717	40.52	4.84	45.36	54	-8.64	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

pit-	11/201	11/2/1	11/24		4124	4/24-12
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.67	-4.59	49.08	74	-24.92	peak
2705	42.28	-4.59	37.69	54	_。 -16.31	AVG
11717	51.17	4.84	56.01	74	-17.99	peak
11717	40.93	4.84	45.77	54	-8.23	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac/HT40 Mode

LOW CH 151

Horizontal:

	Dis. VIV	ALESSO FALL	100 Per 100 Pe	.000	III. PALCO	ATTION AND THE PARTY OF THE PAR
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.11	-4.59	48.52	68.2	-19.68	peak
11096	51.48	4.21	55.69	74	-18.31	peak
11096	40.19	4.21	44.4	54	-9.6	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Del Hulle	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
3368	53.39	-4.59	48.8	68.2	-19.4	peak	
11096	50.53	4.21	54.74	74	-19.26	peak	
11096	42.19	4.21	46.4	54	-7.6	AVG	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	60.36	-4.59	55.77	68.2	-12.43	peak
10523	50.84	4.21	55.05	68.2	-13.15	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	。 (dBμV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.24	-4.59	49.65	68.2	-18.55	peak
10523	51.62	4.21	55.83	68.2	-12.37	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.8. Frequency Stability Measurement

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS IN WILLIAM TESTING WHITE THE WILLIAM TESTING
Remark:	N/A

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	10.2V	5744.991	-9	5825.014	14
5.8G Band	12.0V	5745.008	^{MG} 8	5824.978	-22
	13.8V	5744.988	-12	5824.981	-19

Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.969	-31	5825.011	11
HUAKTE	-20	5745.012	12	5825.016	16
	-10	5744.989	-11	5824.988	-12
V TESTING	O HUAK	5744.971	-29	5824.971	-29
5.8G Band	10	5744.961	-39	5825.013	13
	20	5745.009	9	5824.991	-9
STING - MAKTESTI	30	5744.991	TESTING-9	5824.969	-31
0,"	40	5744.984	-16	5824.962	-38
	50	5744.978	-22	5825.012	12

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: HK2412237988-2E

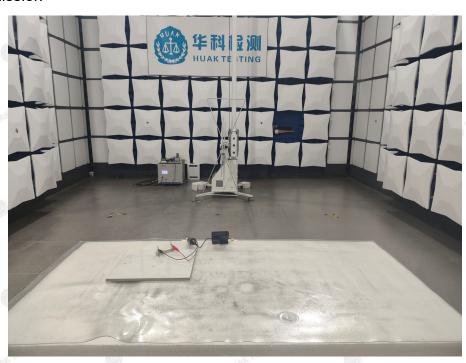
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a FPC Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1.08dBi.

<u>Antenna</u>



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Test Setup Photos of the EUT

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 70 of 70 Report No.: HK2412237988-2E

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

End of test report----