Testing the Future LABORATORIES, INC.

Jinmyung Communications

REVISED EMC TEST REPORT TO 109281-23A

Low Power Television Transmitter Model: Sky1500C*

*(See Appendix A for Manufacturer Declaration)

Tested to The Following Standards:

SpecLimit

FCC Part 74 Subpart G

Report No.: 109281-23B

Date of issue: June 24, 2024

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 46 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Standard / Specification: FCC Part(s) 74 Subpart G	5
Modifications During Testing	6
Conditions During Testing	6
Equipment Under Test (EUT)	7
General Product Information:	7
FCC Part 74 Subpart G	12
74.735(b)(2) Power Limitation	12
74.794(a)(2)(ii) Occupied Bandwidth / Stringent Mask	15
74.794(a)(2)(ii) Spurious Emissions at Antenna Terminal	19
74.794(a)(2)(ii) Field Strength of Spurious Radiation	24
74.794(b)(1) Radio Navigation Satellite Service Bands (GPS)	33
74.795(b)(4) Frequency Tolerance	36
Appendix A: Manufacturer Declaration	40
Appendix B: Modifications Made During Testing	41
Supplemental Information	45
Measurement Uncertainty	45
Emissions Test Details	45

Administrative Information

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Jinmyung Communications

A-907 Technopark, 697 Pangyo-ro,

Bundang-gu, Seongnam-si, 13511, Korea

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

Representative (s): Project Number: 109281

Jinmyung Communications – Haesoo Kim
JS Engineering – Jim Stenberg

Customer Reference Number: ACH 2-7-24

DATE OF EQUIPMENT RECEIPT: March14, 2024

DATE(S) OF TESTING: March 14-15 & 20-21, 2024

Revision History

Original: Testing of Low Power Television Transmitter, Model: Sky1500C to FCC Part 74 Subpart G. **Revision A:** Moved the 99% BW plot to correct section page 16. Updated the Spurious Emissions at Antenna Terminal and Field Strength of Spurious Radiation Test Condition Notes. Page 24 corrected 1000 Watts to 750 Watts. Added *Transmit frequency note to page 39.

Revision B: Correction to74.735(b)(2) Power Limitations section, Tested Frequency.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve J Bel

Page 3 of 46 Report No.:109281-23B

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 N. Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version		
EMITest Emissions	5.03.20		
EMITest Immunity	5.03.10		

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 46 Report No.:109281-23B

Summary of Results

Standard / Specification: FCC Part(s) 74 Subpart G

Test Procedure	Description	Modifications	Results
74.735(b)(2)	Power Limitations	NA	PASS
74.794(a)(2)(ii)	Occupied Bandwidth / Stringent Mask	NA	PASS
74.794(a)(2)(ii)	Spurious Emissions at Antenna Terminal	NA	PASS
74.794(a)(2)(ii) Field Strength of Spurious Radiation		Mod. # 1	PASS
74.794(b)(1)	Radio Navigation Satellite Service Bands (GPS)	NA	PASS
74.795(b)(4) Frequency Tolerance – Voltage & Temperature		NA	PASS

NA1 = Not Applicable

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Page 5 of 46 Report No.:109281-23B

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Modification 1:

Added front vented door.

Added top vented cover.

Added EMI gasket to top seam of the front vented door.

Added tape to side panels.

Added ground front vented door to chassis.

In addition, in the radiated emission measurement range of 9kHz-1GHz Corcom 20VW1 line filter is installed and AC main re-routed to run from the bottom of the EUT.

A notch filter K&L 3TNF-500/1000-N/N tuned to 453.334MHz will be installed between the Excitor and Amplifier module for meeting Nonintentional radiator 15.109 Class A compliance.

See Appendix B for the photos of the modification.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Test Condition 2:

The EUT is placed on the turn table. Set in normal operating mode, ground bus is connected to ground. The Output of the EUT is terminated to a RF load.

All I/O ports are left unpopulated as intended.

Fundamental Freq: 599 MHz CH 35

The EUT is tested IAW FCC KDB 754507, maximum number of identical amplifier modules installed and operate at highest power:1500watt/61.8dBm

Conducted measurement.

Frequency range of measurement = 9 kHz- 6GHz. 9kHz- 6000 MHz; RBW=510kHz, VBW=1.5 MHz

Radiated measurement.

Frequency range of measurement = 9 kHz- 6 GHz.

9 kH -150 kHz;RBW=200 Hz,VBW=600 Hz;

150 kHz-30 MHz;RBW=9 kHz,VBW=27 kHz;

30 MHz-1000 MHz;RBW=120 kHz,VBW=360 kHz,

1000 MHz-6 000 MHz;RBW=510kHz,VBW=1.5MHz.

Note: Bandwidth correction per 74.794 (a)(3) is applied to readings below 1GHz.

10 log (BWalternate/500) = 10 log (120/500) = 6.2dB

Site D: ANSI C63.26-2015, DA 05-1321-2005

Frequency stability measured at RF out port of the Exciter.

Page 6 of 46 Report No.:109281-23B

Equipment Under Test (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Low Power Television Transmitter	Jinmyung Communications	Sky1500C	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
10kW Oil Cooled Test Load	Bird Electronics	8936-115	082200288

General Product Information:

Description of EUT	
Low Power Television Transmitter	

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Modulation Type(s):	8VSB (ATSC 1.0)		
Maximum Duty Cycle:	100%		
Antenna Type(s) and Gain:	NA. Device is not sold with antenna.		
Antenna Connection Type:	External Connector		
Naminal Innut Valtage:	RF section 240VAC 1 phase		
Nominal Input Voltage:	Exciter 240VAC 1 phase		
	Controller = JM Version 3.5.6.12		
Firmware / Software used for Test:	Exciter = Tarball-PL3-PTTATSCMH_P3_1_02_38		
	HPA = JM Version HPA_FW_20210726_V3.1		

The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 7 of 46 Report No.:109281-23B

EUT Photo(s)

Sky1500C, View 1

Sky1500C, View 2

Sky1500C, View 3

Sky1500C, View 4

Support Equipment Photo(s)

Block Diagram(s) of Test Setup

Config#	Setup Description of Block Diagram				
1	The EUT is placed on the turn table. Set in normal operating mode, ground bus is connected to ground. The Output of the EUT is terminated to a RF load. All I/O ports are left unpopulated as intended				

FCC PART 74 SUBPART G

74.735(b)(2) Power Limitation

Test Setup/Conditions					
Test Location: Brea Lab D Test Engineer: E. Wong					
Test Method:	ANSI C63.26-2015 5.2.4.4	Test Date(s):	3/15/2024		
Configuration:	2				

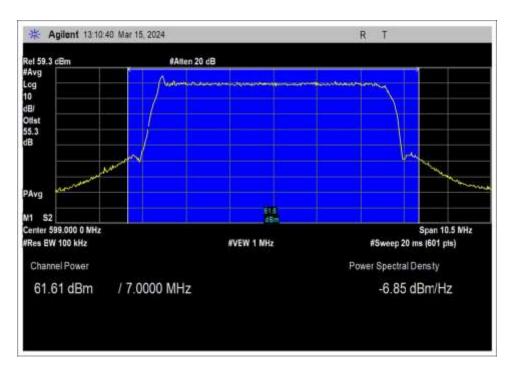
Environmental Conditions				
Temperature (ºC)	19.6	Relative Humidity (%):	39	

Test Equipment						
Asset # Description Model Manufacturer Cal Date Cal Due						
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	02/29/2024	02/29/2026	
P08088	Cable 40 GHz	Astrolab	32022-29094K- 29094K-120TC	12/01/2023	12/01/2025	

Test Data Summary							
Frequency (MHz)	Modulation	Rated Power (W/ dBm)	Measured (W/ dBm)	Limit (W/dBm)	Results		
599 (Ch35)	8VSB (ATSC 1.0)	1500/ 61.8	1445/ 61.6	≤15000 /71.8	Pass		

Reported power was measured at the 45dB RF output sampling port of the band pass filter using channel power function of a spectrum analyzer. Attenuation of 45 dB sampling port at fundamental :44.6 dB.

Total correction 44.6 dB+9.9dB+0.8dB= 55.3 dB


(Note: 0.5dB insertion loss of Emission mask filter is removed from the path loss factor of the Directional coupler port since the coupling port was characterized with the filter in the path)

- (b) The maximum ERP of a digital low power TV, TV translator, or TV booster station (average power) shall not exceed:
- (1) 3 kW for VHF channels 2-13; and
- (2) 15 kW for UHF channels 14-69.

Page 12 of 46 Report No.:109281-23B

Plot Data

RF Power

Test Setup Photo(s)

Test Setup

Test Setup, Output of BPF1500

74.794(a)(2)(ii) Occupied Bandwidth / Stringent Mask

Test Setup/Conditions					
Test Location:	Brea Lab D	Test Engineer:	E. Wong		
Test Method:	ANSI C63.26-2015 5.4.4 DA 05-1321-2005	Test Date(s):	3/15/2024		
Configuration:	2				

Environmental Conditions					
Temperature (ºC)	19.5	Relative Humidity (%):	40		

	Test Equipment								
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due				
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023				
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	02/29/2024	02/29/2026				
P08088	Cable 40 GHz	Astrolab	32022-29094K- 29094K-120TC	12/01/2023	12/01/2025				

Test Data Summary

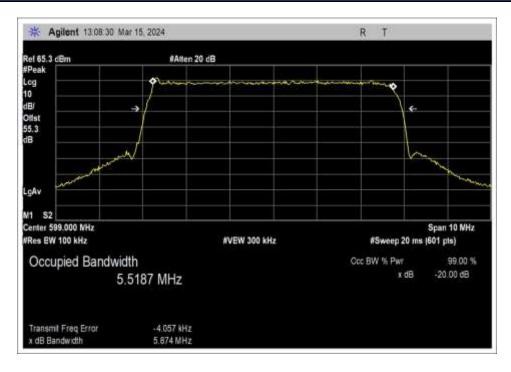
Reported power was measured at the 45dB RF output sampling port of the band pass filter using channel power function of a spectrum analyzer. Attenuation of 45 dB sampling port at fundamental :44.6 dB. Total correction 44.6 dB+0.8dB= 45.4 dB

Per §74.794 Digital emissions.

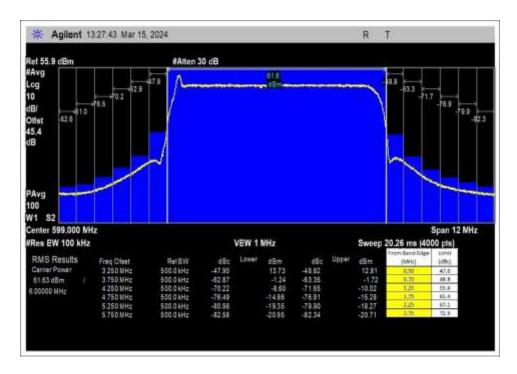
(a)(1) An applicant for a digital LPTV or TV translator station construction permit shall specify that the station will be constructed to confine out-of-channel emissions within one of the following emission masks: Simple, stringent, or full service.

For this test, the provided plots show compliance to Stringent mask.

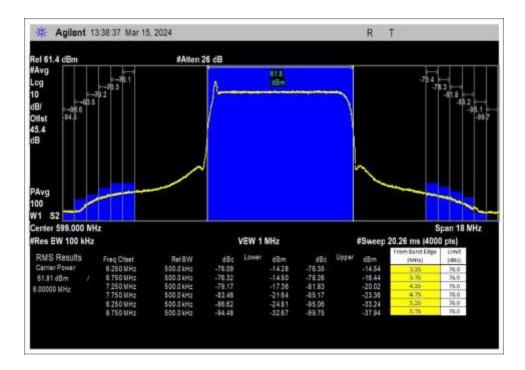
Test Limit:


(ii) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB. More than 3 MHz from the channel edges, emissions must be attenuated no less than 76 dB. At any frequency between 0.5 and 3 MHz from the channel edges, emissions must be attenuated no less than the value determined by the following formula:

 $A(dB) = 47 + 11.5 (\Delta f-0.5)$

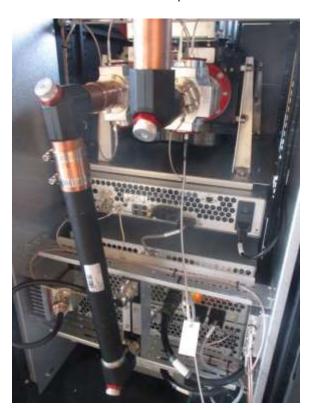

Page 15 of 46 Report No.:109281-23B

Plot(s)



99% Bandwidth

A Stringent Mask


B Stringent Mask

Test Setup Photo(s)

Test Setup

Test Setup, Output of BPF1500

74.794(a)(2)(ii) Spurious Emissions at Antenna Terminal

Test Setup/Conditions					
Test Location:	Brea Lab D	Test Engineer:	E. Wong		
Test Method:	ANSI C63.26-2015 5.7 DA 05-1321-2005	Test Date(s):	3/15/2024		
Configuration:	2				

Test Equipment							
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due		
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023		
03430	Attenuator	Aeroflex/We inschel	75A-10-12	02/29/2024	02/29/2026		
P08088	Cable 40 GHz	Astrolab	32022-29094K-29094K- 120TC	12/01/2023	12/01/2025		
02749	High Pass Filter	K & L	9SH10-1000/T10000- O/O	8/29/2023	8/29/2025		
ANC00179*	Bandpass Filter	Comtech	7429-1	03/13/2024	03/13/2026		
ANC00180*	Bandpass Filter	Comtech	C-DC6A39/4C-A67	03/13/2024	03/13/2026		

^{*}Customer equipment, entered in list as transducer file.

74.794(a)(2)(ii) Digital emissions. Stringent Mask.

Stringent mask. Emissions more than 3 MHz from the channel edges, emissions must be attenuated no less than 76 dB.

Conducted Spurious emission limit dBm = 10 Log (P) where P is in mW dBuV = dBm + 107

750 Watts = 58.8 dBm 1500 Watts = 61.8 dBm

750 Watts limit line = 59.8dBm - 76dB = -17.1 dBm = 89.8 dBuV 1500 Watts limit line = 61.8 dBm - 76dB = - 14.2 dBm = 92.8 dBuV

> Page 19 of 46 Report No.:109281-23B

Test Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: **Jinmyung Communications**

Specification: 47 CFR §74.794(A)(2)(ii) Spurious Emissions

 Work Order #:
 109281
 Date: 3/15/2024

 Test Type:
 Conducted Emissions
 Time: 15:22:36

Tested By: E. Wong Sequence#: 2

Software: EMITest 5.03.20 480V 3 phase/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

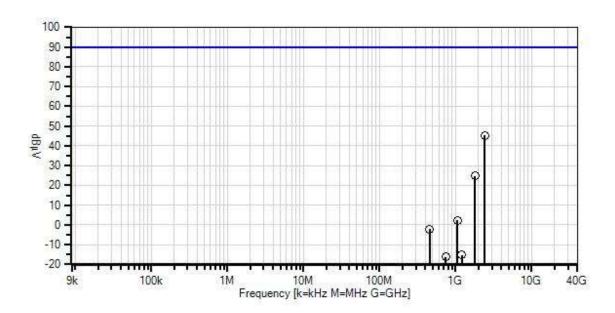
Test condition 2

The 45dB sampling port of the directional coupler at the input end of the band pass filter of the amplifier is connected to the spectrum analyzer.

Note: the band pass filter is NOT in the measurement path for this measurement, however Recorded measurement is corrected with respect to attenuation of the Band Pass Filter as determined from separate insertion loss measurement.

All measurement at the sampling port of the band pass filter has been corrected for coupling loss.

Test environment conditions:


Temperature: 18.7°C Humidity: 46% Pressure: 99.5kPa

The product series include products with output power ranging from 750W to 1500W. The emission limit is 76dBc from the output power. For worse case scenarios to cover the range of output power, the most stringent Emission limit is used for this measurement: 76dBc from lowest rated output power of the product series, ie 750W while the product is transmitting at 1500W..

Page 20 of 46 Report No.:109281-23B

Jinmyung Communications WO#: 109281 Sequence#: 2 Date: 3/15/2024 47 CFR §74.794(A)(2)(ii) Spurious Emissions Test Lead: 480V 3 phase/60Hz Antenna port

Readings
 × QP Readings
 ▼ Ambient

1 - 47 CFR §74.794(A)(2)(ii) Spurious Emissions

O Peak Readings * Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	1/17/2024	1/17/2025
T2	ANP08088	Cable	32022-29094K-	12/1/2023	12/1/2025
			29094K-120TC		
Т3	AN03430	Attenuator	75A-10-12	2/29/2024	2/28/2026
T4	AN02749	High Pass Filter	9SH10- 1000/T10000-	8/29/2023	8/29/2025
			0/0		
T5	AN00182	Band Pass Filter		No Cal Required	No Cal Required
Т6	AN00183	Band Pass Filter	_	No Cal Required	No Cal Required

Meası	urement Data:	R	eading lis	ted by ma	argin.			Test Lead	d: Antenna	ı port	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2396.000M	27.2	+0.0	+1.7	+10.1	+0.6	+0.0	45.3	89.8	-44.5	Anten
			-35.8	+41.5							
2	1797.000M	26.7	+0.0	+1.5	+10.1	+0.4	+0.0	24.7	89.8	-65.1	Anten
			-58.5	+44.5							
3	1049.200M	35.3	+0.0	+1.1	+10.0	+1.1	+0.0	2.3	89.8	-87.5	Anten
			-90.2	+45.0							
4	453.330M	60.5	+0.0	+0.7	+9.9	+0.0	+0.0	-2.2	89.8	-92.0	Anten
			-118.2	+44.9							
5	1196.800M	30.9	+0.0	+1.2	+10.0	+0.7	+0.0	-15.3	89.8	-105.1	Anten
			-102.5	+44.4							
6	744.200M	42.6	+0.0	+0.9	+9.9	+0.0	+0.0	-16.1	89.8	-105.9	Anten
			-114.4	+44.9							

Test Setup Photo(s)

Test Setup

Test Setup, Output of BPF1500

74.794(a)(2)(ii) Field Strength of Spurious Radiation

Test Setup/Conditions					
Test Location:	Brea Lab D	Test Engineer:	E. Wong		
Test Method:	ANSI C63.26-2015 5.5 DA 05-1321-2005	Test Date(s):	3/20/2024		
Configuration:	2				

74.794(a)(2)(ii) Digital emissions. Stringent Mask.

Stringent mask. Emissions more than 3 MHz from the channel edges, emissions must be attenuated no less than 76 dB.

Radiated Spurious emission limit. Per Annex C of ANSI 63.26, Clause C.2

$$EIRP = p_t \times g_t = (E \times d)^2 / 30$$

where

p_t transmitter output power in W

g_t numeric gain of the transmitting antenna (dimensionless)

E electric field strength in V/m

d measurement distance in m

Electric field at 3 meters with numeric gain of 1

 $P_t \times 1 = (E \times 3)^2 / 30$

 $E = (30 \times P_t) / 3$

$$E = \sqrt{30 \, x \, pt}$$
 / 3

At 750W

 $E = \sqrt{30 \times 750}$ / 3 = 50V/m@3m = 20 Log (50 /1x 10⁻⁶) = 154dBuV/m@3m

At 1500W

 $E = \sqrt{30 \times 1500}$ / 3 = 70.7V/m@3m = 0 Log (70.7 /1x 10⁻⁶) = 156.9dBuV/m@3m

750 Watts radiated spurious limit at test distance of 3 meter

= 154dBuV/m@3m - 76dB = 78.0 dBuV/m @3m

1500 Watts radiated spurious limit at test distance of 3 meter

= 156.9dBuV/m@3m - 76dB = **80.9 dBuV/m @3m**

Test Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: **Jinmyung Communications**

Specification: 74.794(a)(2)(ii) Radiated Spurious Emissions

Work Order #: 109281 Date: 3/20/2024
Test Type: Radiated Scan Time: 15:45:16
Tested By: E. Wong Sequence#: 22

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

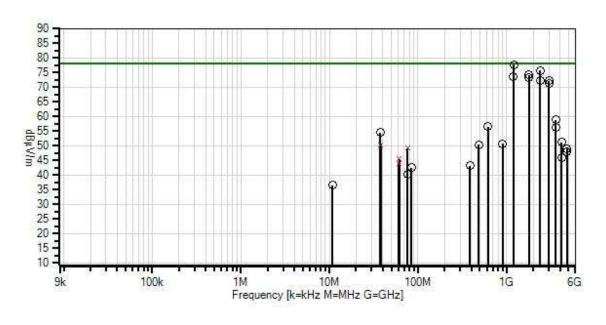
Test condition 2

Test Environment Conditions:

Temperature:21.8°C Humidity: 51% Pressure: 99.5kPa

The product series include products with output power ranging from 750W to 1500W. The emission limit is 76dBc from the output power. For worse case scenarios to cover the range of output power, the most stringent Emission limit is used for this measurement: 76dBc from lowest rated output power of the product series, ie 750W while the product is transmitting at 1500W.

9kHz-30MHz, no emission was detected. noise floor level recorded.


Part 74 RBW=510kHz, RMS detector.

Modification 1 was in place during test.

Page 25 of 46 Report No.:109281-23B

Jinmyung Communications WO#: 109281 Sequence#: 22 Date: 3/20/2024 74.794(a)(2)(ii) Radiated Spurious Emissions Test Distance: 10 Meters Vert

Readings× QP Readings▼ Ambient

- 1 - 74.794(a)(2)(ii) Radiated Spurious Emissions

Peak Readings
 Average Readings
 Software Version: 5.03.20

Test Equipment:

T1 AN02869 Spectrum Analyzer E4440A 1/17/2024 1/17/2025 T2 AN01994 Biconilog Antenna CBL6111C 6/1/2022 6/1/2024 T3 ANP05569 Cable-Amplitude RG-214/U 12/31/2022 12/31/2024 +15C to +45C (dB) T4 ANP04382 Cable LDF-50 5/18/2022 5/18/2024 T5 AN00010 Preamp 8447D 1/2/2024 1/2/2026 T6 ANP06662 Cable PHASEFLEX 3/25/2022 3/25/2024 EJR01N01024.0 T7 AN02113 Horn Antenna-ANSI 3115 1/11/2023 1/11/2025 C63.5 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2025 1000/T10000-O/O T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2024 29094K-24TC T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth Correction Factor	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T2 AN01994 Biconilog Antenna CBL6111C 6/1/2022 6/1/2024 T3 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/31/2022 12/31/2024 T4 ANP04382 Cable LDF-50 5/18/2022 5/18/2024 T5 AN00010 Preamp 8447D 1/2/2024 1/2/2026 T6 ANP06662 Cable PHASEFLEX BJR01N01024.0 3/25/2022 3/25/2024 T7 AN02113 Horn Antenna-ANSI BJR01N01024.0 1/11/2023 1/11/2025 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2023 8/29/2025 T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2024 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026			•			
T3 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/31/2022 12/31/2024 T4 ANP04382 Cable LDF-50 5/18/2022 5/18/2024 T5 AN00010 Preamp 8447D 1/2/2024 1/2/2026 T6 ANP06662 Cable PHASEFLEX 3/25/2022 3/25/2024 EJR01N01024.0 T7 AN02113 Horn Antenna-ANSI C63.5 3115 1/11/2023 1/11/2025 T8 AN02749 High Pass Filter 9SH10-9SH10-9SH10-10000-O/O 8/29/2023 8/29/2025 T9 ANP07657 Cable 32022-29094K-94TC 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	-		•			
+15C to +45C (dB) T4 ANP04382 Cable LDF-50 5/18/2022 5/18/2024 T5 AN00010 Preamp 8447D 1/2/2024 1/2/2026 T6 ANP06662 Cable PHASEFLEX 3/25/2022 3/25/2024 EJR01N01024.0 T7 AN02113 Horn Antenna-ANSI 3115 1/11/2023 1/11/2025 C63.5 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2025 1000/T10000-O/O T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2024 29094K-24TC T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T2	AN01994	Biconilog Antenna	CBL6111C	6/1/2022	6/1/2024
T4 ANP04382 Cable LDF-50 5/18/2022 5/18/2024 T5 AN00010 Preamp 8447D 1/2/2024 1/2/2026 T6 ANP06662 Cable PHASEFLEX 3/25/2022 3/25/2024 EJR01N01024.0 T7 AN02113 Horn Antenna-ANSI C63.5 1/11/2023 1/11/2023 1/11/2025 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2023 8/29/2025 T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T3	ANP05569	Cable-Amplitude	RG-214/U	12/31/2022	12/31/2024
T5 AN00010 Preamp 8447D 1/2/2024 1/2/2026 T6 ANP06662 Cable PHASEFLEX BJR01N01024.0 3/25/2022 3/25/2024 T7 AN02113 Horn Antenna-ANSI CG3.5 3115 1/11/2023 1/11/2025 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2025 1000/T10000-O/O 1000/T10000-O/O 6/22/2022 6/22/2024 T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026			+15C to +45C (dB)			
T6 ANP06662 Cable PHASEFLEX EJR01N01024.0 3/25/2022 3/25/2024 T7 AN02113 Horn Antenna-ANSI C63.5 3115 1/11/2023 1/11/2025 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2025 1000/T10000-O/O 1000/T10000-O/O 6/22/2022 6/22/2024 T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T4	ANP04382	Cable	LDF-50	5/18/2022	5/18/2024
EJR01N01024.0 T7 AN02113 Horn Antenna-ANSI C63.5 3115 1/11/2023 1/11/2025 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2025 1000/T10000-O/O 1000/T10000-O/O 6/22/2022 6/22/2024 T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2024 29094K-24TC 10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T5	AN00010	Preamp	8447D	1/2/2024	1/2/2026
T7 AN02113 Horn Antenna-ANSI C63.5 3115 1/11/2023 1/11/2025 T8 AN02749 High Pass Filter 9SH10- 8/29/2023 8/29/2025 T9 ANP07657 Cable 32022-29094K- 6/22/2022 6/22/2024 29094K-24TC 29094K-24TC 6/27/2023 6/27/2025 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T6	ANP06662	Cable	PHASEFLEX	3/25/2022	3/25/2024
C63.5 T8 AN02749 High Pass Filter 9SH10- 1000/T10000-O/O 8/29/2023 8/29/2025 T9 ANP07657 Cable 32022-29094K- 29094K-24TC 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026				EJR01N01024.0		
T8 AN02749 High Pass Filter 9SH10- 1000/T10000-O/O 8/29/2023 8/29/2025 T9 ANP07657 Cable 32022-29094K- 29094K-24TC 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T7	AN02113	Horn Antenna-ANSI	3115	1/11/2023	1/11/2025
1000/T10000-O/O T9 ANP07657 Cable 32022-29094K- 29094K-24TC 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026			C63.5			
T9 ANP07657 Cable 32022-29094K- 29094K-24TC 6/22/2022 6/22/2024 T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	Т8	AN02749	High Pass Filter	9SH10-	8/29/2023	8/29/2025
29094K-24TC T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026				1000/T10000-O/O		
T10 AN00787 Preamp 83017A 6/27/2023 6/27/2025 T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	Т9	ANP07657	Cable	32022-29094K-	6/22/2022	6/22/2024
T11 ANP07691 Cable LDF1-50 9/9/2022 9/9/2024 T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026				29094K-24TC		
T12 AN00314 Loop Antenna 6502 3/29/2022 3/29/2024 T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T10	AN00787	Preamp	83017A	6/27/2023	6/27/2025
T13 ANC00011 Bandwidth 3/13/2024 3/13/2026	T11	ANP07691	Cable	LDF1-50	9/9/2022	9/9/2024
	T12	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024
Correction Factor	T13	ANC00011	Bandwidth		3/13/2024	3/13/2026
			Correction Factor			

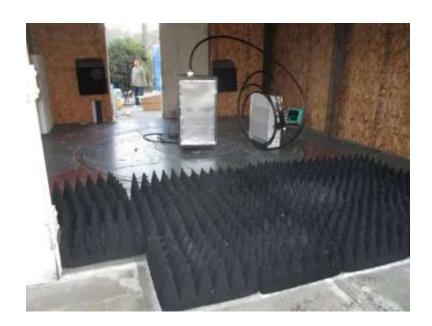
Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distanc	e: 10 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	_	_	T5	T6	T7	T8			_	_	
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	1200.167M	75.8	+0.0	+0.0	+0.0	+3.9	+10.5	77.8	78.0	-0.2	Horiz
			+0.0	+0.0	+24.6	+0.7			100 samples		
			+0.3	-40.5	+2.5	+0.0					
			+0.0								
2	2396.667M	66.3	+0.0	+0.0	+0.0	+5.6	+10.5	75.8	78.0	-2.2	Horiz
			+0.0	+0.0	+28.6	+0.6			100 samples		
			+0.5	-39.9	+3.6	+0.0					
			+0.0								
3	1798.000M	66.9	+0.0	+0.0	+0.0	+5.0	+10.5	74.3	78.0	-3.7	Horiz
			+0.0	+0.0	+27.6	+0.4			100 samples		
			+0.4	-39.6	+3.1	+0.0					
			+0.0								
4	1199.000M	71.8	+0.0	+0.0	+0.0	+3.9	+10.5	73.8	78.0	-4.2	Vert
			+0.0	+0.0	+24.6	+0.7			100 samples		
			+0.3	-40.5	+2.5	+0.0					
			+0.0								
5	1796.917M	65.8	+0.0	+0.0	+0.0	+5.0	+10.5	73.2	78.0	-4.8	Vert
			+0.0	+0.0	+27.6	+0.4			100 samples		
			+0.4	-39.6	+3.1	+0.0					
			+0.0								
6	2395.920M	63.0	+0.0	+0.0	+0.0	+5.6	+10.5	72.5	78.0	-5.5	Vert
			+0.0	+0.0	+28.6	+0.6					
			+0.5	-39.9	+3.6	+0.0					
			+0.0								
7	2992.417M	59.8	+0.0	+0.0	+0.0	+6.4	+10.5	72.3	78.0	-5.7	Vert
			+0.0	+0.0	+30.2	+0.7			100 samples		
			+0.5	-39.9	+4.1	+0.0					
			+0.0								
8	2992.333M	59.0	+0.0	+0.0	+0.0	+6.4	+10.5	71.5	78.0	-6.5	Horiz
			+0.0	+0.0	+30.2	+0.7			100 samples		
			+0.5	-39.9	+4.1	+0.0					
			+0.0								
9	3587.700M	44.4	+0.0	+0.0	+0.0		+10.5	59.0	78.0	-19.0	Horiz
			+0.0	+0.0	+31.6	+0.2					
			+0.5	-39.9	+4.5	+0.0					
			+0.0								
10	613.100M	35.5	+0.0	+26.3	+2.9	+2.9	+10.5	56.5	78.0	-21.5	Horiz
			-28.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+6.2								
11	3591.420M	41.6	+0.0	+0.0	+0.0		+10.5	56.2	78.0	-21.8	Vert
			+0.0	+0.0	+31.6	+0.2					
			+0.5	-39.9	+4.5	+0.0					
			+0.0								

12 37.658M	42.7	+0.0	+20.8	+0.6	+0.8	+10.5	54.6	78.0	-23.4	Vert
		-27.1	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+6.2								
13 4195.300M	35.2	+0.0	+0.0	+0.0	+7.8	+10.5	51.3	78.0	-26.7	Horiz
		+0.0	+0.0	+31.7	+0.3					
		+0.5	-39.6	+4.9	+0.0					
		+0.0								
14 906.678M	24.8	+0.0	+29.4	+3.7	+3.5	+10.5	50.8	78.0	-27.2	Horiz
		-27.5	+0.2	+0.0	+0.0			, , , ,	_,	
		+0.0	+0.0	+0.0	+0.0					
		+6.2	. 0.0	. 0.0	. 0.0					
15 37.800M	38.6	+0.0	+20.7	+0.6	+0.8	+10.5	50.4	78.0	-27.6	Vert
QP	20.0	-27.1	+0.1	+0.0	+0.0	110.5	50.1	70.0	27.0	, 611
Q1		+0.0	+0.0	+0.0	+0.0					
		+6.2	10.0	10.0	10.0					
16 484.170M	32.5	+0.0	+23.7	+2.5	+2.5	+10.5	50.3	78.0	-27.7	Horiz
10 404.1701	32.3	-27.8	+0.2	+0.0	+0.0	+10.5	30.3	76.0	-21.1	110112
		+0.0	+0.2	+0.0	+0.0					
		+6.2	+0.0	+0.0	+0.0					
17 76 65 AM	115		+12.0	+0.0	+1.2	10.5	49.3	79.0	29.7	Vont
17 76.654M	44.5	+0.0	+13.0	+0.9	+1.2	+10.5	49.3	78.0	-28.7	Vert
QP		-27.1	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
1 75 57 17 5	40.5	+6.2	12.0			10.7		5 0.0	20.5	**
^ 76.654M	49.5	+0.0	+13.0	+0.9	+1.2	+10.5	54.3	78.0	-23.7	Vert
		-27.1	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+6.2								
19 4791.920M	30.6	+0.0	+0.0	+0.0	+8.3	+10.5	49.2	78.0	-28.8	Vert
		+0.0	+0.0	+33.0	+0.3					
		+0.7	-39.5	+5.3	+0.0					
		+0.0								
20 4794.300M	29.2	+0.0	+0.0	+0.0	+8.3	+10.5	47.8	78.0	-30.2	Horiz
		+0.0	+0.0	+33.0	+0.3					
		+0.7	-39.5	+5.3	+0.0					
		+0.0								
21 4190.420M	29.9	+0.0	+0.0	+0.0	+7.8	+10.5	46.0	78.0	-32.0	Vert
		+0.0	+0.0		+0.3					
		+0.5	-39.6	+4.9	+0.0					
		+0.0								
22 61.187M	41.5	+0.0	+12.6	+0.8	+1.0	+10.5	45.6	78.0	-32.4	Vert
QP		-27.1	+0.1	+0.0	+0.0					
ζ-		+0.0	+0.0	+0.0	+0.0					
		+6.2	. 0.0	. 0.0	. 0.0					
^ 61.187M	48.0	+0.0	+12.6	+0.8	+1 0	+10.5	52.1	78.0	-25.9	Vert
01.10/141	70.0	-27.1	+0.1	+0.0	+0.0	110.5	J2.1	70.0	23.7	v C11
		+0.0	+0.1	+0.0	+0.0					
		+6.2	10.0	10.0	10.0					
		+0.∠								

24 60.604M 39.9 +0.0 +12.6 +0.8	8 +1.0 +10.5 44.0 78.0 -34.0 Vert
QP -27.1 +0.1 +0.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
+6.2	0 +0.0
	8 +1.0 +10.5 50.1 78.0 -27.9 Vert
-27.1 $+0.1$ $+0.0$	
+0.0 +0.0 +0.0	0 + 0.0
+6.2	
26 386.360M 28.1 +0.0 +21.1 +2.2	
-27.2 +0.1 +0.0	
+0.0 +0.0 +0.0	0 + 0.0
+6.2	
27 84.750M 36.6 +0.0 +14.1 +0.9	9 +1.2 +10.5 42.5 78.0 -35.5 Horiz
-27.1 +0.1 +0.0	0 + 0.0
+0.0 +0.0 +0.0	0 + 0.0
+6.2	
28 76.420M 35.7 +0.0 +13.0 +0.9	9 +1.2 +10.5 40.5 78.0 -37.5 Horiz
-27.1 +0.1 +0.0	0 + 0.0
+0.0 +0.0 +0.0	0 + 0.0
+6.2	
29 10.760M 6.0 +0.0 +0.0 +0.0	3 +0.4 +20.9 36.7 78.0 -41.3 Vert
+0.0 +0.1 +0.0	
+0.0 +0.0 +0.0 +0.0	
+0.0	

Test Setup Photo(s)

Below 1GHz, Front View


Below 1GHz, Back View

9kHz-1GHz AC on Bottom View

Above 1GHz, View 1

Above 1GHz, View 2

74.794(b)(1) Radio Navigation Satellite Service Bands (GPS)

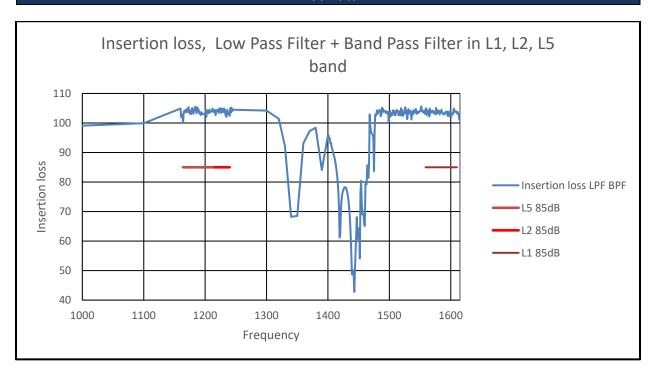
Test Setup/Conditions						
Test Location:	Brea Lab D	Test Engineer:	E. Wong			
Test Method:	ANSI C63.26-2015 5.2.4.4	Test Date(s):	3/14/2024			
Configuration:	2					

Environmental Conditions					
Temperature (ºC)	19	Relative Humidity (%):	41		

	Test Equipment								
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due				
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023				
P08088	Cable 40 GHz	Astrolab	32022-29094K- 29094K-120TC	12/01/2023	12/01/2025				
P08087	Cable 40 GHz	Astrolab	32022-29094K- 29094K-120TC	12/01/2023	12/01/2025				
03669	Signal Generator	Anritsu	68369B	2/26/2024	2/26/2024				

Insertion loss in Radio Navigation Satellite Service Bands (GPS) band L1, L2, L5 was measured with Low Pass filter and Emission Mask filter in series.

	Test Data Summary							
Frequency (MHz)	Modulation	Measured filter Attenuation (dB)	Limit (dB)	Results				
1164-1215MHz	8VSB (ATSC 1.0)	99.9	≥85	Pass				
1215-1240MHz	8VSB (ATSC 1.0)	102.1	≥85	Pass				
1559-1610MHz	8VSB (ATSC 1.0)	102.2	≥85	Pass				


^{*}RBW of 100kHz for chracterization.

- (b) In addition to meeting the emission attenuation requirements of the simple or stringent mask (including attenuation of radio frequency harmonics), digital low power TV and TV translator stations authorized to operate on TV channels 22-24, (518-536 MHz), 32-36 (578-608 MHz), 38 (614-620 MHz), and 65-69 (776-806 MHz) must provide specific "out of band" protection to Radio Navigation Satellite Services in the bands: L5 (1164-1215 MHz); L2 (1215-1240 MHz) and L1 (1559-1610 MHz).
- (1) An FCC-certificated transmitter specifically certified for use on one or more of the above channels must include filtering with an attenuation of not less than 85 dB in the GPS bands, which will have the effect of reducing harmonics in the GPS bands from what is produced by the digital transmitter, and this attenuation must be demonstrated as part of the certification application to the Commission.

Page 33 of 46 Report No.:109281-23B

Plot Data

Test Setup Photo(s)

Test Setup

74.795(b)(4) Frequency Tolerance

Test Setup/Conditions						
Test Location:	Brea Lab D	Test Engineer:	E. Wong			
Test Method:	Part 74.795 (b)(4) Part 2.1055	Test Date(s):	3/21/2024			
Configuration:	1					

Environmental Conditions					
Temperature (ºC)	21	Relative Humidity (%):	49		

Test Equipment - Voltage							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due		
02869	Spectrum Analyzer	Agilent	E4440A	01/17/2024	01/17/2025		
07164	Multimeter	Fluke	8845A/G	8/21/2023	8/21/2025		
03759	AC Power Supply	GoHz	HZ-60-1005	8/14/2023	8/14/2025		
01379	Variac	Superior Electric	1256D	02/01/2024	02/01/2026		

Test Equipment - Temperature					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
02869	Spectrum Analyzer	Agilent	E4440A	01/17/2024	01/17/2025
05947	Thermometer	Fluke	51	5/19/2022	5/19/2024

^{*}Note: Temperature measurement made in chamber Test Equity Model: 1016H SN180110 was recorded with CKC property AN05947.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	240
V _{Minimum} :	276
V _{Maximum} :	204

Note the Frequency determining exciter operates at 240VAC.

Page 36 of 46 Report No.:109281-23B

Test Data – Voltage and Temperature

Temperature Variations

	·	Channel 1 (MHz)	Dev(kHz)
Channel			
Frequency:		596.308555*	
Temp (C)	Voltage		
0	240	596.308621	0.06600
10	240	596.308588	0.03300
20	240	596.308555	0.00000
30	240	596.308555	0.00000
40	240	596.308571	0.01600

Voltage Variations (±15%)

Temp (C)	Voltage	Channel 1 (MHz) 596.308550	Dev (kHz)
20	204.0	596.308583	0.03300
20	240.0	596.308550	0.00000
20	276.0	596.308583	0.03300

Max Deviation (kHz)	0.06600
	PASS

Limit:

74.796 (b) The following requirements must be met before low power TV and TV translator transmitter will be certificated by the FCC:

(4) When subjected to variations in ambient temperature between 0 and 40 degrees Centigrade and variations in power main voltage between 85% and 115% of the rated power supply voltage, the frequency stability of the local oscillator in the RF channel upconverter shall be maintained within 10 kHz of the nominal value.

^{*}Transmit frequency set at 599MHz, the frequency measurement was taken at -6dB point of the pilot tone signal. Evaluation performed at the RF monitor port of the Exciter (signal source).

Test Setup Photo(s)

Frequency Stability, View 1

Frequency Stability, View 2

Voltage Stability

APPENDIX A: Manufacturer Declaration

The following model has been tested by CKC Laboratories:

Device: Low Power Television Transmitter

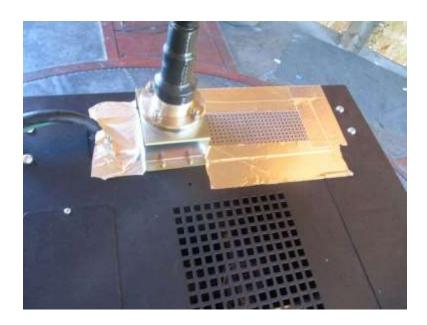
Model: Sky1500C

The manufacturer declares that the following additional model is identical electrically or any differences between them do not affect their EMC characteristics, and therefore meets the level of testing equivalent to the tested model.

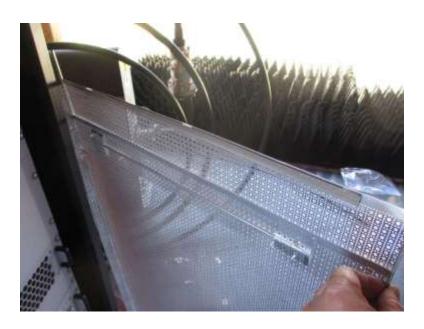
Device: Low Power Television Transmitter

Model: Sky750C

Page 40 of 46 Report No.:109281-23B



Appendix B: Modifications Made During Testing



Modification 1, Vent Door

Modification 1, Top Vent Cover

Modification 1, Top Seam Door

Modification 1, Side Panel Tape, View 1

Modification 1, Side Panel Tape, View 2

Modification 1, Front Door Chassis

Supplemental Information

Measurement Uncertainty

Uncertainty Value	Parameter	
5.77 dB	Radiated Emissions	
0.673 dB	RF Conducted Measurements	
5.77 x 10 ⁻¹⁰	Frequency Deviation	
0.00005 s	Time Deviation	
3.18 dB	Mains Conducted Emissions	

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	(dBµV)	
+	Antenna Factor	(dB/m)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
=	Corrected Reading	(dBμV/m)	

Page 45 of 46

Report No.:109281-23B

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

<u>Average</u>

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

End of Report