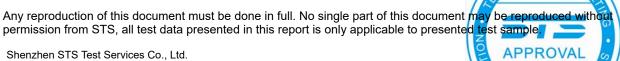


RADIO TEST REPORT

S T S


Report No.: STS2103087W07

Issued for

Chengdu XGIMI Technology Co., Ltd.

Building A4, Tianfu Software Park, High-tech zone, Chengdu, Sichuan, China

Product Name:	Projector
Brand Name:	XGIMI
Model Name:	ХКОЗН
Series Model:	XK04H,XK05H,XK06H,XK07H,XK08H, XK09H,XK10H,XK11H,XK12H,XK13H, XK14H,XK15H,XK16H,XK17H,XK18H, XK19H,XK20H,XK21H,XK22H,XK23H, XK24H,XK25H,XK26H,XK27H,XK28H, K29H,XK30H,XK31H,XK32H
FCC ID:	2AFENXK03H
Test Standard:	FCC Part 15.247

TEST RESULT CERTIFICATION

Applicant's Name:	Chengdu XGIMI Technology Co., Ltd.
Address	Building A4, Tianfu Software Park, High-tech zone, Chengdu, Sichuan, China
Manufacturer's Name	Chengdu XGIMI Technology Co., Ltd.
Address	Building A4, Tianfu Software Park, High-tech zone, Chengdu, Sichuan, China
Product Description	
Product Name:	Projector
Brand Name	XGIMI
Model Name:	ХКОЗН
Series Model	XK04H,XK05H,XK06H,XK07H,XK08H,XK09H,XK10H,XK11H, XK12H,XK13H,XK14H,XK15H,XK16H,XK17H,XK18H,XK19H, XK20H,XK21H,XK22H,XK23H,XK24H,XK25H,XK26H,XK27H, XK28H,XK29H,XK30H,XK31H,XK32H
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test	
--------------	--

Date of receipt of test item:	29 Mar. 2021
Date (s) of performance of tests .:	29 Mar. 2021 ~ 13 May 2021
Date of Issue:	17 May 2021
Test Result	Pass

Testing Engineer :	Chins cher
-	(Chris Chen)
Technical Manager :	Sean She
	(Sean she)
Authorized Signatory :	Motarti De Monta
=	

Page 3 of 77 Report No.: STS2103087W07

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6#
1.1 TEST FACTORY	7#
1.2 MEASUREMENT UNCERTAINTY	7#
2. GENERAL INFORMATION	8#
2.1 GENERAL DESCRIPTION OF THE EUT	8#
2.2 DESCRIPTION OF THE TEST MODES	10#
2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS	10#
2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	12#
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13#
2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	14#
2.7 EQUIPMENTS LIST	15#
3. EMC EMISSION TEST	17 #
3.1 CONDUCTED EMISSION MEASUREMENT	17#
3.2 RADIATED EMISSION MEASUREMENT	21#
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	33 #
4.1 LIMIT	33#
4.2 TEST PROCEDURE	33#
4.3 TEST SETUP	34#
4.4 EUT OPERATION CONDITIONS	34#
4.5 TEST RESULTS	35#
5. NUMBER OF HOPPING CHANNEL	50 #
5.1 LIMIT	50#
5.2 TEST PROCEDURE	50#
5.3 TEST SETUP	50#
5.4 EUT OPERATION CONDITIONS	50#
5.5 TEST RESULTS	51#
6. AVERAGE TIME OF OCCUPANCY	52 #
6.1 LIMIT	52#
6.2 TEST PROCEDURE	52#
6.3 TEST SETUP	52#
6.4 EUT OPERATION CONDITIONS	52#
6.5 TEST RESULTS	53#
7. HOPPING CHANNEL SEPARATION MEASUREMEN	59 #

7. HOPPING CHANNEL SEPARATION MEASUREMEN

Page 4 of 77 Report No.: STS2103087W07

Table of Contents	Page
7.1 LIMIT	59#
7.2 TEST PROCEDURE	59#
7.3 TEST SETUP	59#
7.4 EUT OPERATION CONDITIONS	59#
7.5 TEST RESULTS	60#
8. BANDWIDTH TEST	66#
8.1 LIMIT	66#
8.2 TEST PROCEDURE	66#
8.3 TEST SETUP	66#
8.4 EUT OPERATION CONDITIONS	66#
8.5 TEST RESULTS	67#
9. OUTPUT POWER TEST	73#
9.1 LIMIT	73#
9.2 TEST PROCEDURE	73#
9.3 TEST SETUP	74#
9.4 EUT OPERATION CONDITIONS	74#
9.5 TEST RESULTS	75#
10. ANTENNA REQUIREMENT	76 #
10.1 STANDARD REQUIREMENT	76#
10.2 EUT ANTENNA	76#

Page 5 of 77 Report No.: STS2103087W07

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	17 May 2021	STS2103087W07	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(a)(1)&(b)(1)	Output Power	PASS		
15.209	Radiated Spurious Emission	PASS		
15.247(d)	Conducted Spurious & Band Edge Emission	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	20dB Bandwidth 99% Bandwidth	PASS		
15.205	Restricted bands of operation	PASS		
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Projector
Trade Name	XGIMI
Model Name	ХК03Н
Series Model	XK04H,XK05H,XK06H,XK07H,XK08H,XK09H,XK10H, XK11H,XK12H,XK13H,XK14H,XK15H,XK16H,XK17H, XK18H,XK19H,XK20H,XK21H,XK22H,XK23H,XK24H, XK25H,XK26H,XK27H,XK28H,XK29H,XK30H,XK31H, XK32H
Model Difference	Only the appearance color and model name are different, others are exactly the same.
Channel List	Please refer to the Note 2.
Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
Bluetooth Version	5.0
Bluetooth Configuration	BR+EDR
Antenna	Please refer to the Note 3.
Adapter	Input: 100-240V~ 50/60Hz 4.0A Output: 19VDC,13.16A, 250.04W
Hardware version number	V03
Software version number	V1.0.0
Connecting I/O Port(s)	Please refer to the Note 1.

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

		Chanr	nel List		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	XGIMI	XK03H	PIFA	N/A	3.49dBi	BT Antenna

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

П

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH00	1Mbps/GFSK
Mode 2	TX CH39	1Mbps/GFSK
Mode 3	TX CH78	1Mbps/GFSK
Mode 4	TX CH00	2 Mbps/π/4-DQPSK
Mode 5	TX CH39	2 Mbps/π/4-DQPSK
Mode 6	TX CH78	2 Mbps/π/4-DQPSK
Mode7	TX CH00	3 Mbps/8DPSK
Mode 8	TX CH39	3 Mbps/8DPSK
Mode 9	TX CH78	3 Mbps/8DPSK
Mode 10	Hopping	GFSK
Mode 11	Hopping	π/4-DQPSK
Mode 12	Hopping	8DPSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

(3) The battery is fully-charged during the radited and RF conducted test.

For AC Conducted Emission

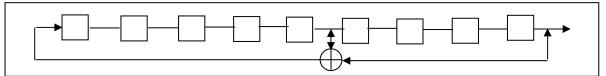
Test Case		
AC Conducted Emission	Mode 13 : Keeping BT TX	

2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

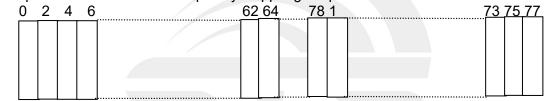
(1)Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


Page 11 of 77 Report No.: STS2103087W07

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


(2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.

Numver of shift register stages:9

Length of pseudo-random sequence:2⁹-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence An example of Pseudorandom Frequency Hoppong Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

(3)Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

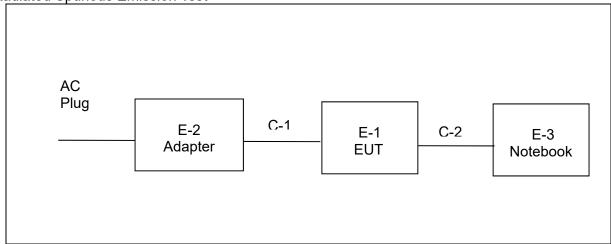
Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

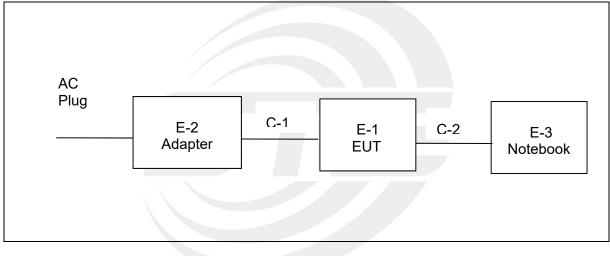
Page 12 of 77 Report No.: STS2103087W07

2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.


Test software Version	Test program: Bluetooth				
(Power control software) Parameters(1/2/3Mbps)	Power class: DH1 rate:4:27 2DH1 rate:20:54 3DH1 rate:24:83	Power class: DH3 rate:11:183 2DH3 rate:26:367 3DH3 rate:27:552	Power class: DH5 rate:15:339 2DH5 rate:30:679 3DH5 rate:31:1021		

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
		GFSK	3.49	7	
BT	BR+EDR	π/4-DQPSK	3.49	7	WCN_Combo_Tool
		8DPSK	3.49	7	



2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test

Conducted Emission Test

2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-2	Adapter	XGIMI	HKA250190A3-7D	N/A	N/A
C-1	DC Cable	N/A	N/A	120cm	YES
/	AC Cable	N/A	N/A	140cm	NO

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-3	Notebook	DELL	Inspiron 13-3467	N/A	N/A
C-2	USB Cable	N/A	N/A	110cm	NO

Note:

- (1) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.7 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
Signal Analyzer	R&S	FSV 40-N	101823	2020.10.10	2021.10.09
Active loop Antenna	ZHINAN	ZN30900C	16035	2019.07.11	2021.07.10
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.12	2022.10.11
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2019.10.15	2021.10.14
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2020.10.12	2022.10.11
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2020.10.12	2021.10.11
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2020.10.12	2021.10.11
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK2018101801	2020.10.10	2021.10.09
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
LISN	R&S	ENV216	101242	2020.10.12	2021.10.11
LISN	EMCO	3810/2NM	23625	2020.10.12	2021.10.11
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)			

Page 16 of 77 Report No.: STS2103087W07

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
		U2021XA	MY55520005	2020.10.10	2021.10.09
Power Sensor	Kovoisht		MY55520006	2020.10.10	2021.10.09
Power Serisor	Keysight		MY56120038	2020.10.10	2021.10.09
			MY56280002	2020.10.10	2021.10.09
Signal Analyzer	Agilent	N9020A	MY51110105	2021.03.04	2022.03.03
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Shenzhen STS Test Services Co., Ltd.

П

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

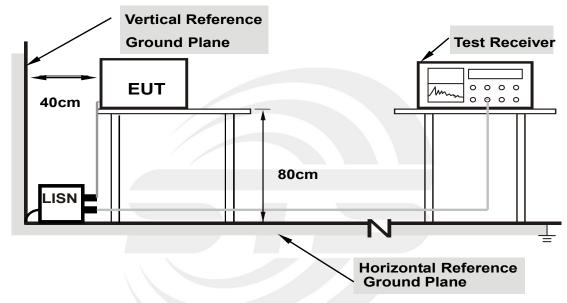
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of "*" marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

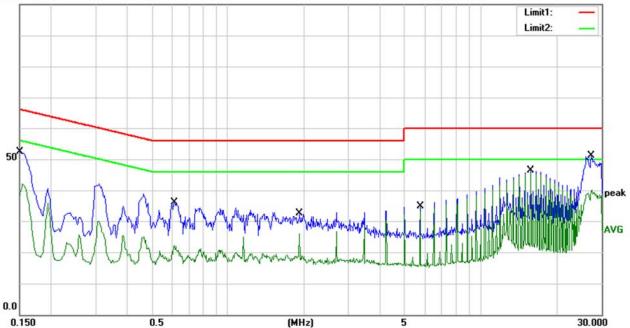
3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

Temperature:	26.8(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 13		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	32.13	20.19	52.32	66.00	-13.68	QP
2	0.1500	21.91	20.19	42.10	56.00	-13.90	AVG
3	0.6140	15.78	20.34	36.12	56.00	-19.88	QP
4	0.6140	1.84	20.34	22.18	46.00	-23.82	AVG
5	1.9220	12.39	20.15	32.54	56.00	-23.46	QP
6	1.9220	5.76	20.15	25.91	46.00	-20.09	AVG
7	5.7620	14.91	19.95	34.86	60.00	-25.14	QP
8	5.7620	13.24	19.95	33.19	50.00	-16.81	AVG
9	15.7460	26.23	20.14	46.37	60.00	-13.63	QP
10	15.7460	25.54	20.14	45.68	50.00	-4.32	AVG
11	27.3660	30.19	20.82	51.01	60.00	-8.99	QP
12	27.3660	19.18	20.82	40.00	50.00	-10.00	AVG


Remark:

1. All readings are Quasi-Peak and Average values

2. Margin = Result (Result = Reading + Factor)-Limit

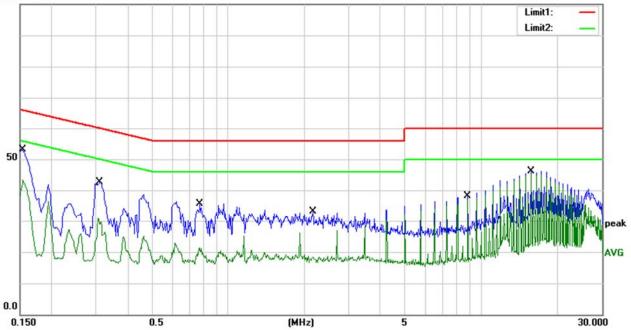
3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

Page 20 of 77 Report No.: STS2103087W07

Temperature:	26.8(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 13		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1540	32.96	20.20	53.16	65.78	-12.62	QP
2	0.1540	23.07	20.20	43.27	55.78	-12.51	AVG
3	0.3100	21.82	20.74	42.56	59.97	-17.41	QP
4	0.3100	10.17	20.74	30.91	49.97	-19.06	AVG
5	0.7740	15.34	20.25	35.59	56.00	-20.41	QP
6	0.7740	1.10	20.25	21.35	46.00	-24.65	AVG
7	2.1580	13.08	20.13	33.21	56.00	-22.79	QP
8	2.1580	-1.68	20.13	18.45	46.00	-27.55	AVG
9	8.8340	18.19	19.88	38.07	60.00	-21.93	QP
10	8.8340	16.98	19.88	36.86	50.00	-13.14	AVG
11	15.7460	26.03	20.14	46.17	60.00	-13.83	QP
12	15.7460	25.01	20.14	45.15	50.00	-4.85	AVG


Remark:

1. All readings are Quasi-Peak and Average values

2. Margin = Result (Result = Reading + Factor)–Limit

3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Shenzhen STS Test Services Co., Ltd.

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted	
band)	120 KHz / 300 KHz

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
band)	1 MHz/1/T MHz(AVG)

For Restricted band

Spectrum Parameter	Setting	
Detector	Peak/AV	
Start/Stan Fraguanay	Lower Band Edge: 2310 to 2410 MHz	
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz	
	1 MHz / 3 MHz(Peak)	
RB / VB	1 MHz/1/T MHz(AVG)	

Shenzhen STS Test Services Co., Ltd.

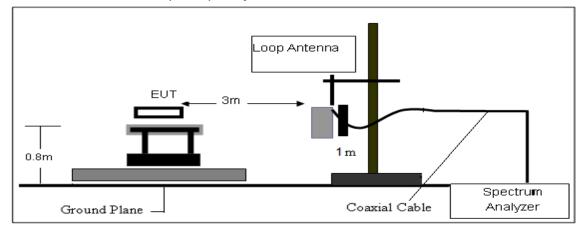
Page 23 of 77 Report No.: STS2103087W07

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

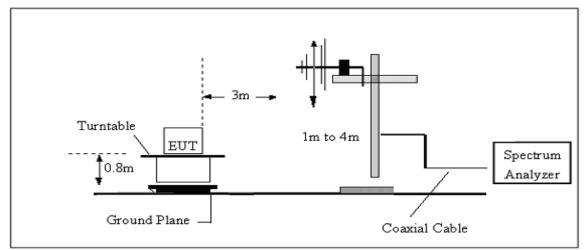
3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

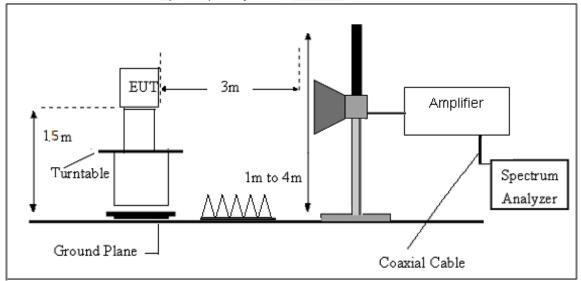
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


3.2.3 DEVIATION FROM TEST STANDARD

No deviation.



3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	AC 120V/60Hz	Test Mode:	TX Mode

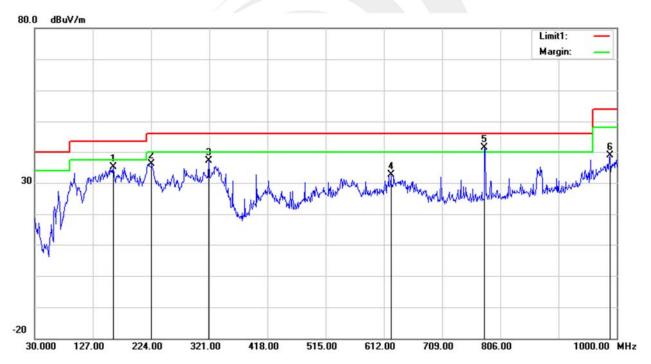
Freq.	Reading	Limit	Margin	State	Test Desult	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

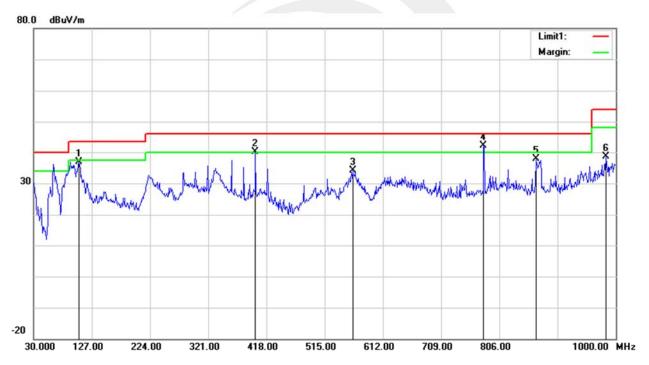

(30MHz-1000MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH				
Test Voltage:	AC 120V/60Hz	Phase:	Horizontal				
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode 8 worst mode)						

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	160.9500	54.07	-18.91	35.16	43.50	-8.34	QP
2	224.9700	55.42	-19.32	36.10	46.00	-9.90	QP
3	320.0300	51.11	-14.00	37.11	46.00	-8.89	QP
4	623.6400	38.02	-5.33	32.69	46.00	-13.31	QP
5	779.8100	43.55	-2.22	41.33	46.00	-4.67	QP
6	988.3600	36.79	2.15	38.94	54.00	-15.06	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain



Temperature:	23.1(C)	Relative Humidity:	60%RH			
Test Voltage:	AC 120V/60Hz	Phase:	Vertical			
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode 8 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	105.6600	56.49	-19.53	36.96	43.50	-6.54	peak
2	399.5700	51.28	-11.16	40.12	46.00	-5.88	peak
3	561.5600	39.71	-5.51	34.20	46.00	-11.80	peak
4	779.8100	44.38	-2.22	42.16	46.00	-3.84	peak
5	867.1100	38.35	-0.50	37.85	46.00	-8.15	peak
6	983.5100	36.22	2.46	38.68	54.00	-15.32	peak

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Page 29 of 77 Report No.: STS2103087W07

(1GHz~25GHz) \$purious emission Requirements

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				Low Ch	annel (8DPSK/	2402 MHz)				
3264.79	60.99	44.70	6.70	28.20	-9.80	51.19	74.00	-22.81	PK	Vertical
3264.79	51.48	44.70	6.70	28.20	-9.80	41.68	54.00	-12.32	AV	Vertical
3264.67	61.55	44.70	6.70	28.20	-9.80	51.75	74.00	-22.25	PK	Horizontal
3264.67	50.21	44.70	6.70	28.20	-9.80	40.41	54.00	-13.59	AV	Horizontal
4804.37	58.47	44.20	9.04	31.60	-3.56	54.91	74.00	-19.09	PK	Vertical
4804.37	50.06	44.20	9.04	31.60	-3.56	46.50	54.00	-7.50	AV	Vertical
4804.55	58.23	44.20	9.04	31.60	-3.56	54.67	74.00	-19.33	PK	Horizontal
4804.55	50.55	44.20	9.04	31.60	-3.56	46.99	54.00	-7.01	AV	Horizontal
5359.70	49.31	44.20	9.86	32.00	-2.34	46.97	74.00	-27.03	PK	Vertical
5359.70	40.24	44.20	9.86	32.00	-2.34	37.90	54.00	-16.10	AV	Vertical
5359.75	48.21	44.20	9.86	32.00	-2.34	45.87	74.00	-28.13	PK	Horizontal
5359.75	38.40	44.20	9.86	32.00	-2.34	36.06	54.00	-17.94	AV	Horizontal
7205.84	54.92	43.50	11.40	35.50	3.40	58.32	74.00	-15.68	PK	Vertical
7205.84	44.71	43.50	11.40	35.50	3.40	48.11	54.00	-5.89	AV	Vertical
7205.66	53.50	43.50	11.40	35.50	3.40	56.90	74.00	-17.10	PK	Horizontal
7205.66	44.79	43.50	11.40	35.50	3.40	48.19	54.00	-5.81	AV	Horizontal
				Middle C	hannel (8DPSł	2441 MHz)</td <td></td> <td></td> <td></td> <td></td>				
3264.68	61.63	44.70	6.70	28.20	-9.80	51.83	74.00	-22.17	PK	Vertical
3264.68	50.21	44.70	6.70	28.20	-9.80	40.41	54.00	-13.59	AV	Vertical
3264.69	61.75	44.70	6.70	28.20	-9.80	51.95	74.00	-22.05	PK	Horizontal
3264.69	49.92	44.70	6.70	28.20	-9.80	40.12	54.00	-13.88	AV	Horizontal
4882.37	59.08	44.20	9.04	31.60	-3.56	55.52	74.00	-18.48	PK	Vertical
4882.37	49.51	44.20	9.04	31.60	-3.56	45.95	54.00	-8.05	AV	Vertical
4882.61	58.43	44.20	9.04	31.60	-3.56	54.87	74.00	-19.13	PK	Horizontal
4882.61	49.69	44.20	9.04	31.60	-3.56	46.13	54.00	-7.87	AV	Horizontal
5359.60	48.15	44.20	9.86	32.00	-2.34	45.81	74.00	-28.19	PK	Vertical
5359.60	39.37	44.20	9.86	32.00	-2.34	37.03	54.00	-16.97	AV	Vertical
5359.78	47.85	44.20	9.86	32.00	-2.34	45.51	74.00	-28.49	PK	Horizontal
5359.78	39.48	44.20	9.86	32.00	-2.34	37.14	54.00	-16.86	AV	Horizontal
7323.81	53.71	43.50	11.40	35.50	3.40	57.11	74.00	-16.89	PK	Vertical
7323.81	43.91	43.50	11.40	35.50	3.40	47.31	54.00	-6.69	AV	Vertical
7323.73	54.94	43.50	11.40	35.50	3.40	58.34	74.00	-15.66	PK	Horizontal
7323.73	43.62	43.50	11.40	35.50	3.40	47.02	54.00	-6.98	AV	Horizontal

Page 30 of 77 Report No.: STS2103087W07

				High Chan	nel (8DPSK	/2480 MHz)				
3264.65	62.08	44.70	6.70	28.20	-9.80	52.28	74.00	-21.72	PK	Vertical
3264.65	50.38	44.70	6.70	28.20	-9.80	40.58	54.00	-13.42	AV	Vertical
3264.77	62.23	44.70	6.70	28.20	-9.80	52.43	74.00	-21.57	PK	Horizontal
3264.77	50.99	44.70	6.70	28.20	-9.80	41.19	54.00	-12.81	AV	Horizontal
4960.41	58.51	44.20	9.04	31.60	-3.56	54.95	74.00	-19.05	PK	Vertical
4960.41	49.15	44.20	9.04	31.60	-3.56	45.59	54.00	-8.41	AV	Vertical
4960.50	58.35	44.20	9.04	31.60	-3.56	54.79	74.00	-19.21	PK	Horizontal
4960.50	49.92	44.20	9.04	31.60	-3.56	46.36	54.00	-7.64	AV	Horizontal
5359.71	49.05	44.20	9.86	32.00	-2.34	46.71	74.00	-27.29	PK	Vertical
5359.71	40.02	44.20	9.86	32.00	-2.34	37.68	54.00	-16.32	AV	Vertical
5359.59	47.61	44.20	9.86	32.00	-2.34	45.27	74.00	-28.73	PK	Horizontal
5359.59	38.78	44.20	9.86	32.00	-2.34	36.44	54.00	-17.56	AV	Horizontal
7439.78	53.80	43.50	11.40	35.50	3.40	57.20	74.00	-16.80	PK	Vertical
7439.78	44.28	43.50	11.40	35.50	3.40	47.68	54.00	-6.32	AV	Vertical
7439.70	53.54	43.50	11.40	35.50	3.40	56.94	74.00	-17.06	PK	Horizontal
7439.70	44.19	43.50	11.40	35.50	3.40	47.59	54.00	-6.41	AV	Horizontal

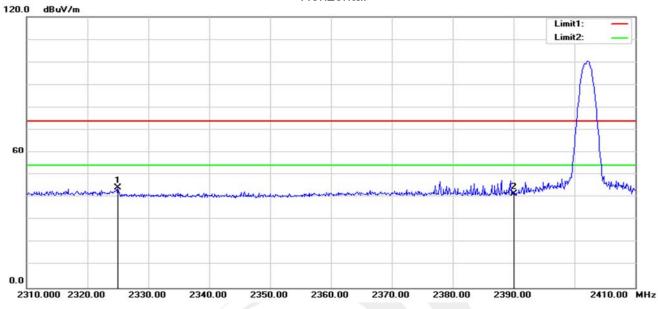
Note:

- 1) Scan with GFSK, π /4-DQPSK, 8DPSK, the worst case is 8DPSK Mode.
- 2) Factor = Antenna Factor + Cable Loss Pre-amplifier.

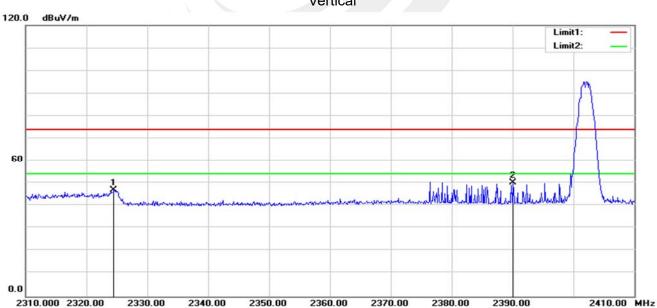
Emission Level = Reading + Factor

3) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

emission is mainly from the environment noise.


Page 31 of 77

Report No.: STS2103087W07



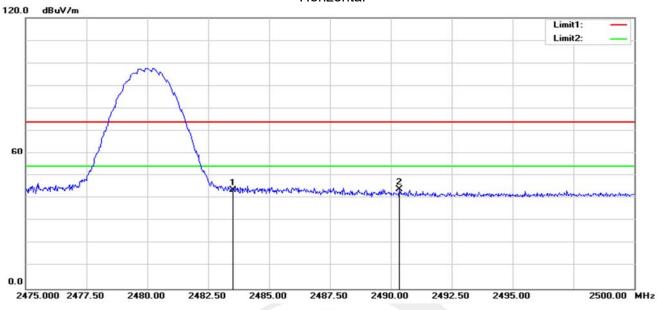
Restricted band Requirements

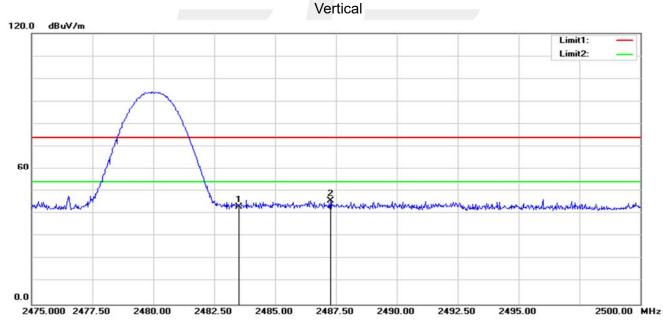
8DPSK-Low Horizontal

No.	Frequency	Reading Correct		Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2325.000	40.59	3.60	44.19	74.00	-29.81	peak
2	2390.000	37.16	4.34	41.50	74.00	-32.50	peak

No.	Frequency	Reading Correct		Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2324.500	43.49	3.60	47.09	74.00	-26.91	peak
2	2390.000	45.96	4.34	50.30	74.00	-23.70	peak

Vertical


Shenzhen STS Test Services Co., Ltd.


Page 32 of 77

Report No.: STS2103087W07

8DPSK-High Horizontal

No.	Frequency	Frequency Reading Correct Result Limit Margin							
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
1	2483.500	39.16	4.60	43.76	74.00	-30.24	peak		
2	2490.350	39.18	4.63	43.81	74.00	-30.19	peak		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	38.50	4.60	43.10	74.00	-30.90	peak
2	2487.275	41.04	4.62	45.66	74.00	-28.34	peak

Note: GFSK, π /4-DQPSK, 8DPSK of the nohopping and hopping mode all have been test, the worst case is 8DPSK of the nohopping mode, this report only show the worst case.

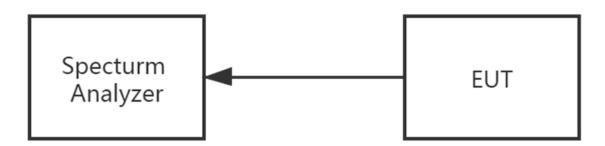
Shenzhen STS Test Services Co., Ltd.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE


Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting				
Detector	Peak				
Start/Stop Eroquanay	Lower Band Edge: 2300 – 2407 MHz				
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz				
RB / VB (emission in restricted band)	100 KHz/300 KHz				
Trace-Mode:	Max hold				
For Hopping Band edge					
Spectrum Parameter	Setting				
Detector	Peak				
Start/Stan Fraguenau	Lower Band Edge: 2300– 2403 MHz				
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz				
RB / VB (emission in restricted band)	100 KHz/300 KHz				
Trace-Mode:	Max hold				

Page 34 of 77 Report No.: STS2103087W07

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(1Mbps)-00/39/78 CH	Test Voltage:	AC 120V/60Hz

00 CH

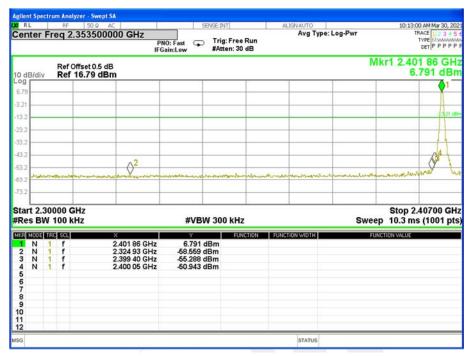
39 CH

RF 50 9	AC	SENSE:INT	ALIGNAUTO		10:16:01 AM Mar 30, 20
er Freq 12.5150	00000 GHz	D: Fast 🖵 Trig: Fre iin:Low #Atten: 3	Avg Type ee Run 30 dB	: Log-Pwr	TYPE MWWWW DET P P P P P
Ref Offset 0.5 div Ref 15.34 d				25	Mkr1 2.452 GF 5.341 dB
1					
		-			-13.68 (
$\langle \rangle^2$	03			h a antena a	man
a good with a spectra	and the second second second second second	manander	- Manakara -		
30 MHz BW 100 kHz		#VBW 300 kH	lz	Swee	Stop 25.00 Gl
DE TRC SCL	×		UNCTION FUNCTION WIDTH	FUNCT	ION VALUE
N 1 F N 1 F N 1 F N 1 F	2.452 GHz 2.777 GHz 7.396 GHz 24.501 GHz	5.341 dBm -54.601 dBm -55.130 dBm -48.214 dBm			
			STATUS		

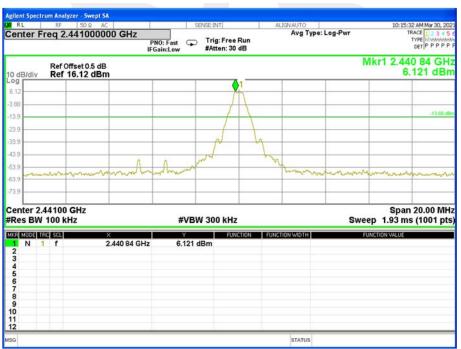
П

78 CH

mta		RF	50 Q		SENS	E:INT	ALIGNAUTO			AM Mar 30, 20
entei	r Fre	eq 1:	2.51500	0000 GHz PN IFG		Frig: Free Run Atten: 30 dB	Avg Type	e: Log-Pwr	T	ACE 1 2 3 4 5 YPE MWWWW DET P P P P F
dB/d	iv		ffset 0.5 c 5.95 dBr						Mkr1 2. -4.(477 GH 055 dBi
05		- 0	1							-
1										-23.92 d
1.1			<mark>2</mark>			-				-
1	_		Y							ليعلمهم
1	ma	und	white	manumenter	neradinander	net and a second	the way to be a set of the set of	And the second s		Sector Land
1									-	
4.1										
art 3 Res E		Hz I OO k	Hz		#VBW 3	300 kHz		s	Stop weep 2.39 s	25.00 GI (1001 pi
R MOD	El TRC	SCL		×	Ŷ	EUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N	1	f		2.477 GHz 3.326 GHz	-4.055 dBr -42.712 dBr	n n				
2 N	1	f		7.047 GHz 24.700 GHz	-55.241 dBr -47.182 dBr					
3 N										
3 N										
3 N 4 N 5 6 7 8 9										
3 N										



Shenzhen STS Test Services Co., Ltd.



For Band edge(it's also the reference level for conducted spurious emission)

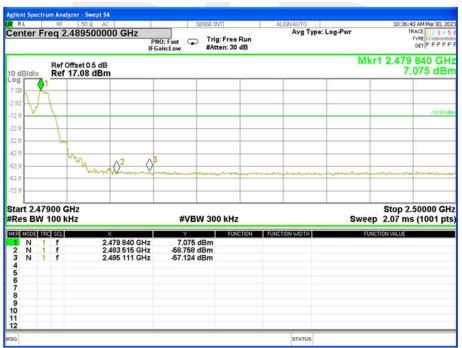
00 CH

39 CH

78 CH

RL		RF	50 Q AC			SENSE:INT		ALIGNAUTO			:22 AM Mar 30, 203
enter	Fre	eq 2.	48750000	P	NO: Fast Gain:Low	Trig: Fre #Atten: 3		Avg Type:	Log-Pwr		TYPE MUMMUM DET P P P P
0 dB/di			offset 0.5 dB 6.08 dBm						Mk		9 850 GH 9 918 dBr
3.92		_	~ 2	1				_			
13.9		-		1			-	-			-
23.9		-	- (1							-23.92 di
33.9		_									
13.9			N	n	0 ²		03		~	4	
53.9		mon	in	The way	man		how	han mar mar han and	mmund	inmo	
3.9											
33.9											
L											
tart 2 Res B					#VB	W 300 kH	z		Swee	stop 2 p 2.40 m	2.50000 GH is (1001 pt
KR MODI	TRC		×		Y		INCTION	NCTION WIDTH	EU	NCTION VALUE	
1 N 2 N 3 N 5 6 7	1 1 1 1	f f f	2.4	79 850 GHz 83 500 GHz 88 350 GHz 94 850 GHz	-3.918 -59.991 -57.822 -57.794	dBm dBm					
6 7 8 9 10 11											
								STATUS			

Shenzhen STS Test Services Co., Ltd.



For Hopping Band edge

00 CH

RL		50 g AC	SENSE:1	NT	ALIGNAUTO			M Mar 30, 20
enter F	req 2.3	51500000 GHz PI IFC	NO: Fast 🖵 Tri Sain:Low #At	g: Free Run ten: 30 dB	Avg Type:	Log-Pwr	TY	ET P P P P I
) dB/div		set 0.5 dB 7.57 dBm				M	kr1 2.401 8 7.5	67 GH
.57								1
43								
.4								-12.43
.4								
4								-
4							. 2	\Diamond
4 minut	makan	-	- and the second second	mana		American	man	manut
4								
	0000 GH		#VBW 30	0 kHz		Swe	Stop 2.4 ep 9.87 ms	
R MODE 1	RC SCL	×	Y	FUNCTION	FUNCTION WIDTH	R	INCTION VALUE	12 - 22
	1 f 1 f 1 f	2.401 867 GHz 2.390 022 GHz 2.400 013 GHz	7.568 dBm -59.355 dBm -49.664 dBm					
4 5 7 8								
)								
1								

78 CH

Shenzhen STS Test Services Co., Ltd.

П

Page 40 of 77 Report No.: STS2103087W07

Temperature:	25 ℃	Relative Humidity:	50%
	π/4-DQPSK(2Mbps)– 00/39/78 CH	Test Voltage:	AC 120V/60Hz

Spectrum Analyzer - S	AC AC	SENSE:INT	ALIGNAUTO	11:56:58 AM Mar 30, 2
r Freq 12.51	5000000 GHz		Avg Type: Log-P	WT TRACE 1 2 3 4
		0: Fast Trig: Free Ru bin:Low #Atten: 30 dB	1	DET P P P
Ref Offset	0.5 dB			Mkr1 2.402 GH
Iv Ref 9.84				-0.164 dB
1				
				-19.88
Q*				
	03		a monte man a more	washing to the second and the second
puter to a stand of the	- and manufactures	mansternation	and all and a second	
BO MHz				Stop 25.00 G
BW 100 kHz		#VBW 300 kHz		Sweep 2.39 s (1001 p
DE TRC SCL	×		N FUNCTION WIDTH	FUNCTION VALUE
1 f 1 f	2.402 GHz 3.326 GHz	-0.164 dBm -42.433 dBm		
1 1	6.123 GHz 24.501 GHz	-55.243 dBm -47.703 dBm		
1 f	24.001 0112	47.705 dBill		
			STATUS	
		39 CH		

00 CH

39	CH

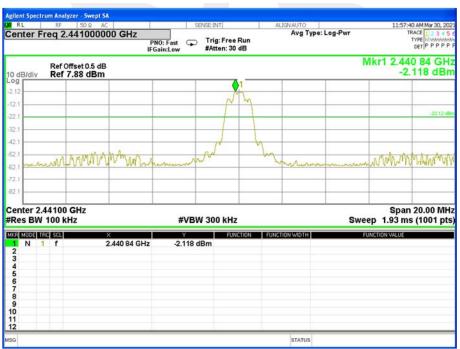
RL RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	11:58:10 AM Mar 30, 2
enter Freq 12.5150	PNO	: Fast 🗭 Trig: Free Ru n:Low #Atten: 30 dE		-Pwr TRACE 1234 TYPE MWWW DET P P P
Ref Offset 0. dB/div Ref 7.43 d				Mkr1 2.452 GH -2.566 dB
57				
6				-22.12
26				
Δ2		∆3		44
5 mober marken	water	verstermon	my memoral and a los	Carlotherent of the stranger
0				
6				
0				
art 30 MHz				Stop 25.00 G
tes BW 100 kHz		#VBW 300 kHz		Sweep 2.39 s (1001 p
R MODE TRC SCL	× 2.452 GHz	-2.566 dBm	ION FUNCTION WIDTH	FUNCTION VALUE
2 N 1 f	3.301 GHz	-55.687 dBm		
N 1 F	9.469 GHz 24.800 GHz	-55.211 dBm -48.213 dBm		
	24.000 0112	40.210 0.011		
1 N 1 f				
2				

Shenzhen STS Test Services Co., Ltd.

78 CH

RL		RF	50 Q		SENS	E:INT	ALIGNAUTO			1 AM Mar 30, 20
nter	Fre	eq 1	2.51500	00000 GHz PN IFG:		rig: Free Run Atten: 30 dB	Avg Type	e: Log-Pwr	TF	DET P P P P
dB/di	v		offset 0.5 d 17.06 dE						Mkr1 2. 7.	477 GH 061 dB
6		_	1							
										-12.52
			. 2			-				
-		-	-\\ ²							^
				0 ³					month	man
9	ditte	nonth	nowlying	and an anow	- and writer	And all had all and and	- second and the second s	~~~		
9 -						-				
es B			Hz		#VBW 3	00 kHz		s	Stop weep 2.39 s	25.00 Gi
MODE	E TRC			×	Ÿ	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
ZZZZ	1 1 1	f f f f		2.477 GHz 3.326 GHz 5.523 GHz 24.376 GHz	7.061 dBr -35.824 dBr -56.217 dBr -46.722 dBr	n n				

Shenzhen STS Test Services Co., Ltd.



For Band edge(it's also the reference level for conducted spurious emission)

00 CH

39 CH

78 CH

RL		RF	50 Q AC		1.53	SENSE:INT	ALIGNAUTO			AM Mar 30, 20
ente	r Fr	eq 2	.4875000	Р	NO: Fast Gain:Low	Trig: Free Ru #Atten: 30 dB	n	pe: Log-Pwr	TRJ T	ACE 1 2 3 4 5 YPE MWWWW DET P P P P P
0 dB/d	liv		offset 0.5 dB 17.48 dBm					М	kr1 2.479 7.4	850 GH 175 dBr
7.48										1
2.5			ſ	1						-12.52 d
2.5										
2.5		_		ha						
2.5			M	M	2	03			4	
2.5	um.	m	·		mon	nontrouver	mannamma	mour man Romando	month	
2.5										
tart 2 Res E					#VB	W 300 kHz		Swe	Stop 2.5 ep 2.40 ms	
KR MOD		SCL		×	Y	FUNCTIO	IN FUNCTION WIDTH		UNCTION VALUE	
1 N 2 N 3 N 4 5	1	f f f	2.	479 850 GHz 483 500 GHz 486 075 GHz 496 900 GHz	7.475 -57.739 -56.149 -57.416	dBm dBm				
5 6 7 8 9										
9 0 1 2										

Shenzhen STS Test Services Co., Ltd.

For Hopping Band edge

00 CH

RL		50 Q AC	S	ENSE:INT	ALIGNAUTO		11:11:34 AM	
enter F	req 2.35	1500000 GHz	PNO: Fast G	Trig: Free Run #Atten: 30 dB	Avg Type:	Log-Pwr	TYP	PPPP
dB/div		et 0.5 dB .84 dBm				MI	(r1 2.401 8) 7.84	67 GH 2 dB
84								-
16			-					
2								-12.16
2								
2								
2			-			· · · · ·		_
2							\bigcirc^2	
2	Second and a second second	and a state of the	and the second	auronomidumationsoph	ac mitter when any south	man	and a surplus and the second	- W
2			-					
	0000 GHz / 100 kHz		#VB	V 300 kHz		Swee	Stop 2.40 p 9.87 ms (1	
R MODE 1	TRC SCL	×	Y		FUNCTION WIDTH	FU	NCTION VALUE	
	1 f 1 f 1 f	2.401 867 GH 2.390 022 GH 2.400 013 GH	z -58.457 d	lBm				
1								

78 CH

П

Page 45 of 77 Report No.: STS2103087W07

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	8DPSK(3Mbps) -00/39/78 CH	Test Voltage:	AC 120V/60Hz

00 CH

RL	RF	50 9	AC	SB	NSE:INT	ALIGN AUTO		11:59:5	5 AM Mar 30, 20
enter	Freq	12.51500	00000 GHz PN IFG	IO: Fast 😱	Trig: Free Run #Atten: 30 dB	Avg Type	: Log-Pwr	T	TYPE MUMMUM DET P P P P P
0 dB/di		Offset 0.5 c f -1.81 dB							.402 GH 809 dBr
11.8		1							-19.81 d
21.8 31.8									
51.8		aa^2	03				A ALANKA		Same
51.8	-	Munne		new manual	week what have	munter	at at a set		
1.8									
91.8									
	0 MHz W 100	kHz		#VBW	300 kHz		Sv	Stop veep 2.39	25.00 GH s (1001 pt
IKR MODE	E TRC SCL		×	Y	EUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 2 3 4 5	1 f 1 f 1 f		2.402 GHz 2.652 GHz 5.998 GHz 24.476 GHz	-11.809 di -55.631 di -55.874 di -47.776 di	3m 3m				
4 N 5 6 7 8 9									
0									
2									

39 CH

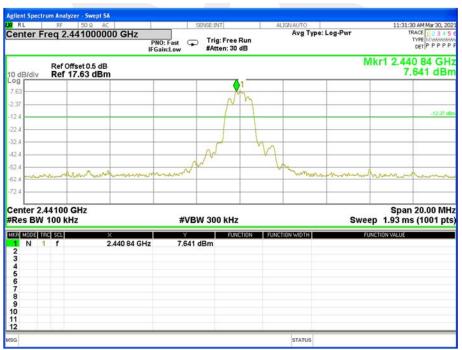
	RF 5	DA AC	SENSE:INT	ALIGNAUTO	11:32:00 AM Mar 30, 202
enter l	req 12.51		: Fast 😱 Trig: Free F in:Low #Atten: 30 o		TRACE 1 2 3 4 5 TYPE M MAAAMA DET P P P P P
dB/div	Ref Offset Ref 15.5				Mkr1 2.452 GH: 5.559 dBn
.56	1				
44					-12.37 dB
4.4					
1.4					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4	\Diamond^2	\bigcirc^3		Manual of 190 Manual and	ment
1.4 marin	marthur	and a second and the second and the second and the second se	استاللورهير روالاست والقرير ووالعر	and a company of the second	
4.4					
art 30 tes BV	MHz 100 kHz		#VBW 300 kHz		Stop 25.00 GHz Sweep 2.39 s (1001 pts
R MODE	IRC SCL	×	Y	TION FUNCTION WIDTH	FUNCTION VALUE
	1 f 1 f	2.452 GHz 2.727 GHz	5.559 dBm -55.450 dBm -55.884 dBm		
2 N 3 N	İ	6.472 GHz 24.476 GHz	-47.732 dBm		
2 N 3 N 4 N 5 6 7	1 f				
2 N 3 N	1 f				

П

78 CH

		RF	50 9	AC	S	ENSE:INT		ALIGN AUTO		11:36:09	AM Mar 30, 20
enter	r Fr	eq 1	2.51500	0000 GHz	NO: Fast 😱 Gain:Low	Trig: Free I #Atten: 30	Run dB	Avg Type:	Log-Pwr	T	ACE 1 2 3 4 5 YPE MWWWWW DET P P P P P
) dB/di	iv)ffset 0.5 d 17.13 dB							Mkr1 2. 7.1	477 GH 127 dBr
13		<	1								
87		_							-	_	
.9	-										-12.49 d
9			\Diamond^2								
2.9		-	-		^3						5
2.9	hur	m	mohum	and the second second second	and an entry ways	haven made and	war by robust was	- and the second second	Carrier .	mention	and a grant of the second
2.9											
art 3 Res B			Hz		#VB	V 300 kHz			S	Stop weep 2.39 s	25.00 GH (1001 pt
R MODI	E TRO			×	Y	FUNC	TION FUN	CTION WIDTH		FUNCTION VALUE	
1 N 2 N 3 N 4 N	1 1 1	f f f		2.477 GHz 3.326 GHz 8.070 GHz 24.451 GHz	7.127 (-35.773 (-55.494 (-48.438 (iBm iBm					
5 6 7 8 9 0 1 2											

Shenzhen STS Test Services Co., Ltd.



For Band edge(it's also the reference level for conducted spurious emission)

00 CH

39 CH

Shenzhen STS Test Services Co., Ltd.

78 CH

	50 Q AC	SENSE:INT	ALIGN AUTO		11:35:39 AM Mar 30, 20
enter Freq 2.487	PN	0: Fast 🗭 Trig: Fre ain:Low #Atten: 3	ee Run	e: Log-Pwr	TRACE 1 2 3 4 5 TYPE M WWWW DET P P P P F
Ref Offse				Mkr	1 2.479 850 GH 7.523 dBi
.52	th				
25					-12.49 d
2.5					
2.5	pl ha			_	
25	AN KI	\wedge^2 \wedge^3		A4	
2.5 2.5 Marman		mlimmont	mohnomhannan	Manna	~
2.5					
tart 2.47500 GHz Res BW 100 kHz		#VBW 300 ki	łz	Sweep	Stop 2.50000 GH 2.40 ms (1001 pt
KR MODE TRC SCL	×		UNCTION FUNCTION WIDTH	FUNCT	TION VALUE
1 N 1 F 2 N 1 F 3 N 1 F 4 N 1 F	2.479 850 GHz 2.483 500 GHz 2.486 000 GHz 2.492 675 GHz	7.523 dBm -57.494 dBm -56.459 dBm -57.789 dBm			
4 N 1 f 5 6 7					
9					
0					

Shenzhen STS Test Services Co., Ltd.

For Hopping Band edge

00 CH

	RF	50 Q AC		SE	NSE:INT	ALIGNAUTO			M Mar 30, 20
enter F	req 2.3	51500000	PN	0: Fast 😱 ain:Low	Trig: Free Run #Atten: 30 dB	Ауд Туре	: Log-Pwr	TYS	ETPPPPF
dB/div		set 0.5 dB 7.85 dBm					М	kr1 2.401 8 7.8	67 GH 51 dB
85									
15									
2									-12.15 0
2									
2									
2									
2								02	$\langle \rangle$
2 ma		and a same	unawanter.			wrappen the strande	a warman a		meline
2									
-									
	0000 GH / 100 kH			#VBW	/ 300 kHz		Swe	Stop 2.40 ep 9.87 ms (
R MODE 1	TRC SCL	×		Y	FUNCTION	FUNCTION WIDTH	FI	UNCTION VALUE	
N	1 f 1 f 1 f	2.39	1 867 GHz 0 022 GHz 0 013 GHz	7.851 d -59.525 d -51.001 d	Bm				

78 CH

Shenzhen STS Test Services Co., Ltd.

П

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT

FCC Part 15.247,Subpart C								
Section	Test Item	Limit	FrequencyRange (MHz)	Result				
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS				

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	300KHz
VB	300KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Mode:	Hopping Mode -GFSK Mode	Test Voltage:	AC 120V/60Hz

Number of Hopping Channel

79

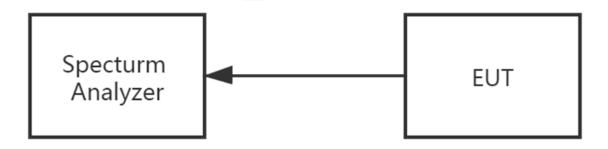
Hopping channel

		AC	SE	INSE:INT	AL	IGNAUTO			5 AM Mar 30, 20
enter Fr	eq 2.44175		PNO: Fast 😱 Gain:Low	Trig: Free Run #Atten: 30 dB		Avg Type:	Log-Pwr		ACE 12345 TYPE MUMMM DET P P P P P
0 dB/div	Ref Offset 0.5 Ref 17.73 d						Mkr	2 2.479 9	09 5 GH .31 dBr
og ()1									2
73	WWWWWWW	AMAAAAAAAA	WWWWW	mmm	YWWY	WWWW	mmm	MMMM	mm
2.27									
23								-	
2.3									
23		-							1
12.3									1
23									
52.3									
72.3									
tart 2.40 Res BW			#VBV	V 300 kHz			Swe	Stop 2. ep 1.13 ms	48350 GH (1001 pt
	C SCL	×	Y	FUNCTION	N FUNCT	ION WIDTH		UNCTION VALUE	· ·
		2.401 920 5 GHz	7.81 d						
IKR MODE TR									
<u>4KR MODE TR</u> 1 N 1 <mark>2</mark> N 1 3		2.479 909 5 GHz	7.31 d	Bm					
REMODE TR 1 N 1 2 N 1 3 4			7.31 d	вm					
REMODE TR 1 N 1 2 N 1 3 4			7.31 d	ISM					
MKR MODE TR 1 N 1 2 N 1 3 4			7.31 d	BM					
<u>4KR MODE TR</u> 1 N 1 <mark>2</mark> N 1 3			7.31 d	BM					
Image Tr 1 N 1 2 N 1 3 4 5 6 7 8 9 9 1			7.31 d						

Shenzhen STS Test Services Co., Ltd.

П

6. AVERAGE TIME OF OCCUPANCY


6.1 LIMIT

FCC Part 15.247,Subpart C								
Section	Test Item	Limit	FrequencyRange (MHz)	Result				
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \tilde{h} . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37 x 31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06 x 31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12 x 31.6 = 320.

6.3 TEST SETUP

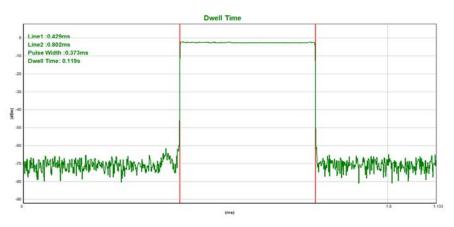
6.4 EUT OPERATION CONDITIONS

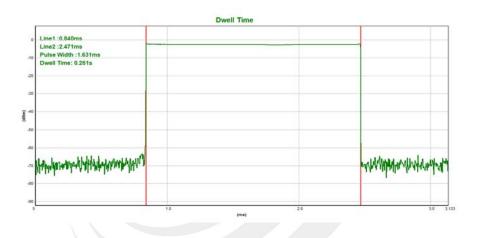
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

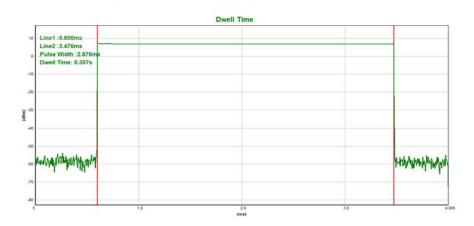
Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(1Mbps)-DH1/DH3/DH5	Test Voltage:	AC 120V/60Hz

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
DH1	middle	0.373	0.119	0.4
DH3	middle	1.631	0.261	0.4
DH5	middle	2.876	0.307	0.4




Page 54 of 77 Re

Report No.: STS2103087W07


CH39-DH1

CH39-DH3

Shenzhen STS Test Services Co., Ltd.

П

Page 55 of 77 Report No.: STS2103087W07

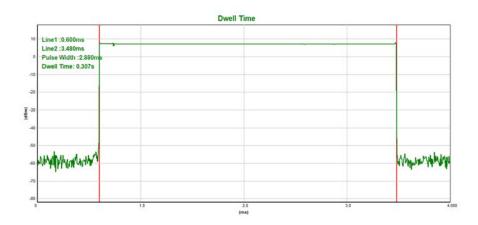
Temperature:	25 ℃	Relative Humidity:	50%
	π/4-DQPSK(2Mbps)– 2DH1/2DH3/2DH5	Test Voltage:	AC 120V/60Hz

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
2DH1	middle	0.381	0.122	0.4
2DH3	middle	1.634	0.261	0.4
2DH5	middle	2.880	0.307	0.4

Shenzhen STS Test Services Co., Ltd.


Page 56 of 77 Re

Report No.: STS2103087W07


CH39-2DH1

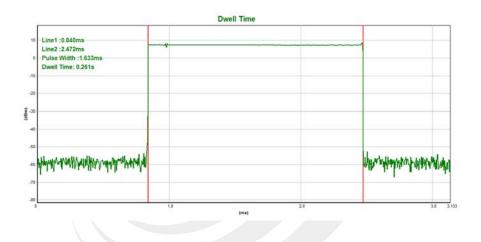
CH39-2DH3

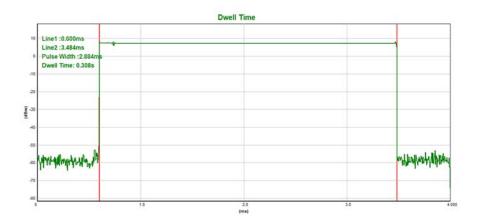
Shenzhen STS Test Services Co., Ltd.

Page 57 of 77 Report No.: STS2103087W07

Temperature:	25 ℃	Relative Humidity:	50%
	8DPSK(3Mbps)– 3DH1/3DH3/3DH5	Test Voltage:	AC 120V/60Hz


Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
3DH1	middle	0.382	0.122	0.4
3DH3	middle	1.633	0.261	0.4
3DH5	middle	2.884	0.308	0.4


Shenzhen STS Test Services Co., Ltd.


CH39-3DH1

CH39-3DH3

Shenzhen STS Test Services Co., Ltd.

П

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 20 dB Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Lest Minde.	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)	Test Voltage:	AC 120V/60Hz

Frequency	Mark1 Frequency (MHz)	Mark2 Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
2402 MHz	2401.837	2402.836	0.999	0.820	Complies
2441 MHz	2440.837	2441.836	0.999	0.822	Complies
2480 MHz	2478.834	2479.836	1.002	0.823	Complies

For GFSK: Ch. Separation Limits: > 20dB bandwidth

CH00 -1Mbps

RL RF 50 Q AC	SENSE:INT	ALIGNAUTO	10:26:32 AM Mar 30, 20
enter Freq 2.402500000	PNO: Wide Trig:	Avg Type: Log-Pwr Free Run n: 30 dB	TRACE 1 2 3 4 5 TYPE MUMANNA DET P P P P P
Ref Offset 0.5 dB dB/div Ref 17.42 dBm			Mkr2 2.402 836 GH 7.434 dBr
g 42	×1	2	
6	and marked	much	<u>``</u>
.6			3
6			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6			
6			
.6			
enter 2.402500 GHz tes BW 30 kHz	#VBW 100	kHz Si	Span 3.000 MH weep 3.20 ms (1001 pt
r Mode TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE
N 1 f 2.401 N 1 f 2.402	837 GHz 7.43 dBm 836 GHz 7.43 dBm		
1			

Shenzhen STS Test Services Co., Ltd.

CH39 -1Mbps

CH78 -1Mbps

Shenzhen STS Test Services Co., Ltd.

П

Page 62 of 77 Report No.: STS2103087W07

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	CH00 / CH39 / CH78 (π/4-DQPSK(2Mbps) Mode)	Test Voltage:	AC 120V/60Hz

Frequency	Mark1 Frequency (MHz)	Mark2 Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
2402 MHz	2402.122	2403.121	0.999	0.741	Complies
2441 MHz	2441.122	2442.121	0.999	0.741	Complies
2480 MHz	2479.122	2480.121	0.999	0.741	Complies

For π /4-DQPSK(2Mbps): Ch. Separation Limits: > two-thirds 20dB bandwidth

RL RF 50 Q AC	SENSE:INT	ALIGNAUTO	11:06:55 AM Mar 30, 202
Center Freq 2.402500000 GHz	PNO: Wide Trig: Free Rur #Atten: 30 dB	Avg Type: Log-Pwr	TYPE MUMMUM DET P P P P
Ref Offset 0.5 dB 0 dB/div Ref 17.59 dBm		Mk	r2 2.403 121 GH 7.598 dBn
0g 7.59 2.41	my	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
24		~ ~	
2.4 M			
2.4			
2.4			
enter 2.402500 GHz Res BW 30 kHz	#VBW 100 kHz	Swee	Span 3.000 Mi p 3.20 ms (1001 pt
KR MODE TRC SCL	Y FUNCTIO	N FUNCTION WIDTH FU	NCTION VALUE
1 N 1 f 2.402 122 GHz 2 N 1 f 2.403 121 GHz			
4 6 7			
3 4 5 6 7 8 9 9 0			

CH00 -2Mbps

CH39 -2Mbps

CH78 -2Mbps

Shenzhen STS Test Services Co., Ltd.

П

Page 64 of 77 Report No.: STS2103087W07

Temperature:	25 ℃	Relative Humidity:	50%
	CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)	Test Voltage:	AC 120V/60Hz

Frequency	Mark1 Frequency (MHz)	Mark2 Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
2402 MHz	2401.996	2402.995	0.999	0.771	Complies
2441 MHz	2440.996	2441.995	0.999	0.771	Complies
2480 MHz	2478.996	2479.995	0.999	0.773	Complies

For 8DPSK(3Mbps):Ch. Separation Limits: > two-thirds 20dB bandwidth

RL RF 50 Q AC	SENSE:INT	ALIGNAUTO	11:28:33 AM Mar 30, 202
enter Freq 2.402500000 GHz	PNO: Wide Trig: Free F IFGain:Low #Atten: 30 d	Avg Type: Log-Pwr Run IB	TRACE 1 2 3 4 5 TYPE MUMMMM DET P P P P P
Ref Offset 0.5 dB 0 dB/div Ref 17.58 dBm		M	lkr2 2.402 995 GH 7.604 dBn
0 g 7.58		2	
42	m	~ mm	\sim
2.4			1
24			
2.4			
2.4			
enter 2.402500 GHz Res BW 30 kHz	#VBW 100 kHz	Swe	Span 3.000 MH ep 3.20 ms (1001 pt
KR MODE TRC SCL X 1 N 1 f 2.401 996 0	Y FUNC	TION FUNCTION WIDTH	FUNCTION VALUE
2 N 1 f 2.402 995 0 3			
4			
5 6 7			
8 9 0			
11			
		STATUS	

CH00 -3Mbps

Shenzhen STS Test Services Co., Ltd.

CH39 -3Mbps

CH78 -3Mbps

Shenzhen STS Test Services Co., Ltd.

П

8. BANDWIDTH TEST

8.1 LIMIT

FCC Part15 15.247,Subpart C						
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247(a)(1)	(20dB&99% bandwidth)	N/A	2400-2483.5	PASS		

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(1Mbps) CH00 / CH39 / C78	Test Voltage:	AC 120V/60Hz

Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402 MHz	0.8201	0.8208	PASS
2441 MHz	0.8224	0.8196	PASS
2480 MHz	0.8233	0.8191	PASS

CH00 -1Mbps

Shenzhen STS Test Services Co., Ltd.

П

CH39 -1Mbps

CH78 -1Mbps

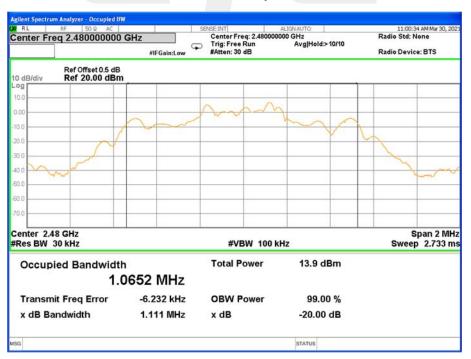
Page 69 of 77 Report No.: STS2103087W07

Temperature:	25 ℃	Relative Humidity:	50%
	π/4-DQPSK(2Mbps) CH00 / CH39 / C78	Test Voltage:	AC 120V/60Hz

Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402 MHz	1.1110	1.0662	PASS
2441 MHz	1.1110	1.0653	PASS
2480 MHz	1.1110	1.0652	PASS

CH00 -2Mbps

Shenzhen STS Test Services Co., Ltd.


Π

CH39 -2Mbps

CH78 -2Mbps

Page 71 of 77 Report No.: STS2103087W07

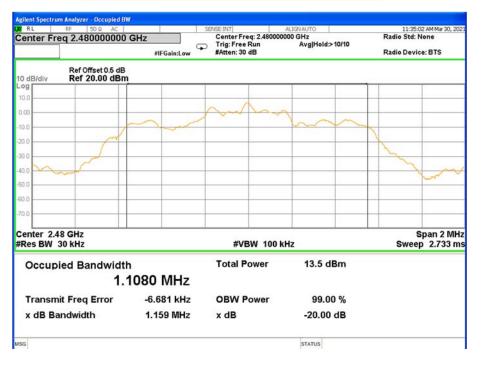
Temperature:	25 ℃	Relative Humidity:	50%
	8DPSK(3Mbps) CH00 / CH39 / CH78	Test Voltage:	AC 120V/60Hz

Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402 MHz	1.1570	1.1072	PASS
2441 MHz	1.1570	1.1076	PASS
2480 MHz	1.1590	1.1080	PASS

CH00 -3Mbps



Shenzhen STS Test Services Co., Ltd.


П

CH39 -3Mbps

CH78 -3Mbps

Shenzhen STS Test Services Co., Ltd.

9. OUTPUT POWER TEST

9.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
		1 W or 0.125W			
15.247 (a)(1)&(b)(1)	Output Power	if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater than125 mW(20.97dBm)	2400-2483.5	PASS	

9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW \geq RBW.

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector.

9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.5 TEST RESULTS

Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz		

Mode Channel Number		Frequency	Peak Power	Average Power	Limit
	(MHz)	(dBm)	(dBm)	(dBm)	
	0	2402	8.29	5.34	30.00
GFSK(1M)	39	2441	8.68	5.96	30.00
	78	2480	8.40	5.68	30.00

Note: the channel separation >20dB bandwidth

Mode Channel Number		Frequency	Peak Power	Average Power	Limit
	(MHz)	(dBm)	(dBm)	(dBm)	
	0	2402	10.57	5.28	20.97
π/4-DQPSK(2M)	39	2441	11.05	5.88	20.97
,	78	2480	10.69	5.59	20.97

Note: the channel separation >2/3 20dB bandwidth

Mode	Channel Number	Frequency (MHz)	Peak Power	Average Power	Limit
			(dBm)	(dBm)	(dBm)
8-DPSK(3M)	0	2402	11.02	5.32	20.97
	39	2441	11.51	5.93	20.97
	78	2480	11.07	5.59	20.97

Note: the channel separation >2/3 20dB bandwidth

Π

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203&RSS-Gen Issue 5: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

******END OF THE REPORT*****

Shenzhen STS Test Services Co., Ltd.