FCC Measurement/Technical Report on # Smart Wireless Flower Pot Parrot POT FCC ID: 2AG6IPOT IC: 21053-POT Test Report Reference: MDE_PARRO_1518_FCCa #### **Test Laboratory:** 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. **7layers GmbH** Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com # **Table of Contents** | 1 | Applied Standards and Test Summary | 3 | |-----|---|----| | 1.1 | Applied Standards | 3 | | 1.2 | FCC-IC Correlation Table | 4 | | 1.3 | Measurement Summary / Signatures | 5 | | 2 | Administrative Data | 8 | | 2.1 | Testing Laboratory | 8 | | 2.2 | Project Data | 8 | | 2.3 | Applicant Data | 8 | | 2.4 | Manufacturer Data | 8 | | 3 | Test object Data | 9 | | 3.1 | General EUT Description | 9 | | 3.2 | EUT Main components | 10 | | 3.3 | Ancillary Equipment | 10 | | 3.4 | Auxiliary Equipment | 11 | | 3.5 | EUT Setups | 11 | | 3.6 | Operating Modes | 11 | | 3.7 | Special Software used for testing | 11 | | 3.8 | Product labelling | 11 | | 4 | Test Results | 12 | | 4.1 | Occupied Bandwidth (6 dB) | 12 | | 4.2 | Occupied Bandwidth (99%) | 15 | | 4.3 | Peak Power Output | 17 | | 4.4 | Spurious RF Conducted Emissions | 20 | | 4.5 | Transmitter Spurious Radiated Emissions | 23 | | 4.6 | Band Edge Compliance Conducted | 29 | | 4.7 | Band Edge Compliance Radiated | 32 | | 4.8 | Power Density | 34 | | 5 | Test Equipment | 36 | | 6 | Setup Drawings | 39 | | 7 | Measurement Uncertainties | 40 | | 8 | Photo Report | 40 | # 1 Applied Standards and Test Summary #### 1.1 Applied Standards #### Type of Authorization Certification for an Intentional Radiator. #### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 15, Subpart C - Intentional Radiators § 15.201 Equipment authorization requirement § 15.207 Conducted limits § 15.209 Radiated emission limits; general requirements § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz #### Note 1: The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r05, 2016-01-07". #### Note 2: ANSI C63.10-2013 is applied. # **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures. #### 1.2 FCC-IC Correlation Table # Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC # DTS equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|---| | Conducted emissions on AC Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (2) | RSS-247 Issue 1: 5.2 (1) | | Peak conducted output power | § 15.247 (b) (3), (4) | RSS-247 Issue 1: 5.4 (4) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4: 6.13 / 8.9/8.10;
RSS-247 Issue 1: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 / 8.9/8.10;
RSS-247 Issue 1: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 1: 5.5 | | Power density | § 15.247 (e) | RSS-247 Issue 1: 5.2 (2) | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | _ | # 1.3 Measurement Summary / Signatures | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 | 5.247 (a) (2) | | | |--|-------------------|---------------|--------|--| | Occupied Bandwidth (6 dB) | | | | | | The measurement was performed according to ANSI C6 | 3.10 | Final Re | esult | | | OP-Mode Radio Technology, Operating Frequency | Setup | FCC | IC | | | Bluetooth LE, high | Setup_02_
cond | Passed | Passed | | | Bluetooth LE, low | Setup_02_
cond | Passed | Passed | | | Bluetooth LE, mid | Setup_02_
cond | Passed | Passed | | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | - | | | | | Occupied Bandwidth (99%) | | | | | | The measurement was performed according to ANSI C6 | 3.10 | Final Re | esult | | | OP-Mode Radio Technology, Operating Frequency | Setup | FCC | IC | | | Bluetooth LE, high | Setup_02_
cond | N/A | Passed | | | Bluetooth LE, low | Setup_02_
cond | N/A | Passed | | | Bluetooth LE, mid | Setup_02_
cond | N/A | Passed | | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 | (b) (3) | | | | Peak Power Output | | | | | | The measurement was performed according to ANSI C6 | 3.10 | Final Re | esult | | | OP-Mode Radio Technology, Operating Frequency, Measurement method | Setup | FCC | IC | | | Bluetooth LE, high, conducted | Setup_02_
cond | Passed | Passed | | | Bluetooth LE, low, conducted | Setup_02_
cond | Passed | Passed | | | Bluetooth LE, mid, conducted | Setup_02_ | Passed | Passed | | cond | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 | (d) | | |--|-------------------|----------|--------| | Spurious RF Conducted Emissions The measurement was performed according to ANSI C6 | 3.10 | Final Re | sult | | OP-Mode Radio Technology, Operating Frequency | Setup | FCC | IC | | Bluetooth LE, high | Setup_02_
cond | Passed | Passed | | Bluetooth LE, low | Setup_02_
cond | Passed | Passed | | Bluetooth LE, mid | Setup_02_
cond | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 | (d) | | | Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C6 | 3.10 | Final Re | sult | | OP-Mode Radio Technology, Operating Frequency, Measurement range | Setup | FCC | IC | | Bluetooth LE, high, 1 GHz - 26 GHz | Setup_01_
rad | Passed | Passed | | Bluetooth LE, high, 30 MHz - 1 GHz | Setup_01_
rad | Passed | Passed | | Bluetooth LE, low, 1 GHz - 26 GHz | Setup_01_
rad | Passed | Passed | | Bluetooth LE, low, 30 MHz - 1 GHz | Setup_01_
rad | Passed | Passed | | Bluetooth LE, mid, 1 GHz - 26 GHz | Setup_01_
rad | Passed | Passed | | Bluetooth LE, mid, 30 MHz - 1 GHz | Setup_01_
rad | Passed | Passed | | Bluetooth LE, mid, 9 kHz - 30 MHz | Setup_01_
rad | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 | (d) | | | Band Edge Compliance Conducted The measurement was performed according to ANSI C6 | 3.10 | Final Re | sult | | OP-Mode Radio Technology, Operating Frequency, Band Edge | Setup | FCC | IC | | Bluetooth LE, high, high | Setup_02_
cond | Passed | Passed | | Bluetooth LE, low, low | Setup_02_
cond | Passed | Passed | | 47 CFR CHAPTER | I FCC | PART : | 15 Subpart | C | |-----------------------|-------|--------|------------|---| | §15.247 | | | | | § 15.247 (d) Band Edge Compliance Radiated The measurement was performed according to ANSI C63.10 **Final Result** OP-Mode Setup FCC IC Radio Technology, Operating Frequency, Band Edge Bluetooth LE, high, high Setup_01_ rad Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 § 15.247 (e) **Power Density** The measurement was performed according to ANSI C63.10 **Final Result** **OP-Mode FCC** IC Setup Radio Technology, Operating Frequency Passed Bluetooth LE, high Setup_02_ Passed cond Bluetooth LE, low Passed Setup_02_ Passed cond Bluetooth LE, mid Setup_02_ Passed Passed cond N/A: Not applicable (responsible for accreditation scope) Dipl.-Ing. Marco Kullik (responsible for testing and report) Dipl.-Ing. Andreas Petz #### 2 Administrative Data #### 2.1 Testing Laboratory Company Name: 7layers GmbH Address: Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716. This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1. The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no: DAkkS D-PL-12140-01-01 Responsible for accreditation scope: Dipl.-Ing. Marco Kullik Report Template Version: 2016-02-29 #### 2.2 Project Data Responsible for testing and report: Dipl.-Ing. Andreas Petz Employees who performed the tests: documented internally at 7Layers Date of Report: 2016-04-27 Testing Period: 2016-04-08 to 2016-04-08 #### 2.3 Applicant Data Company Name: Parrot Drones SAS Address: 174 quai de jemmapes Paris France Contact Person: Mr. Cherif Si Ahmed #### 2.4 Manufacturer Data Company Name: please see applicant data Address: Contact Person: # 3 Test object Data # 3.1 General EUT Description | Kind of Device product description | Smart Wireless Flower Pot | |--|---| | Product name | Parrot POT | | Туре | Parrot POT | | Declared EUT data by | the supplier | | Voltage Type | DC | | Voltage Level | 6 V (4 x AAA) | | Tested Modulation Type | GFSK | | General product description | The EUT is a Bluetooth Low Energy transceiver operating in the 2.4 GHz ISM band. | | Specific product description for the EUT | The pot will watering plants automatically while continuously measuring and collecting data from which the status of the plant can be estimated (calculated). The status can be wirelessly transferred to a smart device, e.g. a mobile phone. An alert can be triggered. | | The EUT provides the following ports: | Enclosure | | Tested data rates | 1 Mbps | The main components of the EUT are listed and described in chapter 3.2 EUT Main components. # 3.2 EUT Main components | Sample Name | Sample Code | Description | |--------------------|------------------------------|------------------| | Standard sample #1 | aa01 sample in BTLE test mod | | | | | integral antenna | | Sample Parameter | Value | e | | Integral Antenna | 3.3 dBi | | | Serial No. | PI040366P16C000090 | | | HW Version | HW08 | | | SW Version | Hawai2-0.25.0 | | | Comment | | | | Sample Name | Sample Code | Description | |--------------------|--------------------------------|-----------------------------| | Standard sample #2 | ab01 sample in BTLE test mode, | | | | | temporary antenna connector | | Sample Parameter | Valu | e | | Integral Antenna | 3.3 dBi | | | Serial No. | PI040366P16C000051 | | | HW Version | HW08 | | | SW Version | Hawai2-0.25.0 | | | Comment | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. # 3.3 Ancillary Equipment For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | Device | Device Details (Manufacturer, Type Model, OUT Code) | | |--------|---|---| | - | - | - | ## 3.4 Auxiliary Equipment For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Device | Device Details (Manufacturer, HW, SW, S/N) | | | |--------|--|---|--| | - | - | - | | #### 3.5 EUT Setups This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | |-------------------|---------------------|----------------------------------| | Setup_01_
rad | Standard sample #1 | Setup for radiated measurements | | Setup_02_
cond | Standard sample #2 | Setup for conducted measurements | #### 3.6 Operating Modes The EUT is transmitting in a local TX mode and is controlled by an external laptop, before the start of the test. The EUT generates a PRBS sequence at maximum power, the channel can be selected. #### 3.7 Special Software used for testing The EUT is controlled by the app "Flower Power 2", available for smart devices (version 3.00.65 for iOS and 3.00.50 for Android), also the special test mode. When set to test mode, the EUT transmits on a single frequency instead of in hopping mode. #### 3.8 Product labelling #### 3.8.1 FCC ID label Please refer to the documentation of the applicant. #### 3.8.2 Location of the label on the EUT Please refer to the documentation of the applicant. #### 4 Test Results ## 4.1 Occupied Bandwidth (6 dB) Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.1.1 Test Description The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz •Span: 3 Trace: MaxholdSweeps: 2000Sweeptime: 5 msDetector: Peak #### 4.1.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. #### 4.1.3 Test Protocol Ambient 23 °C temperature: Air Pressure: 1015 hPa Humidity: 41 % BT LE GFSK Band | Band | Channel
No. | Frequency
[MHz] | 6 dB
Bandwidth
[MHz] | Limit
[MHz] | Margin to
Limit [MHz] | |-------------|----------------|--------------------|----------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402.0 | 0.8 | 0.5 | 0.3 | | | 19 | 2440.0 | 0.7 | 0.5 | 0.2 | | | 39 | 2480.0 | 0.8 | 0.5 | 0.3 | Remark: Please see next sub-clause for the measurement plot. # 4.1.4 Measurement Plot (showing the highest value, "worst case") # 4.1.5 Test Equipment used Regulatory WLAN RF Test Solution ## 4.2 Occupied Bandwidth (99%) Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.2.1 Test Description The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 100 kHz Span: 3 MHzTrace: MaxholdSweeps: 2000Sweeptime: 8.5 msDetector: Sample The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth. # 4.2.2 Test Requirements / Limits No applicable limit: #### 4.2.3 Test Protocol Ambient temperature: 23 °C Air Pressure: 1015 hPa Humidity: 41 % BT LE GFSK | Band | Channel No. | Frequency [MHz] | 99 % Bandwidth [MHz] | |-------------|-------------|-----------------|----------------------| | 2.4 GHz ISM | 0 | 2402.0 | 1.1 | | | 19 | 2440.0 | 1.1 | | | 39 | 2480.0 | 1.0 | Remark: Please see next sub-clause for the measurement plot. # 4.2.4 Measurement Plot (showing the highest value, "worst case") Date: 8.APR.2016 08:13:25 #### 4.2.5 Test Equipment used Regulatory WLAN RF Test Solution #### 4.3 Peak Power Output Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.3.1 Test Description The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Resolution Bandwidth (RBW): 1 MHzVideo Bandwidth (VBW): 3 MHz •Trace: Maxhold •Sweeps: 2000 •Sweeptime: 5 ms •Detector: Peak The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth) # 4.3.2 Test Requirements / Limits #### DTS devices: FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt. ==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used). # **Frequency Hopping Systems:** FCC Part 15, Subpart C, §15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. FCC Part 15, Subpart C, §15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section. Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$ # 4.3.3 Test Protocol Ambient temperature: 23 °C Air Pressure: 1015 **h**Pa 41 % Humidity: BT LE GFSK | Band | Channel
No. | Frequency
[MHz] | Peak
Power
[dBm] | Limit
[dBm] | Margin to
Limit [dB] | |-------------|----------------|--------------------|------------------------|----------------|-------------------------| | 2.4 GHz ISM | 0 | 2402.0 | -3.5 | 30.0 | 33.5 | | | 19 | 2440.0 | -4.7 | 30.0 | 34.7 | | | 39 | 2480.0 | -5.5 | 30.0 | 35.5 | Remark: Please see next sub-clause for the measurement plot. # 4.3.4 Measurement Plot (showing the highest value, "worst case") #### Date: 0.APR.2010 00:03:49 # 4.3.5 Test Equipment used Regulatory WLAN RF Test Solution #### 4.4 Spurious RF Conducted Emissions Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.4.1 Test Description The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Frequency range: 30 – 25000 MHz Resolution Bandwidth (RBW): 100 kHz Video Bandwidth (VBW): 300 kHz Trace: MaxholdSweeps: 2 Sweep Time: 330 sDetector: Peak The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit. #### 4.4.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. #### 4.4.3 Test Protocol 23 °C **Ambient** temperature: Air Pressure: 1015 hPa Humidity: 41 % BT LE GFSK | Channel
No | Channel
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to
Limit
[dB] | |---------------|-------------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|-------------------------------| | 0 | 2402.0 | - | - | PEAK | 100.0 | -3.0 | -23.0 | - | | 19 | 2440.0 | - | - | PEAK | 100.0 | -4.3 | -24.3 | - | | 39 | 2480.0 | _ | _ | PEAK | 100.0 | -4.7 | -24.7 | - | Remark: Please see next sub-clause for the measurement plot. The reference level relates to the sub-clause 4.6 Band Edge Compliance Conducted. # 4.4.4 Measurement Plot (showing the highest value, "worst case") Title: spurious emissions Comment A: CH B: 2402 MHz Date: 8.APR.2016 07:23:28 ### 4.4.5 Test Equipment used Regulatory WLAN RF Test Solution #### 4.5 Transmitter Spurious Radiated Emissions Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.5.1 Test Description The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement up to 30 MHz The Loop antenna HFH2-Z2 is used. Step 1: pre measurement Anechoic chamberAntenna distance: 3 mDetector: Peak-Maxhold •Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz •Frequency steps: 0.05 kHz and 2.25 kHz •IF-Bandwidth: 0.2 kHz and 9 kHz •Measuring time / Frequency step: 100 ms (FFT-based) Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** final measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level •Open area test side •Antenna distance: according to the Standard •Detector: Quasi-Peak •Frequency range: 0.009 – 30 MHz •Frequency steps: measurement at frequencies detected in step 1 •IF-Bandwidth: 0.2 - 10 kHz •Measuring time / Frequency step: 1 s #### 2. Measurement above 30 MHz and up to 1 GHz Step 1: Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m - Detector: Peak-Maxhold / Quasipeak (FFT-based) - Frequency range: 30 – 1000 MHz Frequency steps: 30 kHzIF-Bandwidth: 120 kHz TEST REPORT REFERENCE: MDE_PARRO_1518_FCCa - Measuring time / Frequency step: 100 ms - Turntable angle range: -180° to 90° - Turntable step size: 90° Height variation range: 1 – 3 mHeight variation step size: 2 m - Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. ### **Step 2:** Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 120 kHzMeasuring time: 100 ms - Turntable angle range: \pm 45 $^{\circ}$ around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### Step 3: Final measurement with QP detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: Quasi-Peak (< 1 GHz) - Measured frequencies: in step 1 determined frequencies - IF – Bandwidth: 120 kHz - Measuring time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45° EMI receiver settings (for all steps): Detector: Peak, AverageIF Bandwidth = 1 MHz Step 3: Spectrum analyser settings for step 3: - Detector: Peak / Average - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 1 MHzMeasuring time: 1 s #### 4.5.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m) #### 4.5.3 Test Protocol Ambient temperature: 23-24 °C Air Pressure: 1002-1006 hPa Humidity: 34-37 % BT LE GFSK | Ch.
No. | Ch.
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin
to
Limit
[dB] | Limit
Type | |------------|---------------------------------|----------------------------|-------------------------------|---------------|--------------|-------------------|-------------------------------|---------------| | 0.0 | 2402.0 | - | - | PEAK | - | - | - | - | | 19.0 | 2440.0 | - | - | PEAK | - | - | - | - | | 39.0 | 2480.0 | - | - | PEAK | - | - | _ | _ | Remark: Please see next sub-clause for the measurement plot. # 4.5.4 Measurement Plot (showing the highest value, "worst case") a) frequency range 9 kHz - 30 MHz # b) frequency range 30 – 1000 MHz # c) frequency range 1 - 26 GHz Note: Emission is within band-edge, please refer to sub-clause 4.7 Band Edge Compliance Radiated. # 4.5.5 Test Equipment used **Radiated Emissions** #### 4.6 Band Edge Compliance Conducted Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.6.1 Test Description For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: •Frequency Range 30 MHz - 25 GHz •Detector: Peak Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz •Sweeptime: 330 s Sweeps: 2Trace: Maxhold #### 4.6.2 Test Requirements / Limits FCC Part 15.247 (d) "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ... If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))." For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..." # 4.6.3 Test Protocol Ambient temperature: 23 °C Air Pressure: 1015 hPa Humidity: 41 % BT LE GFSK | Ch.
No. | Channel
Center
Freq.
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to
Limit
[dB] | |------------|-------------------------------------|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|-------------------------------| | 0 | 2402.0 | 2400.0 | -48.8 | PEAK | 100.0 | -3.0 | -23.0 | 25.8 | | 39 | 2480.0 | 2483.5 | -49.5 | PEAK | 100.0 | -4.7 | -24.7 | 24.8 | Remark: Please see next sub-clause for the measurement plot. # 4.6.4 Measurement Plot (showing the highest value, "worst case") Title: Band Edge Compliance Comment A: CH B: 2402 MHz Date: 8.APR.2016 07:11:31 # 4.6.5 Test Equipment used Regulatory WLAN RF Test Solution ## 4.7 Band Edge Compliance Radiated Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.7.1 Test Description Please see test description for the test case "Spurious Radiated Emissions" ## 4.7.2 Test Requirements / Limits For band edges connected to a restricted band, the limits are specified in Section 15.209(a) FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ TEST REPORT REFERENCE: MDE_PARRO_1518_FCCa #### 4.7.3 Test Protocol Ambient 23 °C temperature: Air Pressure: 1015 hPa Humidity: 41 % BT LE GFSK | Ch.
No. | Ch.
Center
Freq.
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin
to Limit
[dB] | Limit
Type | |------------|---------------------------------|--------------------------------|-------------------------------|---------------|--------------|-------------------|----------------------------|---------------| | 39 | 2480.0 | 2483.7 | 59.8 | PEAK | 1000.0 | 74.0 | 14.2 | BE | | 39 | 2480.0 | 2483.7 | 50.3 | AV | 1000.0 | 54.0 | 3.7 | BE | Remark: Please see next sub-clause for the measurement plot. # 4.7.4 Measurement Plot (showing the highest value, "worst case") # 4.7.5 Test Equipment used **Radiated Emissions** ## 4.8 Power Density Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.8.1 Test Description The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements. The results recorded were measured with the modulation which produces the worst-case (highest) power density. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 10 kHz •Trace: Maxhold •Sweeps: 2000 •Sweeptime: 420 ms •Detector: Peak #### 4.8.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (e) For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. .. The same method of determining the conducted output power shall be used to determine the power spectral density. #### 4.8.3 Test Protocol Ambient temperature: 23 °C Air Pressure: 1015 hPa Humidity: 41 % BT LE | Band | Channel
No. | Frequency
[MHz] | Power Density
[dBm/3kHz] | Limit
[dBm/
3kHz] | Margin to
Limit [dB] | |---------|----------------|--------------------|-----------------------------|-------------------------|-------------------------| | 2.4 GHz | 0 | 2402.0 | -19.5 | 8.0 | 27.5 | | ISM | 19 | 2440.0 | -20.9 | 8.0 | 28.9 | | | 39 | 2480.0 | -21.5 | 8.0 | 29.5 | Remark: Please see next sub-clause for the measurement plot. TEST REPORT REFERENCE: MDE_PARRO_1518_FCCa Page 34 of 40 # 4.8.4 Measurement Plot (showing the highest value, "worst case") #### 4.8.5 Test Equipment used Regulatory WLAN RF Test Solution # 5 Test Equipment # 1 Radiated Emissions Lab to perform radiated emission tests | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Calibration Due | |---------|----------------------------------|--|---|--------------------------------|-----------------| | 1.1 | 3160-09 | Standard Gain
/ Pyramidal
Horn Antenna
26.5 GHz | EMCO Elektronic
GmbH | 00083069 | | | 1.2 | WHKX 7.0/18G-
8SS | High Pass
Filter | Wainwright | 09 | | | 1.3 | 5HC3500/18000-
1.2-KK | High Pass
Filter | Trilithic | 200035008 | | | 1.4 | Fully Anechoic
Room | | Albatross
Projects | P26971-647-
001-PRB | | | 1.5 | AM 4.0 | Antenna mast | Maturo GmbH | AM4.0/180/119
20513 | | | 1.6 | ESR 7 | EMI Receiver /
Spectrum
Analyzer | Rohde &
Schwarz | 101424 | 2016-11-13 | | 1.7 | Anechoic Chamber | 10.58 x 6.38 x
6.00 m ³ | Frankonia | none | 2017-01-09 | | 1.8 | ESIB 26 | Analyzer | Rohde &
Schwarz | 830482/004 | 2017-12-08 | | 1.9 | Tilt device Maturo
(Rohacell) | Antrieb TD1.5-
10kg | Maturo GmbH | TD1.5-
10kg/024/3790
709 | | | 1.10 | 5HC2700/12750-
1.5-KK | High Pass
Filter | Trilithic | 9942012 | | | 1.11 | AS 620 P | Antenna mast | HD GmbH | 620/37 | | | 1.12 | NRV-Z1 | Sensor Head A | | 827753/005 | 2016-05-11 | | 1.13 | 4HC1600/12750-
1.5-KK | High Pass
Filter | Trilithic | 9942011 | | | 1.14 | JS4-18002600-32-
5P | Broadband
Amplifier 18
GHz - 26 GHz | Miteq | 849785 | | | 1.15 | JS4-00101800-35-
5P | Broadband
Amplifier 30
MHz - 18 GHz | Miteq | 896037 | | | 1.16 | HL 562 | | Rohde &
Schwarz GmbH
& Co. KG | 830547/003 | 2018-06-30 | | 1.17 | Opus10 THI
(8152.00) | 3.0 | Lufft Mess- und
Regeltechnik
GmbH | 12482 | 2017-03-10 | | 1.18 | JS4-00102600-42-
5A | Broadband
Amplifier 30
MHz - 26 GHz | Miteq | 619368 | | | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Calibration Due | |---------|-------------------------|--|---|---------------|-----------------| | 1.19 | HFH2-Z2 | Loop Antenna | Rohde &
Schwarz GmbH
& Co. KG | 829324/006 | 2017-11-27 | | 1.20 | FSW 43 | Spectrum
Analyzer | Rohde &
Schwarz | 103779 | 2016-11-17 | | 1.21 | Opus10 TPR
(8253.00) | sure | Lufft Mess- und
Regeltechnik
GmbH | 13936 | 2017-02-27 | | 1.22 | Chroma 6404 | AC Power
Source | Chroma ATE
INC. | 64040001304 | | | 1.23 | 3160-10 | Standard Gain
/ Pyramidal
Horn Antenna
40 GHz | EMCO Elektronik
GmbH | 00086675 | | | 1.24 | HL 562 Ultralog | Logper.
Antenna | Rohde &
Schwarz GmbH
& Co. KG | 100609 | | | 1.25 | HF 907 | Double-ridged
horn | Rohde &
Schwarz GmbH
& Co. KG | 102444 | 2018-05-11 | # **Regulatory WLAN RF Test Solution** Regulatory WLAN RF Tests 2 | Ref.No. | | Description | Manufacturer | Serial Number | Calibration Due | |---------|-------------------------|--|---|--------------------|-----------------| | 2.1 | EX520 | Digital
Multimeter 12
(Multimeter) | Extech
Instruments
Corp | 05157876 | 2018-02-03 | | 2.2 | SMIQ03B | Signal
Generator | Rohde &
Schwarz GmbH
& Co. KG | 832870/017 | 2016-06-21 | | 2.3 | FSU3 | Spectrum
Analyser | Rohde &
Schwarz GmbH
& Co. KG | 200046 | 2016-06-22 | | 2.4 | Datum MFS | Rubidium
Frequency
Normal MFS | Datum GmbH | 002 | 2016-08-25 | | 2.5 | FSIQ26 | Spectrum
Analyser | Rohde &
Schwarz GmbH
& Co. KG | 832695/007 | 2016-08-28 | | 2.6 | NRVD | Powermeter | Rohde &
Schwarz GmbH
& Co. KG | 832025/059 | 2016-08-19 | | 2.7 | TOCT Switching
Unit | | 7 layers, Inc | 040107 | | | 2.8 | FSU26 | Spectrum
Analyser | Rohde &
Schwarz GmbH
& Co. KG | 100136 | | | 2.9 | Opus10 THI
(8152.00) | T/H Logger 15 | Lufft Mess- und
Regeltechnik
GmbH | 13985 | 2017-03-10 | | 2.10 | NRV Z1 A | Power Sensor | | 832279/013 | 2016-08-18 | | 2.11 | TGA12101 | Arbitrary
Waveform
Generator | Aim and Thurlby
Thandar
Instruments | 284482 | | | 2.12 | KWP 120/70 | Temperature
Chamber
Weiss 01 | Weiss | 592260121900
10 | 2018-03-09 | | 2.13 | NGSM 32/10 | Power Supply | Rohde &
Schwarz GmbH
& Co. KG | 2725 | 2017-06-22 | # 6 Setup Drawings <u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. **Drawing 1:** Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane. **Drawing 2:** Setup for conducted radio tests. # 7 Measurement Uncertainties | Test Case | Parameter | Uncertainty | |--------------------------------------|--------------------|------------------------| | AC Power Line | Power | ± 3.4 dB | | Field Strength of spurious radiation | Power | ± 5.5 dB | | 6 dB / 26 dB / 99% Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | Conducted Output Power | Power | ± 2.2 dB | | Band Edge Compliance | Power
Frequency | ± 2.2 dB
± 11.2 kHz | | Frequency Stability | Frequency | ± 25 Hz | | Power Spectral Density | Power | ± 2.2 dB | # 8 Photo Report Please see separate photo report.