

# FCC Measurement/Technical Report on

WT500

Water and Temperature Sensor

FCC ID: NCM-WT500

IC: 2734A-WT500

Test Report Reference: MDE\_OPTION\_2009\_FCC\_01\_rev01

#### **Test Laboratory:**

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany





#### Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com



# Table of Contents

| 1          | Applied Standards and Test Summary                                      | 3        |
|------------|-------------------------------------------------------------------------|----------|
| 1.1        | Applied Standards                                                       | 3        |
| 1.2        | FCC-IC Correlation Table                                                | 4        |
| 1.3        | Measurement Summary                                                     | 5        |
| 2          | Revision History / Signatures                                           | 8        |
| 3          | Administrative Data                                                     | 9        |
| 3.1        | Testing Laboratory                                                      | 9        |
| 3.2        | Project Data                                                            | 9        |
| 3.3        | Applicant Data                                                          | 9        |
| 3.4        | Manufacturer Data                                                       | 10       |
| 4          | Test object Data                                                        | 11       |
| 4.1        | General EUT Description                                                 | 11       |
| 4.2        | EUT Main components                                                     | 12       |
| 4.3        | Ancillary Equipment                                                     | 12       |
| 4.4        | Auxiliary Equipment                                                     | 13       |
| 4.5        | EUT Setups                                                              | 13       |
| 4.6        | Operating Modes / Test Channels                                         | 13       |
| 4.7        | Product labelling                                                       | 14       |
| 5          | Test Results                                                            | 15       |
| 5.1        | Occupied Bandwidth (20 dB)                                              | 15       |
| 5.2        | Occupied Bandwidth (99%)                                                | 18       |
| 5.3<br>- 1 | Peak Power Output                                                       | 20       |
| 5.4<br>5.5 | Spurious RF Conducted Emissions Transmitter Spurious Radiated Emissions | 23<br>27 |
| 5.6        | Band Edge Compliance Conducted                                          | 38       |
| 5.7        | Power Density                                                           | 42       |
| 5.8        | Channel Separation                                                      | 46       |
| 5.9        | Dwell Time                                                              | 49       |
|            | Number of Hopping Frequencies                                           | 53       |
| 6          | Test Equipment                                                          | 56       |
| 7          | Antenna Factors, Cable Loss and Sample Calculations                     | 58       |
| 7.1        | LISN R&S ESH3-Z5 (150 kHz - 30 MHz)                                     | 58       |
| 7.2        | Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)                                    | 59       |
| 7.3        | Antenna R&S HL562 (30 MHz – 1 GHz)                                      | 60       |
| 7.4        | Antenna R&S HF907 (1 GHz - 18 GHz)                                      | 61       |
| 7.5        | Antenna EMCO 3160-09 (18 GHz - 26.5 GHz)                                | 62       |
| 7.6        | Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)                                | 63       |
| 8          | Measurement Uncertainties                                               | 64       |
| 9          | Photo Report                                                            | 65       |



#### 1 APPLIED STANDARDS AND TEST SUMMARY

#### 1.1 APPLIED STANDARDS

#### **Type of Authorization**

Certification for an Intentional Radiator.

#### **Applicable FCC Rules**

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

#### Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

TEST REPORT REFERENCE: MDE\_OPTION\_2009\_FCC\_01\_rev01



#### 1.2 FCC-IC CORRELATION TABLE

# Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC

#### **FHSS** equipment

| Measurement                                 | FCC reference                 | IC reference                                                 |
|---------------------------------------------|-------------------------------|--------------------------------------------------------------|
| Conducted emissions on AC<br>Mains          | § 15.207                      | RSS-Gen Issue 5: 8.8                                         |
| Occupied bandwidth                          | § 15.247 (a) (1)              | RSS-247 Issue 2: 5.1 (b)                                     |
| Peak conducted output power                 | § 15.247 (b) (1), (4)         | RSS-247 Issue 2: 5.4 (b)                                     |
| Transmitter spurious RF conducted emissions | § 15.247 (d)                  | RSS-Gen Issue 5:<br>6.13/8.9/8.10;<br>RSS-247 Issue 2: 5.5   |
| Transmitter spurious radiated emissions     | § 15.247 (d);<br>§ 15.209 (a) | RSS-Gen Issue 5: 6.13 /<br>8.9/8.10;<br>RSS-247 Issue 2: 5.5 |
| Band edge compliance                        | § 15.247 (d)                  | RSS-247 Issue 2: 5.5                                         |
| Dwell time                                  | § 15.247 (a) (1) (iii)        | RSS-247 Issue 2: 5.1 (d)                                     |
| Channel separation                          | § 15.247 (a) (1)              | RSS-247 Issue 2: 5.1 (b)                                     |
| No. of hopping frequencies                  | § 15.247 (a) (1) (iii)        | RSS-247 Issue 2: 5.1 (d)                                     |
| Hybrid systems (only)                       | § 15.247 (f);<br>§ 15.247 (e) | RSS-247 Issue 2: 5.3                                         |
| Antenna requirement                         | § 15.203 / 15.204             | RSS-Gen Issue 5: 8.3                                         |
| Receiver spurious emissions                 | _                             | -                                                            |



## 1.3 MEASUREMENT SUMMARY

| 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247                                                                                                                                                                                                                                                                                                                                        | § 15.247 (                                                                        | a) (1)                                                       |                                  |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-----------------------------|
| Occupied Bandwidth (20 dB) The measurement was performed accordi                                                                                                                                                                                                                                                                                                                      | na to ANSI C6                                                                     | 3.10                                                         | Final R                          | esult                       |
| The measurement was performed decoral                                                                                                                                                                                                                                                                                                                                                 |                                                                                   | 3.10                                                         |                                  |                             |
| OP-Mode                                                                                                                                                                                                                                                                                                                                                                               | Setup                                                                             | Date                                                         | FCC                              | IC                          |
| Radio Technology, Operating Frequency                                                                                                                                                                                                                                                                                                                                                 | CO1 AEO2                                                                          | 2021 02 20                                                   | Danad                            | Danad                       |
| Lora (FHSS), high                                                                                                                                                                                                                                                                                                                                                                     | S01_AF02                                                                          | 2021-03-29                                                   | Passed                           | Passed                      |
| Lora (FHSS), low                                                                                                                                                                                                                                                                                                                                                                      | S01_AF02                                                                          | 2021-03-29                                                   | Passed                           | Passed                      |
| Lora (FHSS), mid                                                                                                                                                                                                                                                                                                                                                                      | S01_AF02                                                                          | 2021-03-29                                                   | Passed                           | Passed                      |
| 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247                                                                                                                                                                                                                                                                                                                                        | IC RSS-Ge                                                                         | n & IC TRC-43;                                               | Ch. 6.7                          | & Ch. 8                     |
| Occupied Bandwidth (99%)                                                                                                                                                                                                                                                                                                                                                              |                                                                                   |                                                              |                                  |                             |
| The measurement was performed accordi                                                                                                                                                                                                                                                                                                                                                 | ng to ANSI C6                                                                     | 3.10                                                         | Final Re                         | sult                        |
| <b>OP-Mode</b> Radio Technology, Operating Frequency                                                                                                                                                                                                                                                                                                                                  | Setup                                                                             | Date                                                         | FCC                              | IC                          |
| Lora (FHSS), high                                                                                                                                                                                                                                                                                                                                                                     | S01_AF02                                                                          | 2021-03-29                                                   | N/A                              | Performed                   |
| Lora (FHSS), low                                                                                                                                                                                                                                                                                                                                                                      | S01_AF02                                                                          | 2021-03-29                                                   | N/A                              | Performed                   |
| Lora (FHSS), mid                                                                                                                                                                                                                                                                                                                                                                      | <br>S01_AF02                                                                      | 2021-03-29                                                   | N/A                              | Performed                   |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |                                                              |                                  |                             |
| 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Peak Power Output                                                                                                                                                                                                                                                                                                                      | § 15.247 (                                                                        | b) (1) (2)                                                   |                                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |                                                              | Final R                          | esult                       |
| Subpart C §15.247  Peak Power Output The measurement was performed accordi                                                                                                                                                                                                                                                                                                            | ng to ANSI C6                                                                     | 3.10                                                         |                                  |                             |
| Subpart C §15.247 Peak Power Output                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                                              | Final R                          | esult<br>IC                 |
| Subpart C §15.247  Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency,                                                                                                                                                                                                                                                            | ng to ANSI C6                                                                     | 3.10                                                         |                                  |                             |
| Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency, Measurement method                                                                                                                                                                                                                                                            | ng to ANSI C6                                                                     | 3.10 <b>Date</b>                                             | FCC                              | IC                          |
| Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency, Measurement method Lora (FHSS), high, conducted                                                                                                                                                                                                                               | ng to ANSI C6 <b>Setup</b> S01_AF02                                               | 3.10 <b>Date</b> 2021-03-29                                  | FCC<br>Passed                    | <b>IC</b> Passed            |
| Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency, Measurement method Lora (FHSS), high, conducted Lora (FHSS), low, conducted Lora (FHSS), mid, conducted  47 CFR CHAPTER I FCC PART 15 Subpart C §15.247                                                                                                                       | ng to ANSI C6  Setup  S01_AF02 S01_AF02                                           | 3.10  Date  2021-03-29 2021-03-29 2021-03-29                 | FCC Passed Passed                | IC  Passed Passed           |
| Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency, Measurement method Lora (FHSS), high, conducted Lora (FHSS), low, conducted Lora (FHSS), mid, conducted  47 CFR CHAPTER I FCC PART 15                                                                                                                                         | setup  S01_AF02 S01_AF02 S01_AF02 S01_AF02 \$ 15.247 (                            | 3.10  Date  2021-03-29 2021-03-29 2021-03-29                 | FCC Passed Passed                | Passed<br>Passed<br>Passed  |
| Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency, Measurement method Lora (FHSS), high, conducted Lora (FHSS), low, conducted Lora (FHSS), mid, conducted  47 CFR CHAPTER I FCC PART 15 Subpart C §15.247  Spurious RF Conducted Emissions The measurement was performed accordi  OP-Mode                                       | setup  S01_AF02 S01_AF02 S01_AF02 S01_AF02 \$ 15.247 (                            | 3.10  Date  2021-03-29 2021-03-29 2021-03-29                 | Passed<br>Passed<br>Passed       | Passed<br>Passed<br>Passed  |
| Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency, Measurement method Lora (FHSS), high, conducted Lora (FHSS), low, conducted Lora (FHSS), mid, conducted  47 CFR CHAPTER I FCC PART 15 Subpart C §15.247  Spurious RF Conducted Emissions The measurement was performed accordi                                                | ng to ANSI C6  Setup  S01_AF02 S01_AF02 S01_AF02 \$ 15.247 (                      | 3.10  Date  2021-03-29 2021-03-29 2021-03-29  d)             | Passed<br>Passed<br>Passed       | Passed Passed Passed        |
| Peak Power Output The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency, Measurement method Lora (FHSS), high, conducted Lora (FHSS), low, conducted Lora (FHSS), mid, conducted  47 CFR CHAPTER I FCC PART 15 Subpart C §15.247  Spurious RF Conducted Emissions The measurement was performed accordi  OP-Mode Radio Technology, Operating Frequency | ng to ANSI C6  Setup  S01_AF02 S01_AF02 S01_AF02 § 15.247 (  ng to ANSI C6  Setup | 3.10  Date  2021-03-29 2021-03-29 2021-03-29  d)  3.10  Date | Passed Passed Passed Final R FCC | Passed Passed Passed Passed |



| 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247                                  | § 15.247 (d)         |            |                  |                  |
|---------------------------------------------------------------------------------|----------------------|------------|------------------|------------------|
| Transmitter Spurious Radiated Emissions The measurement was performed according | ng to ANSI C63.10    | )          | Final Re         | sult             |
| <b>OP-Mode</b> Radio Technology, Operating Frequency,                           | Setup                | Date       | FCC              | IC               |
| Measurement range                                                               | CO1 ACO2             | 2021-02-03 | Danad            | Dagged           |
| Lora (FHSS), high, 1 GHz - 10 GHz                                               | S01_AC02<br>S01_AC02 | 2021-02-03 | Passed<br>Passed | Passed<br>Passed |
| Lora (FHSS), high, 30 MHz - 1 GHz<br>Lora (FHSS), high, 9 kHz - 30 MHz          | S01_AC01             | 2021-04-07 | Passed           | Passed           |
| Lora (FHSS), low, 1 GHz - 10 GHz                                                | S01_AC02             | 2021-01-12 | Passed           | Passed           |
| Lora (FHSS), low, 1 GHz - 10 GHz                                                | S01_AC02             | 2021-02-03 | Passed           | Passed           |
|                                                                                 | S01_AC01             | 2021-04-07 | Passed           | Passed           |
| Lora (FHSS), low, 9 kHz - 30 MHz                                                |                      | 2021-01-12 |                  |                  |
| Lora (FHSS), mid, 1 GHz - 10 GHz<br>Lora (FHSS), mid, 30 MHz - 1 GHz            | S01_AC02<br>S01_AC02 | 2021-02-03 | Passed<br>Passed | Passed<br>Passed |
| Lora (FNSS), Illiu, 30 MNZ - 1 GNZ                                              | 301_AC02             | 2021-04-07 | Passeu           | Passeu           |
| 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247                                  | § 15.247 (d)         |            |                  |                  |
| Band Edge Compliance Conducted                                                  |                      |            |                  |                  |
| The measurement was performed according                                         | ng to ANSI C63.10    |            | Final Re         | sult             |
| OP-Mode                                                                         | Setup                | Date       | FCC              | IC               |
| Radio Technology, Operating Frequency,                                          | •                    |            |                  |                  |
| Band Edge                                                                       |                      |            |                  |                  |
| Lora (FHSS), high, high                                                         | S01_AF02             | 2021-03-31 | Passed           | Passed           |
| Lora (FHSS), hopping, high                                                      | S01_AD02             | 2021-04-08 | Passed           | Passed           |
| Lora (FHSS), hopping, low                                                       | S01_AD02             | 2021-04-08 | Passed           | Passed           |
| Lora (FHSS), low, low                                                           | S01_AF02             | 2021-03-31 | Passed           | Passed           |
| 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247                                  | § 15.247 (e)         |            |                  |                  |
| Power Density The measurement was performed according                           | ng to ANSI C63.10    | )          | Final Re         | sult             |
| <b>OP-Mode</b> Radio Technology, Operating Frequency                            | Setup                | Date       | FCC              | IC               |
| Lora (HYBRID), high                                                             | S01_AF02             | 2021-03-23 | Passed           | Passed           |
| Lora (HYBRID), low                                                              | S01_AF02             | 2021-03-23 | Passed           | Passed           |
| Lora (HYBRID), mid                                                              | S01_AF02             | 2021-03-23 | Passed           | Passed           |
| 47 CFR CHAPTER I FCC PART 15<br>Subpart C §15.247                               | § 15.247 (a) (       | 1)         |                  |                  |
| Channel Separation The measurement was performed according                      | ng to ANSI C63.10    | ı          | Final Re         | sult             |
| <b>OP-Mode</b><br>Radio Technology                                              | Setup                | Date       | FCC              | IC               |
| Lora (FHSS)                                                                     | S01_AF02             | 2021-03-29 | Passed           | Passed           |



#### § 15.247 (a) (1) (i) (ii) (iii) 47 CFR CHAPTER I FCC PART 15 **Subpart C §15.247**

| Dwell Time The measurement was performed according to ANSI C63.10   |             |                    |        | esult  |
|---------------------------------------------------------------------|-------------|--------------------|--------|--------|
| <b>OP-Mode</b><br>Radio Technology                                  | Setup       | Date               | FCC    | IC     |
| Lora (FHSS)                                                         | S02_AD02    | 2021-04-08         | Passed | Passed |
| Lora (HYBRID)                                                       | S02_AF02    | 2021-03-31         | Passed | Passed |
| 47 CFR CHAPTER I FCC PART 15<br>Subpart C §15.247                   | § 15.247 (a | n) (1) (i) (ii) (i | ii)    |        |
| Number of Hopping Frequencies                                       |             |                    |        |        |
| The measurement was performed according to ANSI C63.10 Final Result |             |                    |        | esuit  |

| <b>OP-Mode</b> Radio Technology | Setup    | Date       | FCC    | IC     |
|---------------------------------|----------|------------|--------|--------|
| Lora (FHSS)                     | S01_AF02 | 2021-03-29 | Passed | Passed |

N/A: Not applicable N/P: Not performed



# 2 REVISION HISTORY / SIGNATURES

| Report version control |              |                               |                  |  |
|------------------------|--------------|-------------------------------|------------------|--|
| Version                | Release date | Change Description            | Version validity |  |
| initial                | 2021-04-28   |                               | valid            |  |
| rev01                  | 2021-05-27   | Deleted DTS correlation table | valid            |  |

COMMENT: -

(responsible for accreditation scope)

Dipl.-Ing. Andreas Petz

(responsible for testing and report)

Dipl.-Ing. Daniel Gall



#### 3 ADMINISTRATIVE DATA

#### 3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Andreas Petz

Report Template Version: 2021-01-13

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2021-05-27

Testing Period: 2021-01-12 to 2021-04-08

3.3 APPLICANT DATA

Company Name: Option (Crescent NV)

Address: Gaston Geenslaan 14

3001 Leuven

Belgium

Contact Person: Jasna Papuga



## 3.4 MANUFACTURER DATA

| Company Name:   | please see Applicant Data |
|-----------------|---------------------------|
| Address:        |                           |
| Contact Person: |                           |



## 4 TEST OBJECT DATA

# 4.1 GENERAL EUT DESCRIPTION

| Kind of Device product description           | LoRa Sensor                                                                                                                                                                                                                    |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product name                                 | Water and Temperature Sensor                                                                                                                                                                                                   |
| Туре                                         | WT500                                                                                                                                                                                                                          |
| Declared EUT data by                         | the supplier                                                                                                                                                                                                                   |
| Voltage Type                                 | DC (Battery powered)                                                                                                                                                                                                           |
| Voltage Level                                | 3V                                                                                                                                                                                                                             |
| Antenna / Gain                               | Integral / -2 dBi                                                                                                                                                                                                              |
| Tested Modulation Type                       | FSK                                                                                                                                                                                                                            |
| General product description                  | The EUT is a water and Temperature sensor with LoRa technology                                                                                                                                                                 |
| Specific product description for the EUT     | The EUT is a LoRaWAN transceiver in the 900 MHz band. Relevant for this report is the 125 kHz hopping mode which is implemented as FHSS for link setup and as hybrid with only 8 channels during established communication.    |
| EUT ports (connected cables during testing): | Enclosure                                                                                                                                                                                                                      |
| Tested datarates                             | Data rate settings LS5 to 12 are supported by the test software, the worst case of the modes was tested for each test case (see test results).                                                                                 |
| Special software used for testing            | The local TX test modes were set using "LoraNode" software provided by applicant (non-hopping mode tests).                                                                                                                     |
|                                              | Tera Term was used to send commands for hopping mode tests.  Tera Term together with Macros and prepared templates in the Option CloudGate LORA gateway, which were provided by the applicant, were used for dwell time tests. |



#### 4.2 EUT MAIN COMPONENTS

| Sample Name      | Sample Code             | Description |
|------------------|-------------------------|-------------|
| EUT ac01         | DE1234018ac01           |             |
| Sample Parameter | Valu                    | le          |
| Serial No.       | 00-0C-E3-00-05-00-65-83 |             |
| HW Version       | 1.0                     |             |
| SW Version       | 1.5.2.0                 |             |
| Comment          |                         |             |

| Sample Name      | Sample Code             | Description |
|------------------|-------------------------|-------------|
| EUT ac02         | DE1234018ac02           |             |
| Sample Parameter | •                       | /alue       |
| Serial No.       | 00-0C-E3-00-05-00-65-83 |             |
| HW Version       | 1.0                     |             |
| SW Version       | 1.5.2.0                 |             |
| Comment          |                         |             |

| Sample Name      | Sample Code                             | Description |
|------------------|-----------------------------------------|-------------|
| EUT ad02         | DE1234018ad02                           |             |
| Sample Parameter | Valu                                    | ıe          |
| Serial No.       | 00-0C-E3-00-05-00-65-8E                 |             |
| HW Version       | 1.0                                     |             |
| SW Version       | 1.5.2.0                                 |             |
| Comment          | Sample with temporary antenna connector |             |

| Sample Name      | Sample Code                       | Description |
|------------------|-----------------------------------|-------------|
| EUT af02         | DE1234018af02                     |             |
| Sample Parameter | Valu                              | e           |
| Serial No.       | 00-0C-E3-00-05-00-65-86           |             |
| HW Version       | 1.0                               |             |
| SW Version       | 1.5.2.0                           |             |
| Comment          | Sample with temporary antenna cor | nnector     |

NOTE: The short description is used to simplify the identification of the EUT in this test report.

## 4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

|   | Details<br>(Manufacturer, Type Model, OUT<br>Code) | Description |
|---|----------------------------------------------------|-------------|
| - | -                                                  | -           |



#### 4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

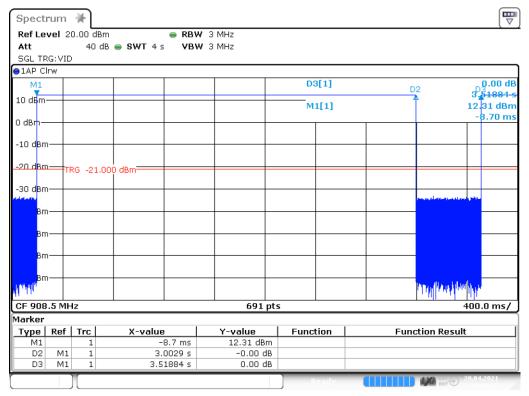
| Device | Details<br>(Manufacturer, Type Model, HW,<br>SW, S/N) | Description  |
|--------|-------------------------------------------------------|--------------|
| AUX A  | Option, Cloudgate, -, -, KW4AL4M163                   | LORA Gateway |

#### 4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

| Setup    | Combination of EUTs | Description and Rationale         |
|----------|---------------------|-----------------------------------|
| S01_AD02 | EUT ad02,           | Conducted Setup                   |
| S01_AC01 | EUT ac01,           | Radiated Setup                    |
| S01_AC02 | EUT ac02,           | Radiated Setup                    |
| S01_AF02 | EUT af02,           | Conducted Setup                   |
| S02_AF02 | EUT af02, AUX A,    | Dwell Time Setup connection setup |
| S02_AD02 | EUT ad02, AUX A,    | Dwell Time Setup hybrid mode      |

#### 4.6 OPERATING MODES / TEST CHANNELS


This chapter describes the operating modes of the EUTs used for testing.

LoRa Test Channels: Channel: Frequency [MHz]

| 900 MHz ISM<br>902 - 926 MHz |       |       |  |  |  |
|------------------------------|-------|-------|--|--|--|
| low mid high                 |       |       |  |  |  |
| 0                            | 31 63 |       |  |  |  |
| 902.3                        | 908.5 | 914.9 |  |  |  |



#### **Duty Cycle**



Date: 20.APR.2021 21:28:21

85 % Duty Cycle

#### 4.7 PRODUCT LABELLING

#### 4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

#### 4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.



#### 5 TEST RESULTS

#### 5.1 OCCUPIED BANDWIDTH (20 DB)

Standard FCC Part 15 Subpart C

#### The test was performed according to:

ANSI C63.10

#### 5.1.1 TEST DESCRIPTION

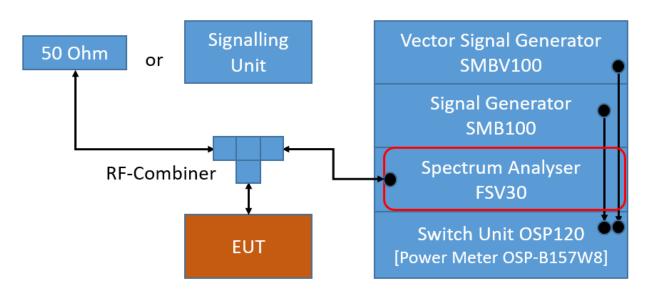
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

#### Analyser settings:


Resolution Bandwidth (RBW): 1% to 5 % of the OBW

Video Bandwidth (VBW): ≥ 3 x RBW

Span: 2 to 5 times the OBW

Trace: MaxholdSweeps: Till stableSweeptime: AutoDetector: Peak

The technology depending measurement parameters can be found in the measurement plot.





#### 5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz

2. If the system output power exceeds 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

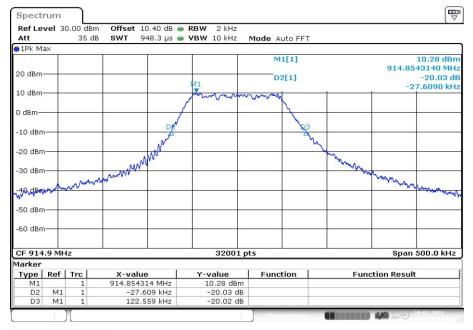
The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report.

Therefore the limit is determined as 1.5 MHz.



#### 5.1.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1000 \ \mbox{hPa} \\ \mbox{Humidity:} & 30 \ \% \end{array}$ 


LoRaWAN; FHSS; 125 kHz; SF 5

| Band         | Channel<br>No. | Frequency<br>[MHz] | 20 dB Bandwidth<br>[MHz] | Limit<br>[MHz] | Margin to Limit<br>[MHz] |
|--------------|----------------|--------------------|--------------------------|----------------|--------------------------|
| 900 MHz Band | 0              | 902.3              | 0.149                    | 0.5            | 0.351                    |
|              | 31             | 908.5              | 0.149                    | 0.5            | 0.351                    |
|              | 63             | 914.9              | 0.150                    | 0.5            | 0.350                    |

Remark: Please see next sub-clause for the measurement plot.

# 5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS), Operating Frequency = high (S01\_AF02)



Date: 29.MAR.2021 18:36:53

#### 5.1.5 TEST EQUIPMENT USED

- R&S TS8997



#### 5.2 OCCUPIED BANDWIDTH (99%)

#### Standard FCC Part 15 Subpart C

### The test was performed according to:

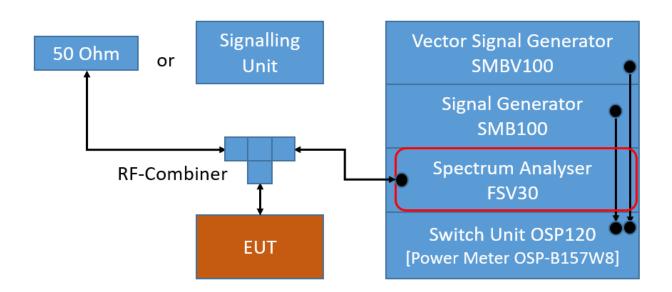
ANSI C63.10

#### 5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


#### Analyser settings:

Resolution Bandwidth (RBW): 1 to 5 % of the OBW

• Video Bandwidth (VBW): ≥ 3 times the RBW

• Span: 1.5 to 5 times the OBW

Trace: MaxholdSweeps: Till stableSweeptime: AutoDetector: Peak

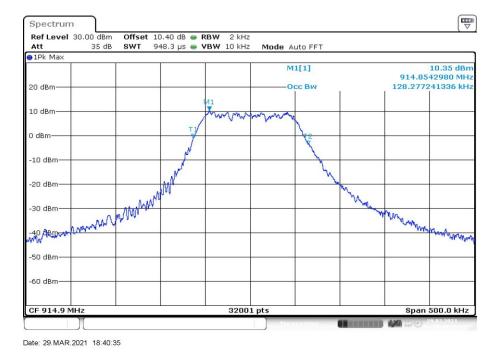


#### 5.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:



#### 5.2.3 TEST PROTOCOL


Ambient temperature: 25 °C Air Pressure: 1000 hPa Humidity: 30 %

| LoRaWAN; FHS | LoRaWAN; FHSS; 125 kHz; SF 5 |                    |                         |  |  |  |  |
|--------------|------------------------------|--------------------|-------------------------|--|--|--|--|
| Band         | Channel<br>No.               | Frequency<br>[MHz] | 99 % Bandwidth<br>[MHz] |  |  |  |  |
| 900 MHz Band | 0                            | 902.3              | 0.13                    |  |  |  |  |
|              | 31                           | 908.5              | 0.13                    |  |  |  |  |
|              | 63                           | 914.9              | 0.13                    |  |  |  |  |

Remark: Please see next sub-clause for the measurement plot.

# 5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS), Operating Frequency = high (S01\_AF02)



#### 5.2.5 TEST EQUIPMENT USED

- R&S TS8997



#### 5.3 PEAK POWER OUTPUT

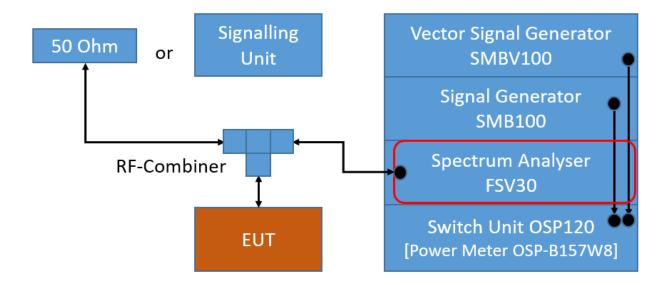
#### Standard FCC Part 15 Subpart C

#### The test was performed according to:

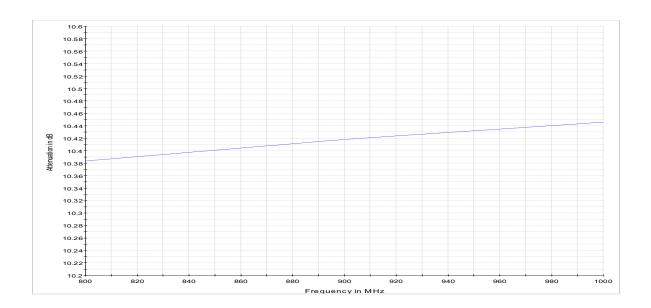
ANSI C63.10

#### 5.3.1 TEST DESCRIPTION

#### FHSS EQUIPMENT:


The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyser was set higher than the output power of the EUT.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


#### Analyser settings:

Resolution Bandwidth (RBW): ≥ 20 dB BW
 Video Bandwidth (VBW): ≥ 3 times RBW

Trace: MaxholdSweeps: Till stableSweeptime: AutoDetector: Peak







Path Attenuation Output power

#### 5.3.2 TEST REQUIREMENTS / LIMITS

#### **DTS devices:**

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

#### **Frequency Hopping Systems:**

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

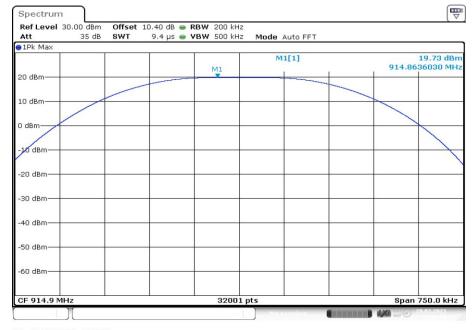
For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) =  $10 \log (Limit (W)/1mW)$ 



#### 5.3.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1000 \ \mbox{hPa} \\ \mbox{Humidity:} & 30 \ \% \end{array}$ 


LoRaWAN; FHSS; 125 kHz; SF 5

| Band         | Channel<br>No. | Frequency<br>[MHz] | Peak<br>Power<br>[dBm] | Limit<br>[dBm] | Margin to<br>Limit<br>[dB] | E.I.R.P<br>[dBm] |
|--------------|----------------|--------------------|------------------------|----------------|----------------------------|------------------|
| 900 MHz Band | 0              | 902.3              | 19.7                   | 30.0           | 10.3                       | 17.7             |
|              | 31             | 908.5              | 19.7                   | 30.0           | 10.3                       | 17.7             |
|              | 63             | 914.9              | 19.7                   | 30.0           | 10.3                       | 17.7             |

Remark: Please see next sub-clause for the measurement plot.

# 5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS), Operating Frequency = high, Measurement method = conducted (S01\_AF02)



Date: 29.MAR.2021 19:02:58

# 5.3.5 TEST EQUIPMENT USED

- R&S TS8997



#### 5.4 SPURIOUS RF CONDUCTED EMISSIONS

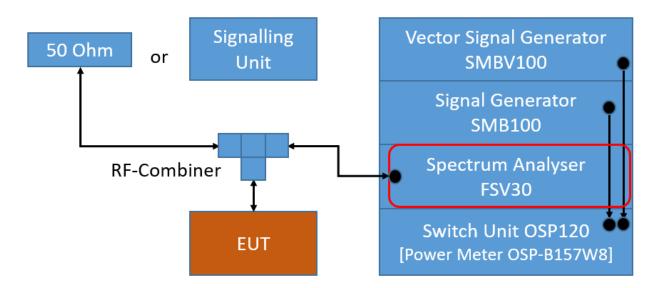
#### Standard FCC Part 15 Subpart C

### The test was performed according to:

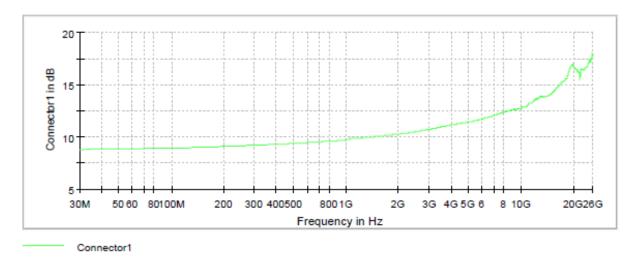
ANSI C63.10

#### 5.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

#### Analyser settings:


Frequency range: 30 – 26000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: Till StableSweep Time: AutoDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.







Attenuation of the measurement part

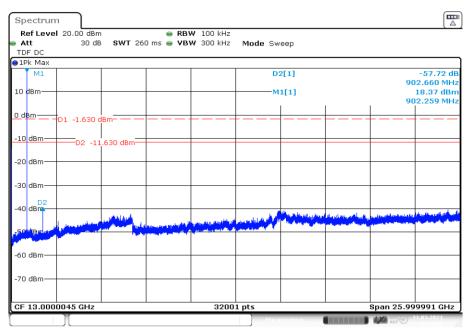
#### 5.4.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

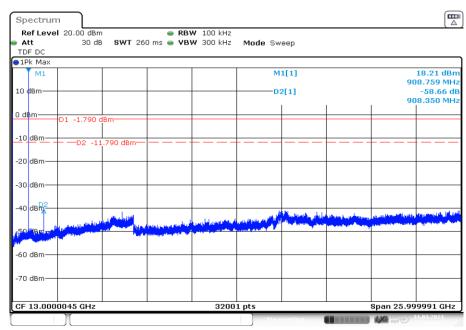
#### 5.4.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 1016 hPa
Humidity: 26 %
LoRaWAN; FHSS 125 kHz; SF 12


| Channel<br>No | Channel<br>Center<br>Freq. [MHz] | Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Detector | RBW<br>[kHz] | Ref.<br>Level<br>[dBm] | Limit<br>[dBm] | Margin to<br>Limit<br>[dB] |
|---------------|----------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------|
| 0             | 902.3                            | 1804.9                     | -39.4                      | PEAK     | 100          | 18.4                   | -1.6           | 37.7                       |
| 31            | 908.5                            | 1817.1                     | -40.5                      | PEAK     | 100          | 18.2                   | -1.8           | 38.7                       |
| 63            | 914.9                            | 1830.1                     | -41.5                      | PEAK     | 100          | 18.2                   | -1.8           | 39.7                       |

Remark: Please see next sub-clause for the measurement plot.

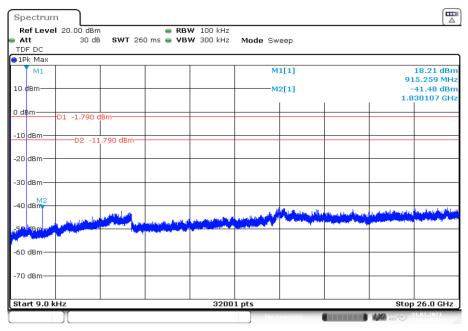



# 5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS), Operating Frequency = low (S01\_AF02)



Date: 31.MAR.2021 21:28:55


Radio Technology = Lora (FHSS), Operating Frequency = mid (S01\_AF02)



Date: 31.MAR.2021 21:32:22



# Radio Technology = Lora (FHSS), Operating Frequency = high (S01\_AF02)



Date: 31.MAR.2021 21:34:44

# 5.4.5 TEST EQUIPMENT USED

- R&S TS8997



#### 5.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

#### Standard FCC Part 15 Subpart C

#### The test was performed according to:

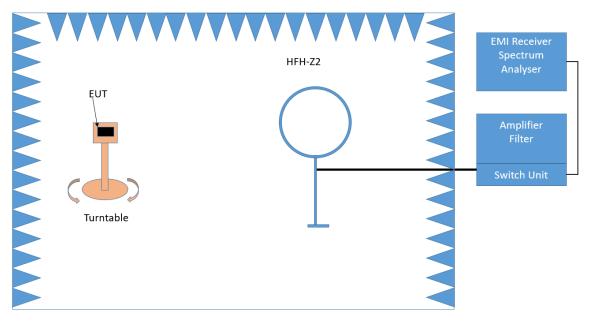
ANSI C63.10

#### 5.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

#### **Below 1 GHz:**

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

#### 1. Measurement up to 30 MHz



Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.



#### **Step 1:** pre measurement

Anechoic chamber

Antenna distance: 3 mAntenna height: 1 mDetector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

• Frequency steps: 0.05 kHz and 2.25 kHz

IF-Bandwidth: 0.2 kHz and 9 kHz

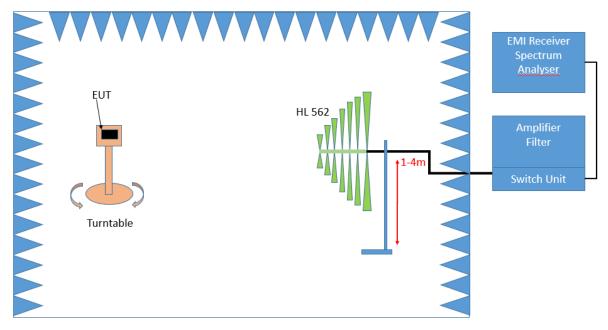
Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

#### **Step 2:** final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

• Detector: Quasi-Peak (9 kHz - 150 kHz, Peak / Average 150 kHz- 30 MHz)


Frequency range: 0.009 – 30 MHz

• Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

• Measuring time / Frequency step: 1 s

#### 2. Measurement above 30 MHz and up to 1 GHz



Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

#### **Step 1:** Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms
 Turntable angle range: -180° to 90°

TEST REPORT REFERENCE: MDE\_OPTION\_2009\_FCC\_01\_rev01



- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

#### **Step 2:** Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by  $\pm$  45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by  $\pm$  100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
 Measuring time: 100 ms
 Turntable angle range: 360 °
 Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

#### **Step 3:** Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

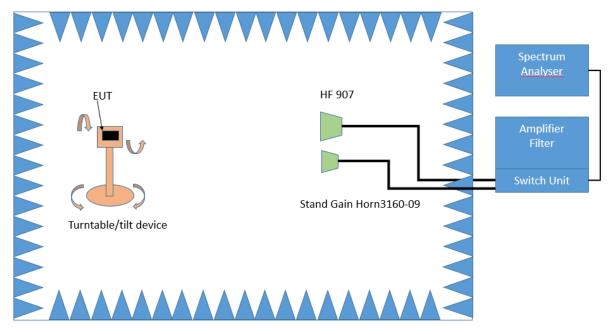
EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.




#### **Above 1 GHz:**

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

#### 3. Measurement above 1 GHz



Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

#### Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90  $^{\circ}$ .

The turn table step size (azimuth angle) for the preliminary measurement is 45  $^{\circ}$ . Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

#### Step 2:

The turn table azimuth will slowly vary by  $\pm$  22.5°.

The elevation angle will slowly vary by  $\pm 45^{\circ}$ 

Spectrum analyser settings:

- Detector: Peak

#### Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s



#### 5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

| Frequency in MHz | Limit (μV/m)     | Measurement distance (m) | Limits (dBµV/m)    |
|------------------|------------------|--------------------------|--------------------|
| 0.009 - 0.49     | 2400/F(kHz)@300m | 3                        | (48.5 - 13.8)@300m |
| 0.49 - 1.705     | 24000/F(kHz)@30m | 3                        | (33.8 - 23.0)@30m  |
| 1.705 - 30       | 30@30m           | 3                        | 29.5@30m           |

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

| Frequency in MHz | Limit (µV/m)  Measurement distance (m) |   | Limits (dBµV/m) |
|------------------|----------------------------------------|---|-----------------|
| 30 - 88          | 100@3m                                 | 3 | 40.0@3m         |
| 88 - 216         | 150@3m                                 | 3 | 43.5@3m         |
| 216 - 960        | 200@3m                                 | 3 | 46.0@3m         |
| 960 - 26000      | 500@3m                                 | 3 | 54.0@3m         |
| 26000 - 40000    | 500@3m                                 | 1 | 54.0@3m         |

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB $\mu$ V/m) = 20 log (Limit ( $\mu$ V/m)/1 $\mu$ V/m)

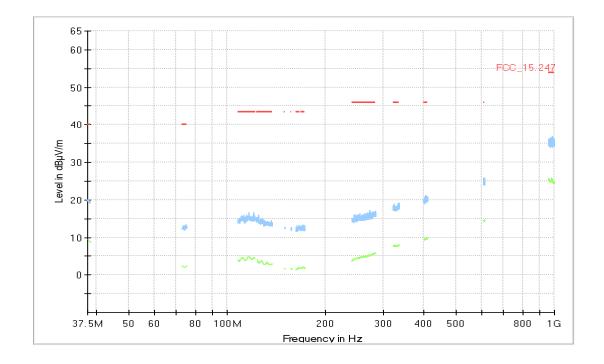


#### 5.5.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 1017 hPa
Humidity: 33 %

LoRaWAN; FHSS 125 kHz; 5470 bps Applied duty cycle correction (AV): 0 dB

| Ch.<br>No | Ch. Center<br>Freq.<br>[MHz] | Spurious<br>Freq. [MHz] | Spurious<br>Level<br>[dBµV/m] | Detec-<br>tor | RBW<br>[kHz] | Limit<br>[dBµV/m] | Margin to<br>Limit [dB] | Limit<br>Type |
|-----------|------------------------------|-------------------------|-------------------------------|---------------|--------------|-------------------|-------------------------|---------------|
| 0         | 902.3                        | 8121.2                  | 58.5                          | PEAK          | 1000         | 74.0              | 15.5                    | RB            |
| 0         | 902.3                        | 8121.1                  | 51.0                          | AV            | 1000         | 54.0              | 3.0                     | RB            |
| 31        | 908.5                        | 8176.8                  | 59.4                          | PEAK          | 1000         | 74.0              | 14.6                    | RB            |
| 31        | 908.5                        | 8176.6                  | 53.9                          | AV            | 1000         | 54.0              | 0.1                     | RB            |
| 63        | 914.9                        | 8233.5                  | 57.5                          | PEAK          | 1000         | 74.0              | 16.5                    | RB            |
| 63        | 914.9                        | 8233.5                  | 48.2                          | AV            | 1000         | 54.0              | 5.8                     | RB            |

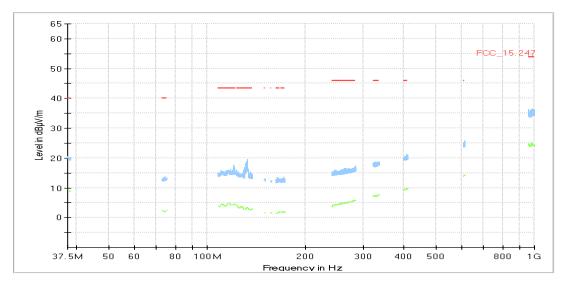

Remark: Since no restricted band exists next to the 900 MHz band, the radiated band edge results are included in the results of this test case.

Due to the long transmission length, the AV value represents the value of continuous transmission. Duty Cycle correction is not performed.

Please see next sub-clause for the measurement plot.

# 5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

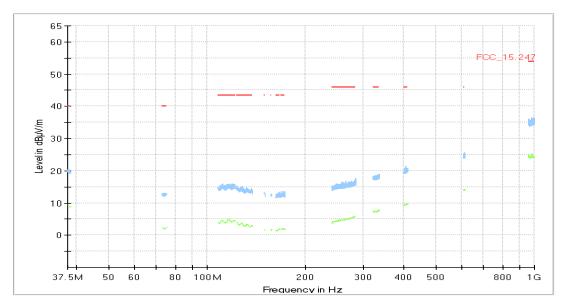
Radio Technology = Lora (FHSS), Operating Frequency = high, Measurement range = 30 MHz
- 1 GHz
(S01\_AC02)




#### **Final Result**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margi<br>n | Meas. Time<br>(ms) | Bandwidt<br>h | Heigh<br>t | Pol | Azimut<br>h | Corr.<br>(dB/m) | Comment |
|--------------------|-----------------------|-------------------|------------|--------------------|---------------|------------|-----|-------------|-----------------|---------|
|                    |                       |                   |            |                    |               |            |     |             |                 |         |



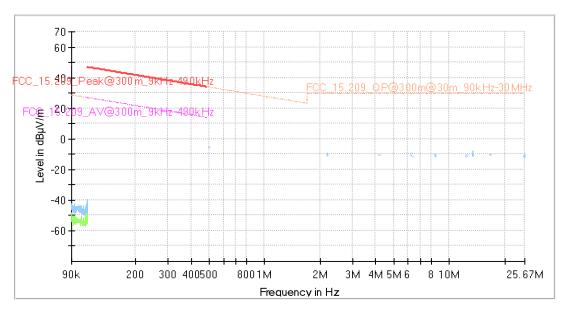

Radio Technology = Lora (FHSS), Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01\_AC02)



# **Final Result**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margi<br>n | Meas. Time<br>(ms) | Bandwidt<br>h | Heigh<br>t | Pol | Azimut<br>h | Corr.<br>(dB/m) | Comment |
|--------------------|-----------------------|-------------------|------------|--------------------|---------------|------------|-----|-------------|-----------------|---------|
|                    |                       |                   |            |                    |               |            |     |             |                 |         |

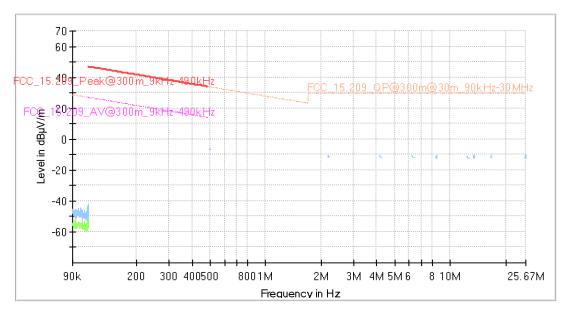
Radio Technology = Lora (FHSS), Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01\_AC02)




#### **Final Result**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margi<br>n | Meas. Time<br>(ms) | Bandwidt<br>h | Heigh<br>t | Pol | Azimut<br>h | Corr.<br>(dB/m) | Comment |
|--------------------|-----------------------|-------------------|------------|--------------------|---------------|------------|-----|-------------|-----------------|---------|
|                    |                       |                   |            |                    |               |            |     |             |                 |         |



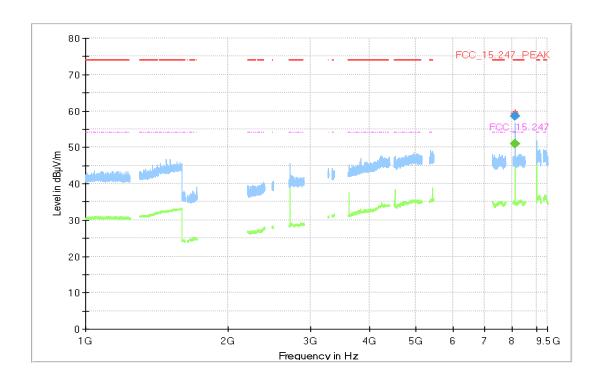

Radio Technology = Lora (FHSS), Operating Frequency = low, Measurement range = 9 kHz - 30 MHz (S01\_AC01)



## Final\_Result

| Frequency |  | MaxPeak  | Limit    | Margin | Meas. Time | Bandwidth | Height | Azimuth (deg) | Corr.  |
|-----------|--|----------|----------|--------|------------|-----------|--------|---------------|--------|
| (MHz)     |  | (dBµV/m) | (dBµV/m) | (dB)   | (ms)       | (kHz)     | (cm)   |               | (dB/m) |
|           |  | -        |          |        |            |           |        |               |        |

Radio Technology = Lora (FHSS), Operating Frequency = high, Measurement range = 9 kHz - 30 MHz (S01\_AC01)

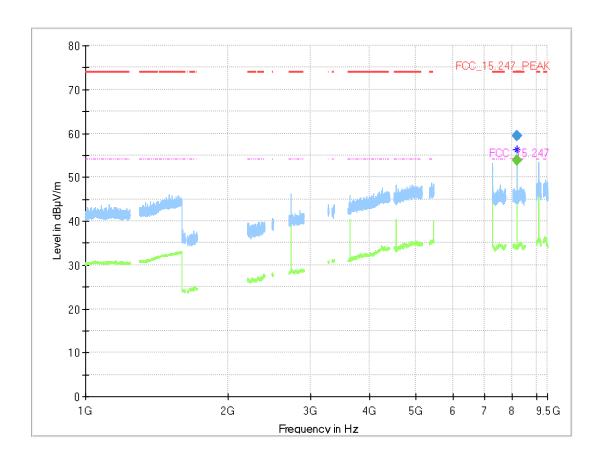



## Final\_Result

| Frequency<br>(MHz) | MaxPeak<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|--------------------|--------------------|----------------|---------------|-----------------|
|                    |                     |                   |                |                    |                    |                |               |                 |



Radio Technology = Lora (FHSS), Operating Frequency = low, Measurement range = 1 GHz - 10 GHz (S01\_AC02)

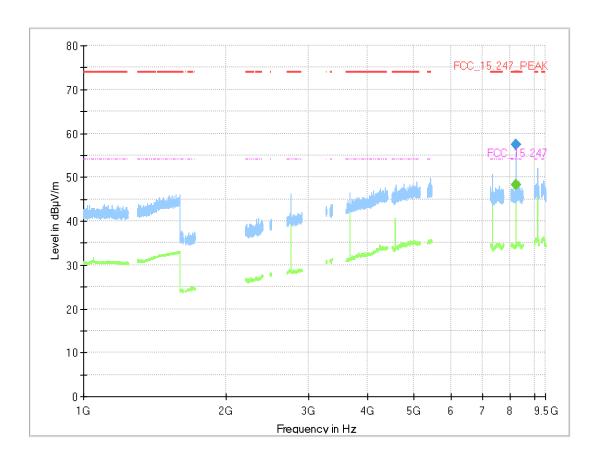



# **Final Result**

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | CAverag<br>e<br>(dBµV/m) | Limit<br>(dBµ<br>V/m) | Margi<br>n<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidt<br>h<br>(kHz) | Heigh<br>t<br>(cm) | Pol | Azimut<br>h<br>(deg) | Elevatio<br>n<br>(deg) |
|--------------------|---------------------|--------------------------|-----------------------|--------------------|-----------------------|------------------------|--------------------|-----|----------------------|------------------------|
| 8121.069           |                     | 51.0                     | 54.00                 | 3.02               | 1000.0                | 1000.000               | 150.0              | Н   | 34.0                 | 105.0                  |
| 8121.188           | 58.5                |                          | 74.00                 | 15.46              | 1000.0                | 1000.000               | 150.0              | V   | -23.0                | 78.0                   |



Radio Technology = Lora (FHSS), Operating Frequency = mid, Measurement range = 1 GHz - 10 GHz (S01\_AC02)




# Final\_Result

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | CAverage<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Elevation<br>(deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|------------------|--------------------|-----------------|
| 8176.644           |                     | 53.9                 | 54.00             | 0.14           | 1000.0             | 1000.000           | 150.0          | V   | 19.0             | 110.0              | -13.2           |
| 8176.763           | 59.4                |                      | 74.00             | 14.60          | 1000.0             | 1000.000           | 150.0          | V   | 9.0              | 105.0              | -13.2           |



Radio Technology = Lora (FHSS), Operating Frequency = high, Measurement range = 1 GHz - 10 GHz (S01\_AC02)



## Final\_Result

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | CAverag<br>e<br>(dBµV/m) | Limit<br>(dBµ<br>V/m) | Margi<br>n<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidt<br>h<br>(kHz) | Heigh<br>t<br>(cm) | Pol | Azimut<br>h<br>(deg) | Elevatio<br>n<br>(deg) | Corr.<br>(dB/<br>m) |
|--------------------|---------------------|--------------------------|-----------------------|--------------------|-----------------------|------------------------|--------------------|-----|----------------------|------------------------|---------------------|
| 8233.525           |                     | 48.2                     | 54.00                 | 5.80               | 1000.0                | 1000.000               | 150.0              | Н   | -24.0                | 78.0                   | -12.8               |
| 8233.525           | 57.5                |                          | 74.00                 | 16.49              | 1000.0                | 1000.000               | 150.0              | Н   | -31.0                | 75.0                   | -12.8               |

## 5.5.5 TEST EQUIPMENT USED

- Radiated Emissions



#### 5.6 BAND EDGE COMPLIANCE CONDUCTED

#### Standard FCC Part 15 Subpart C

## The test was performed according to:

ANSI C63.10

#### 5.6.1 TEST DESCRIPTION

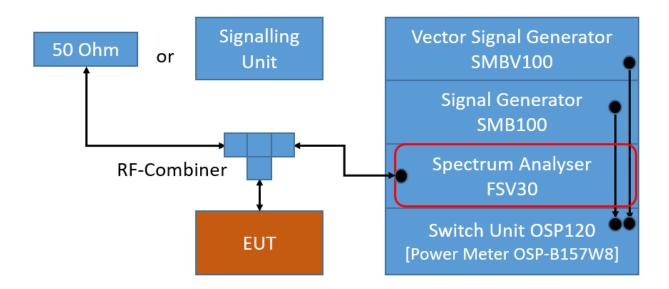
For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

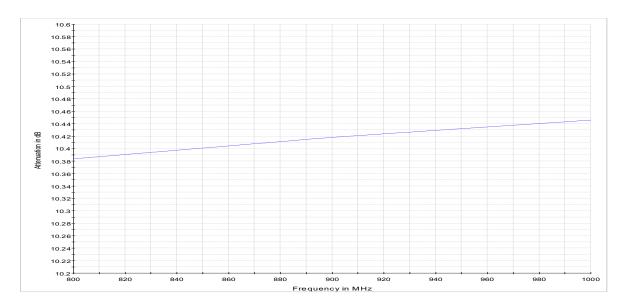
### Analyser settings:

• Lower Band Edge:

Measured range: 2310.0 MHz to 2483.5 MHz


Upper Band Edge

Measured range: 2400.0 MHz to 2500 MHz


Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Sweeptime: AutoSweeps: Till stableTrace: Maxhold







Attenuation of the measurement path

## 5.6.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

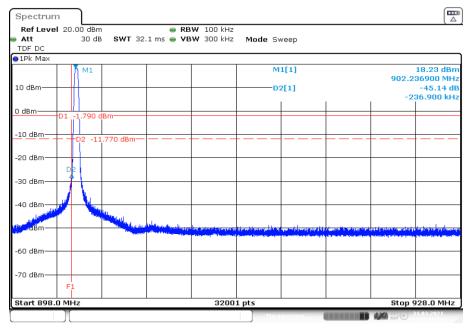
If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."



#### 5.6.3 TEST PROTOCOL

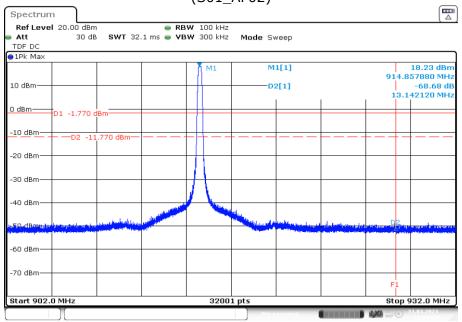
 $\begin{array}{lll} \mbox{Ambient temperature:} & 24 \ ^{\circ}\mbox{C} \\ \mbox{Air Pressure:} & 1016 \ \mbox{hPa} \\ \mbox{Humidity:} & 26 \ \% \end{array}$ 


LoRaWAN; FHSS 125 kHz; SF 12

| Channel<br>No. | Channel<br>Center<br>Frequency<br>[MHz] | Band<br>Edge<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Detector | RBW<br>[kHz] | Ref.<br>Level<br>[dBm] | Limit<br>[dBm] | Margin to<br>Limit<br>[dB] |
|----------------|-----------------------------------------|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------|
| 0              | 902.3                                   | 902.0                          | -45.1                      | PEAK     | 100          | 18.2                   | -11.8          | 33.4                       |
| 63             | 914.9                                   | 928.0                          | -68.7                      | PEAK     | 100          | 18.2                   | -11.8          | 56.9                       |
| hopping        | hopping                                 | 902.0                          | -51.5                      | PEAK     | 100          | 20.3                   | -9.7           | 41.8                       |
| hopping        | hopping                                 | 928.0                          | -71.8                      | PEAK     | 100          | 20.3                   | -9.7           | 62.1                       |

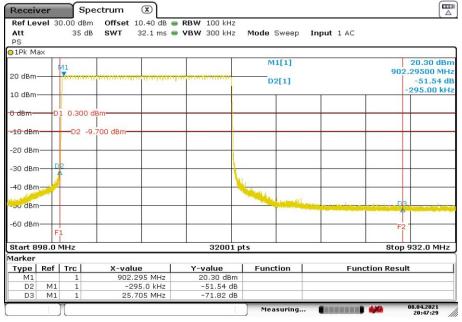
Remark: Please see next sub-clause for the measurement plot.

## 5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Lora (FHSS), Operating Frequency = low, Band Edge = low (S01\_AF02)



Date: 31.MAR.2021 21:47:16




Radio Technology = Lora (FHSS), Operating Frequency = high, Band Edge = high (S01\_AF02)



Date: 31.MAR.2021 21:41:20

Radio Technology = Lora (FHSS), Operating Frequency = hopping, Band Edge = low (S01\_AD02)



Date: 8.APR.2021 20:47:29

## 5.6.5 TEST EQUIPMENT USED

- R&S TS8997



#### 5.7 POWER DENSITY

### Standard FCC Part 15 Subpart C

## The test was performed according to:

ANSI C63.10

#### 5.7.1 TEST DESCRIPTION

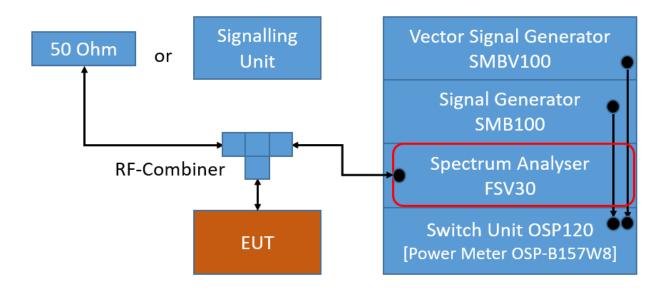
The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

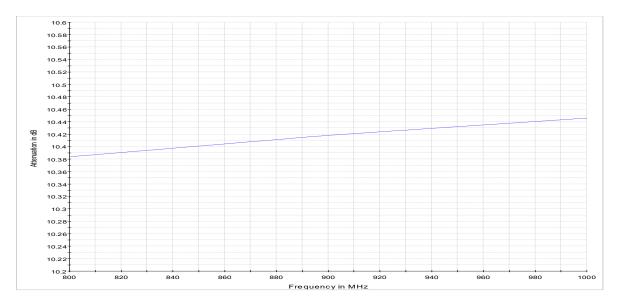
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Average Power Spectral Density (e.g. WLAN):

## Analyser settings:


• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

Video Bandwidth (VBW): ≥ 3 times RBW
 Sweep Points: ≥ 2 times span / RBW


Trace: MaxholdSweeps: Till stable

• Sweeptime: ≤ Number of Sweep Points x minimum transmission duration

Detector: RMS







Attenuation of the measurement path

## 5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. . .

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

...

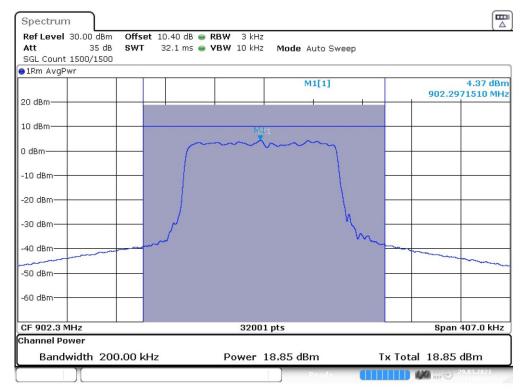
The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission



#### 5.7.3 TEST PROTOCOL

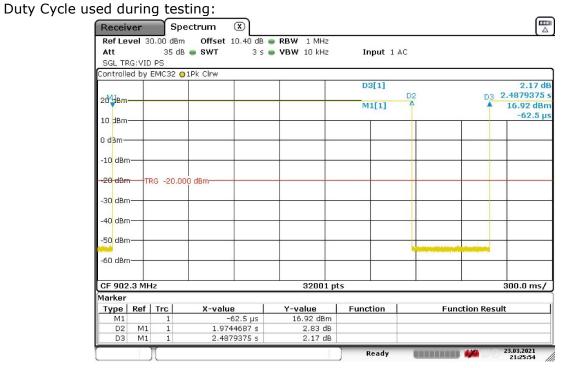
Ambient temperature: 25 °C
Air Pressure: 1000 hPa
Humidity: 30 %

LoRaWAN; Hybrid; 125 kHz; SF 12


| Band         | Channel No. | Frequency<br>[MHz] | Power<br>Density<br>[dBm /<br>RBW] | Used RBW<br>[kHz] | Limit<br>[dBm/3kHz] | Margin to<br>Limit [dB] |
|--------------|-------------|--------------------|------------------------------------|-------------------|---------------------|-------------------------|
| 900 MHz Band | 0           | 902.3              | 5.4                                | 3                 | 8.0                 | 2.6                     |
|              | 31          | 908.5              | 5.2                                | 3                 | 8.0                 | 2.8                     |
|              | 63          | 914.9              | 5.4                                | 3                 | 8.0                 | 2.6                     |

Remark: Results include 1.0 dB duty cycle correction factor.

Please see next sub-clause for the measurement plot.


# 5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (HYBRID), Operating Frequency = low (S01\_AF02)



Date: 29.MAR.2021 21:09:30





Date: 23.MAR.2021 21:25:54

79 %

## 5.7.5 TEST EQUIPMENT USED

- R&S TS8997



#### 5.8 CHANNEL SEPARATION

Standard FCC Part 15 Subpart C

## The test was performed according to:

ANSI C63.10

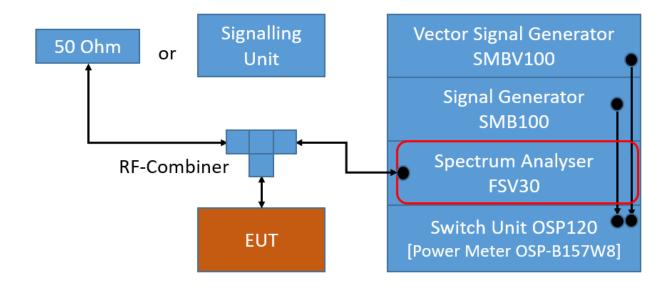
#### 5.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the channel separation measurement. The channel separation is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

#### Analyser settings:

Detector: PeakTrace: MaxholdSpan: appr. 3 x OBW


• Centre Frequency: approximate mid of two channels

• Resolution Bandwidth (RBW): appr. 30 % of channel spacing

• Video Bandwidth (VBW): ≥ RBW

Sweep Time: AutoSweeps: Till stable

The technology depending measurement parameters can be found in the measurement plot.





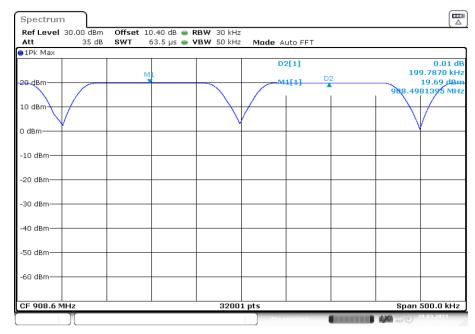
## 5.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### 5.8.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1000 hPa
Humidity: 26 %


| Radio Technology            | Channel Separation [MHz] | Limit [MHz] | Margin to Limit [MHz] |
|-----------------------------|--------------------------|-------------|-----------------------|
| LoRaWAN; FHSS 125 kHz; SF12 | 0.200                    | 0.150       | 0.050                 |

Remark: Please see next sub-clause for the measurement plot.



# 5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS) (S01\_AF02)



Date: 29.MAR.2021 20:55:20

## 5.8.5 TEST EQUIPMENT USED

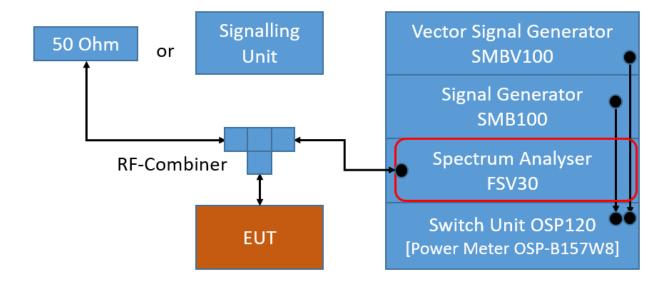
- R&S TS8997



#### 5.9 DWELL TIME

Standard FCC Part 15 Subpart C

## The test was performed according to:


ANSI C63.10

#### 5.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the dwell time measurement. The EUT is set to its maximum dwell time.

The dwell time is measured by spectrum analyser.

In addition to the dwell time from single burst length, measured dwell time summing up all measured bursts lengths is given in the result table.





#### 5.9.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

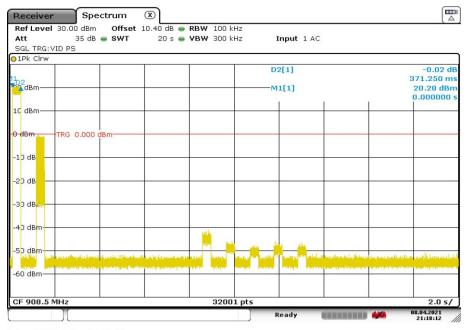
...



#### 5.9.3 TEST PROTOCOL

Ambient temperature: 24 °C Air Pressure: 1016 hPa Humidity: 26 %

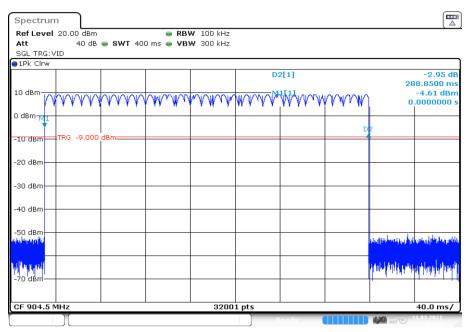
| Radio Technology       | Time Slot Length [ms] | Dwell Time<br>[ms] | Limit<br>[s] | Margin to Limit [ms] |
|------------------------|-----------------------|--------------------|--------------|----------------------|
| LoRaWAN; FHSS 125 kHz; | 371.250               | 371.250            | 0.4          | 28.750               |
| Join Procedure         |                       |                    |              |                      |


Ambient temperature: 24 °C
Air Pressure: 1016 hPa
Humidity: 26 %

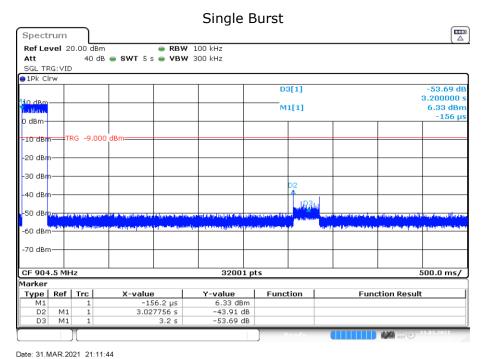
| Radio Technology          | Time Slot Length [ms] | Dwell Time<br>[ms] | Limit<br>[s] | Margin to Limit [ms] |
|---------------------------|-----------------------|--------------------|--------------|----------------------|
| LoRaWAN; Hybrid; 125 kHz; | 288.850               | 288.850            | 0.4          | 111.150              |
| In Connection             |                       |                    |              |                      |

Remark: Please see next sub-clause for the measurement plot.

# 5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Lora (FHSS) (S02\_AD02)




Date: 8.APR.2021 21:18:12



## Radio Technology = Lora (HYBRID) (S02\_AF02)



Date: 31.MAR.2021 21:02:08



Number of dwells in 3.2 s (8 channels x 400 ms)

## 5.9.5 TEST EQUIPMENT USED

- R&S TS8997



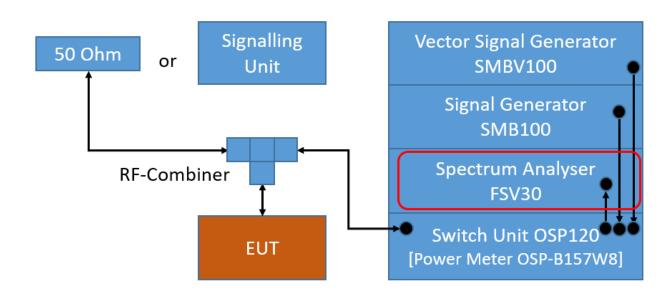
### 5.10 NUMBER OF HOPPING FREQUENCIES

## Standard FCC Part 15 Subpart C

## The test was performed according to:

ANSI C63.10

#### 5.10.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

#### Analyser settings:

- Detector: PeakTrace: Maxhold
- Frequency span: Frequency band of operation
- Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is smaller)
- Video Bandwidth (VBW): 3 x RBW
- Sweep Time: Auto
- Sweeps: Till stable (min. 300, max. 15000)

The technology depending measurement parameters can be found in the measurement plot.



TS8997; Number of Hopping Frequencies



### 5.10.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies.

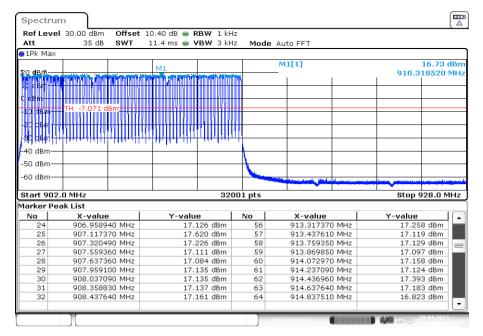
For the band: 2400 - 2483.5 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

#### 5.10.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1000 hPa
Humidity: 26 %


Radio TechnologyNumber of Hopping FrequenciesLimitMargin to LimitLoRaWAN; FHSS 125 kHz; 5470 bps645014

Remark: Please see next sub-clause for the measurement plot.



# 5.10.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS) (S01\_AF02)



Date: 29.MAR.2021 20:41:04

## 5.10.5 TEST EQUIPMENT USED

- R&S TS8997



## 6 TEST EQUIPMENT

## 1 R&S TS8997

#### 2.4 and 5 GHz Bands Conducted Test Lab

| Ref.No. | <b>Device Name</b>      | Description                            | Manufacturer                         | Serial Number |             | Calibration |
|---------|-------------------------|----------------------------------------|--------------------------------------|---------------|-------------|-------------|
|         |                         |                                        |                                      |               | Calibration | Due         |
| 1.1     |                         | Signal<br>Analyzer 10 Hz<br>- 30 GHz   | Rohde & Schwarz                      | 103005        | 2020-05     | 2022-05     |
| 1.2     | Opus10 THI<br>(8152.00) | . 55                                   | Lufft Mess- und<br>Regeltechnik GmbH | 13985         | 2019-06     | 2021-06     |
| 1.3     |                         | EMI Receiver /<br>Spectrum<br>Analyzer | Rohde & Schwarz                      | 101424        | 2021-01     | 2023-01     |
| 1.4     | Opus10 THI<br>(8152.00) | . 55                                   | Lufft Mess- und<br>Regeltechnik GmbH |               | 2019-06     | 2021-06     |

## 2 Radiated Emissions Lab to perform radiated emission tests

| Ref.No. | <b>Device Name</b>              | Description                                                                        | Manufacturer                         | Serial Number          | Last<br>Calibration | Calibration<br>Due |
|---------|---------------------------------|------------------------------------------------------------------------------------|--------------------------------------|------------------------|---------------------|--------------------|
| 2.1     | MFS                             | Rubidium<br>Frequency<br>Normal MFS                                                | Datum GmbH                           | 002                    | 2020-11             | 2021-11            |
| 2.2     | Opus10 TPR<br>(8253.00)         | T/P Logger 13                                                                      | Lufft Mess- und<br>Regeltechnik GmbH | 13936                  | 2019-05             | 2021-05            |
| 2.3     | ESW44                           | EMI Receiver /<br>Spectrum<br>Analyzer                                             | Rohde & Schwarz<br>GmbH & Co. KG     | 101603                 | 2019-12             | 2021-12            |
| 2.4     | Anechoic<br>Chamber 01          | SAC/FAR,<br>10.58 m x<br>6.38 m x 6.00<br>m                                        | Frankonia                            | none                   | 2018-06             | 2021-06            |
| 2.5     | HL 562<br>ULTRALOG              | Biconical-log-<br>per antenna<br>(30 MHz - 3<br>GHz) with HL<br>562E<br>biconicals | Rohde & Schwarz<br>GmbH & Co. KG     | 830547/003             | 2018-07             | 2021-07            |
| 2.6     | AMF-<br>7D00101800-<br>30-10P-R | Broadband<br>Amplifier 100<br>MHz - 18 GHz                                         | Miteq                                |                        |                     |                    |
| 2.7     | ASP 1.2/1.8-10<br>kg            | Antenna Mast                                                                       | Maturo GmbH                          | -                      |                     |                    |
| 2.8     | Anechoic<br>Chamber 03          | FAR, 8.80m x<br>4.60m x<br>4.05m (I x w x<br>h)                                    | Albatross Projects                   | P26971-647-001-<br>PRB |                     |                    |
| 2.9     | Opus10 THI<br>(8152.00)         | T/H Logger 10                                                                      | Lufft Mess- und<br>Regeltechnik GmbH | 12488                  | 2019-06             | 2021-06            |
| 2.10    | ĴS4-18002600-<br>32-5P          | Broadband<br>Amplifier 18<br>GHz - 26 GHz                                          | Miteq                                | 849785                 |                     |                    |
| 2.11    | FSW 43                          | Spectrum<br>Analyzer                                                               | Rohde & Schwarz                      | 103779                 | 2019-02             | 2021-08            |



| Ref.No. | <b>Device Name</b>                               | Description                                              | Manufacturer                     | Serial Number                  | Last<br>Calibration | Calibration<br>Due |
|---------|--------------------------------------------------|----------------------------------------------------------|----------------------------------|--------------------------------|---------------------|--------------------|
| 2.12    | 3160-09                                          | Standard Gain<br>/ Pyramidal<br>Horn Antenna<br>26.5 GHz | EMCO Elektronic<br>GmbH          | 00083069                       |                     |                    |
| 2.13    | 8SS                                              | High Pass<br>Filter                                      | Wainwright<br>Instruments GmbH   | 09                             |                     |                    |
| 2.14    | DS 420S                                          | Turn Table 2<br>m diameter                               | HD GmbH                          | 420/573/99                     |                     |                    |
| 2.15    |                                                  | Filter                                                   | Trilithic                        | 9942011                        |                     |                    |
|         | 42-5A                                            | Broadband<br>Amplifier 30<br>MHz - 26 GHz                | Miteq                            | 619368                         |                     |                    |
| 2.17    | TT 1.5 WI                                        | Turn Table                                               | Maturo GmbH                      | -                              |                     |                    |
| 2.18    |                                                  | per Antenna<br>(30 MHz - 3<br>GHz)                       | Rohde & Schwarz<br>GmbH & Co. KG | 100609                         | 2019-05             | 2022-05            |
| 2.19    |                                                  | Bore Sight<br>Antenna Mast                               |                                  | none                           |                     |                    |
| 2.20    | JUN-AIR Mod. 6-<br>15                            |                                                          | JUN-AIR<br>Deutschland GmbH      | 612582                         |                     |                    |
| 2.21    | HFH2-Z2                                          | Loop Antenna<br>+ 3 Axis<br>Tripod                       | Rohde & Schwarz<br>GmbH & Co. KG | 829324/006                     | 2021-01             | 2024-01            |
| 2.22    | SB4-<br>100.OLD20-<br>3T/10 Airwin 2 x<br>1.5 kW |                                                          | airWin<br>Kompressoren UG        | 901/00503                      |                     |                    |
| 2.23    | JS4-00101800-                                    | Broadband<br>Amplifier 30<br>MHz - 18 GHz                | Miteq                            | 896037                         |                     |                    |
| 2.24    |                                                  | Antenna Mast<br>(pneumatic<br>polarisation)              | HD GmbH                          | 620/37                         |                     |                    |
| 2.25    | TD1.5-10kg                                       | EUT Tilt Device<br>(Rohacell)                            | Maturo GmbH                      | TD1.5-<br>10kg/024/37907<br>09 |                     |                    |
| 2.26    | HF 907-2                                         | Double-ridged<br>horn                                    | Rohde & Schwarz                  | 102817                         | 2019-04             | 2022-04            |
| 2.27    | PAS 2.5 - 10 kg                                  |                                                          | Maturo GmbH                      | -                              |                     |                    |
| 2.28    | AFS42-<br>00101800-25-S-<br>42                   | Broadband                                                | Miteq                            | 2035324                        |                     |                    |
| 2.29    | AM 4.0                                           |                                                          | Maturo GmbH                      | AM4.0/180/1192<br>0513         |                     |                    |
| 2.30    | HF 907                                           |                                                          | Rohde & Schwarz                  | 102444                         | 2018-07             | 2021-07            |

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"



## 7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

## 7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

| Frequency | Corr. |
|-----------|-------|
| MHz       | dB    |
| 0.15      | 10.1  |
| 5         | 10.3  |
| 7         | 10.5  |
| 10        | 10.5  |
| 12        | 10.7  |
| 14        | 10.7  |
| 16        | 10.8  |
| 18        | 10.9  |
| 20        | 10.9  |
| 22        | 11.1  |
| 24        | 11.1  |
| 26        | 11.2  |
| 28        | 11.2  |
| 30        | 11.3  |

| cable     |
|-----------|
| loss      |
| (incl. 10 |
| dB        |
| atten-    |
| uator)    |
| dB        |
| 10.0      |
| 10.2      |
| 10.3      |
| 10.3      |
| 10.4      |
| 10.4      |
| 10.4      |
| 10.5      |
| 10.5      |
| 10.6      |
| 10.6      |
| 10.7      |
| 10.7      |
| 10.8      |
|           |

#### Sample calculation

 $U_{LISN}$  (dB  $\mu$ V) = U (dB  $\mu$ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.



## 7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

|           | 1        |       |
|-----------|----------|-------|
|           |          |       |
|           | AF       |       |
| Frequency | HFH-Z2)  | Corr. |
| MHz       | dB (1/m) | dB    |
| 0.009     | 20.50    | -79.6 |
| 0.01      | 20.45    | -79.6 |
| 0.015     | 20.37    | -79.6 |
| 0.02      | 20.36    | -79.6 |
| 0.025     | 20.38    | -79.6 |
| 0.03      | 20.32    | -79.6 |
| 0.05      | 20.35    | -79.6 |
| 0.08      | 20.30    | -79.6 |
| 0.1       | 20.20    | -79.6 |
| 0.2       | 20.17    | -79.6 |
| 0.3       | 20.14    | -79.6 |
| 0.49      | 20.12    | -79.6 |
| 0.490001  | 20.12    | -39.6 |
| 0.5       | 20.11    | -39.6 |
| 0.8       | 20.10    | -39.6 |
| 1         | 20.09    | -39.6 |
| 2         | 20.08    | -39.6 |
| 3         | 20.06    | -39.6 |
| 4         | 20.05    | -39.5 |
| 5         | 20.05    | -39.5 |
| 6         | 20.02    | -39.5 |
| 8         | 19.95    | -39.5 |
| 10        | 19.83    | -39.4 |
| 12        | 19.71    | -39.4 |
| 14        | 19.54    | -39.4 |
| 16        | 19.53    | -39.3 |
| 18        | 19.50    | -39.3 |
| 20        | 19.57    | -39.3 |
| 22        | 19.61    | -39.3 |
| 24        | 19.61    | -39.3 |
| 26        | 19.54    | -39.3 |
| 28        | 19.46    | -39.2 |
| 30        | 19.73    | -39.1 |

| <b>\</b> - |          | <u>'</u> |           |          |             |            |
|------------|----------|----------|-----------|----------|-------------|------------|
| cable      | cable    | cable    | cable     | distance | $d_{Limit}$ | $d_{used}$ |
| loss 1     | loss 2   | loss 3   | loss 4    | corr.    | (meas.      | (meas.     |
| (inside    | (outside | (switch  | (to       | (-40 dB/ | distance    | distance   |
| chamber)   | chamber) | unit)    | receiver) | decade)  | (limit)     | (used)     |
| dB         | dB       | dB       | dB        | dB       | m           | m          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -80      | 300         | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.1        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.2        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.2        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.2        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.2        | 0.1      | 0.1      | 0.1       | -40      | 30          | 3          |
| 0.2        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.2        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.2        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.3        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.3        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.3        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.3        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.3        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.3        | 0.1      | 0.2      | 0.1       | -40      | 30          | 3          |
| 0.3        | 0.1      | 0.3      | 0.1       | -40      | 30          | 3          |
| 0.4        | 0.1      | 0.3      | 0.1       | -40      | 30          | 3          |
|            |          |          |           |          |             |            |

## Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-40 * LOG (d_{Limit} / d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values



## 7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$ 

| $d_{Limit} = 3 m)$ |                    |       |  |  |  |  |
|--------------------|--------------------|-------|--|--|--|--|
| Frequency          | AF<br>R&S<br>HL562 | Corr. |  |  |  |  |
| MHz                | dB (1/m)           | dB    |  |  |  |  |
| 30                 | 18.6               | 0.6   |  |  |  |  |
| 50                 | 6.0                | 0.9   |  |  |  |  |
| 100                | 9.7                | 1.2   |  |  |  |  |
| 150                | 7.9                | 1.6   |  |  |  |  |
| 200                | 7.6                | 1.9   |  |  |  |  |
| 250                | 9.5                | 2.1   |  |  |  |  |
| 300                | 11.0               | 2.3   |  |  |  |  |
| 350                | 12.4               | 2.6   |  |  |  |  |
| 400                | 13.6               | 2.9   |  |  |  |  |
| 450                | 14.7               | 3.1   |  |  |  |  |
| 500                | 15.6               | 3.2   |  |  |  |  |
| 550                | 16.3               | 3.5   |  |  |  |  |
| 600                | 17.2               | 3.5   |  |  |  |  |
| 650                | 18.1               | 3.6   |  |  |  |  |
| 700                | 18.5               | 3.6   |  |  |  |  |
| 750                | 19.1               | 4.1   |  |  |  |  |
| 800                | 19.6               | 4.1   |  |  |  |  |
| 850                | 20.1               | 4.4   |  |  |  |  |
| 900                | 20.8               | 4.7   |  |  |  |  |
| 950                | 21.1               | 4.8   |  |  |  |  |
| 1000               | 21.6               | 4.9   |  |  |  |  |

| cable    | cable    | cable   | cable     | distance | $d_{Limit}$ | $d_{used}$ |
|----------|----------|---------|-----------|----------|-------------|------------|
| loss 1   | loss 2   | loss 3  | loss 4    | corr.    | (meas.      | (meas.     |
| (inside  | (outside | (switch | (to       | (-20 dB/ | distance    | distance   |
| chamber) | chamber) | unit)   | receiver) | decade)  | (limit)     | (used)     |
| dB       | dB       | dB      | dB        | dB       | m           | m          |
| 0.29     | 0.04     | 0.23    | 0.02      | 0.0      | 3           | 3          |
| 0.39     | 0.09     | 0.32    | 0.08      | 0.0      | 3           | 3          |
| 0.56     | 0.14     | 0.47    | 0.08      | 0.0      | 3           | 3          |
| 0.73     | 0.20     | 0.59    | 0.12      | 0.0      | 3           | 3          |
| 0.84     | 0.21     | 0.70    | 0.11      | 0.0      | 3           | 3          |
| 0.98     | 0.24     | 0.80    | 0.13      | 0.0      | 3           | 3          |
| 1.04     | 0.26     | 0.89    | 0.15      | 0.0      | 3           | 3          |
| 1.18     | 0.31     | 0.96    | 0.13      | 0.0      | 3           | 3          |
| 1.28     | 0.35     | 1.03    | 0.19      | 0.0      | 3           | 3          |
| 1.39     | 0.38     | 1.11    | 0.22      | 0.0      | 3           | 3          |
| 1.44     | 0.39     | 1.20    | 0.19      | 0.0      | 3           | 3          |
| 1.55     | 0.46     | 1.24    | 0.23      | 0.0      | 3           | 3          |
| 1.59     | 0.43     | 1.29    | 0.23      | 0.0      | 3           | 3          |
| 1.67     | 0.34     | 1.35    | 0.22      | 0.0      | 3           | 3          |
| 1.67     | 0.42     | 1.41    | 0.15      | 0.0      | 3           | 3          |
| 1.87     | 0.54     | 1.46    | 0.25      | 0.0      | 3           | 3          |
| 1.90     | 0.46     | 1.51    | 0.25      | 0.0      | 3           | 3          |
| 1.99     | 0.60     | 1.56    | 0.27      | 0.0      | 3           | 3          |
| 2.14     | 0.60     | 1.63    | 0.29      | 0.0      | 3           | 3          |
| 2.22     | 0.60     | 1.66    | 0.33      | 0.0      | 3           | 3          |
| 2.23     | 0.61     | 1.71    | 0.30      | 0.0      | 3           | 3          |
|          |          |         |           |          |             |            |

 $(d_{Limit} = 10 m)$ 

| ( <u>a<sub>Limit</sub> = 10 m</u> | 1)   |      |      |      |      |      |       |    |   |
|-----------------------------------|------|------|------|------|------|------|-------|----|---|
| 30                                | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 |
| 50                                | 6.0  | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 |
| 100                               | 9.7  | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 |
| 150                               | 7.9  | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 |
| 200                               | 7.6  | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 |
| 250                               | 9.5  | -8.3 | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 |
| 300                               | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 |
| 350                               | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 |
| 400                               | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 |
| 450                               | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 |
| 500                               | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 |
| 550                               | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 |
| 600                               | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 |
| 650                               | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 |
| 700                               | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 |
| 750                               | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 |
| 800                               | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 |
| 850                               | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 |
| 900                               | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 |
| 950                               | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 |
| 1000                              | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 |

### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-20 * LOG (d_{Limit}/d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.



## 7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

|           | AF<br>R&S |       |
|-----------|-----------|-------|
| Frequency | HF907     | Corr. |
| MHz       | dB (1/m)  | dB    |
| 1000      | 24.4      | -19.4 |
| 2000      | 28.5      | -17.4 |
| 3000      | 31.0      | -16.1 |
| 4000      | 33.1      | -14.7 |
| 5000      | 34.4      | -13.7 |
| 6000      | 34.7      | -12.7 |
| 7000      | 35.6      | -11.0 |

| cable<br>loss 1<br>(relay +<br>cable<br>inside | cable<br>loss 2<br>(outside | cable<br>loss 3<br>(switch<br>unit,<br>atten-<br>uator & | cable<br>loss 4 (to |  |  |  |  |
|------------------------------------------------|-----------------------------|----------------------------------------------------------|---------------------|--|--|--|--|
| chamber)                                       | chamber)                    | pre-amp)                                                 | receiver)           |  |  |  |  |
| dB                                             | dB                          | dB                                                       | dB                  |  |  |  |  |
| 0.99                                           | 0.31                        | -21.51                                                   | 0.79                |  |  |  |  |
| 1.44                                           | 0.44                        | -20.63                                                   | 1.38                |  |  |  |  |
| 1.87                                           | 0.53                        | -19.85                                                   | 1.33                |  |  |  |  |
| 2.41                                           | 0.67                        | -19.13                                                   | 1.31                |  |  |  |  |
| 2.78                                           | 0.86                        | -18.71                                                   | 1.40                |  |  |  |  |
| 2.74                                           | 0.90                        | -17.83                                                   | 1.47                |  |  |  |  |
| 2.82                                           | 0.86                        | -16.19                                                   | 1.46                |  |  |  |  |

| Frequency | AF<br>R&S<br>HF907 | Corr. |
|-----------|--------------------|-------|
| MHz       | dB (1/m)           | dB    |
| 3000      | 31.0               | -23.4 |
| 4000      | 33.1               | -23.3 |
| 5000      | 34.4               | -21.7 |
| 6000      | 34.7               | -21.2 |
| 7000      | 35.6               | -19.8 |

| cable<br>loss 1<br>(relay<br>inside<br>chamber) | cable<br>loss 2<br>(inside<br>chamber) | cable<br>loss 3<br>(outside<br>chamber) | cable loss 4 (switch unit, atten- uator & pre-amp) | cable<br>loss 5 (to<br>receiver) | used<br>for<br>FCC<br>15,247 |
|-------------------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------|------------------------------|
| dB                                              | dB                                     | dB                                      | dB                                                 | dB                               | 13.247                       |
| 0.47                                            | 1.87                                   | 0.53                                    | -27.58                                             | 1.33                             |                              |
| 0.56                                            | 2.41                                   | 0.67                                    | -28.23                                             | 1.31                             |                              |
| 0.61                                            | 2.78                                   | 0.86                                    | -27.35                                             | 1.40                             |                              |
| 0.58                                            | 2.74                                   | 0.90                                    | -26.89                                             | 1.47                             |                              |
| 0.66                                            | 2.82                                   | 0.86                                    | -25.58                                             | 1.46                             |                              |

| Frequency | AF<br>R&S<br>HF907 | Corr. |
|-----------|--------------------|-------|
| MHz       | dB (1/m)           | dB    |
| 7000      | 35.6               | -57.3 |
| 8000      | 36.3               | -56.3 |
| 9000      | 37.1               | -55.3 |
| 10000     | 37.5               | -56.2 |
| 11000     | 37.5               | -55.3 |
| 12000     | 37.6               | -53.7 |
| 13000     | 38.2               | -53.5 |
| 14000     | 39.9               | -56.3 |
| 15000     | 40.9               | -54.1 |
| 16000     | 41.3               | -54.1 |
| 17000     | 42.8               | -54.4 |
| 18000     | 44.2               | -54.7 |

| cable    |        |        | 1. 1 .   | 1. 1 .   |           |
|----------|--------|--------|----------|----------|-----------|
| loss 1   | cable  | cable  | cable    | cable    | cable     |
| (relay   | loss 2 | loss 3 | loss 4   | loss 5   | loss 6    |
| inside   | (High  | (pre-  | (inside  | (outside | (to       |
| chamber) | Pass)  | amp)   | chamber) | chamber) | receiver) |
| dB       | dB     | dB     | dB       | dB       | dB        |
| 0.56     | 1.28   | -62.72 | 2.66     | 0.94     | 1.46      |
| 0.69     | 0.71   | -61.49 | 2.84     | 1.00     | 1.53      |
| 0.68     | 0.65   | -60.80 | 3.06     | 1.09     | 1.60      |
| 0.70     | 0.54   | -61.91 | 3.28     | 1.20     | 1.67      |
| 0.80     | 0.61   | -61.40 | 3.43     | 1.27     | 1.70      |
| 0.84     | 0.42   | -59.70 | 3.53     | 1.26     | 1.73      |
| 0.83     | 0.44   | -59.81 | 3.75     | 1.32     | 1.83      |
| 0.91     | 0.53   | -63.03 | 3.91     | 1.40     | 1.77      |
| 0.98     | 0.54   | -61.05 | 4.02     | 1.44     | 1.83      |
| 1.23     | 0.49   | -61.51 | 4.17     | 1.51     | 1.85      |
| 1.36     | 0.76   | -62.36 | 4.34     | 1.53     | 2.00      |
| 1.70     | 0.53   | -62.88 | 4.41     | 1.55     | 1.91      |

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.



## 7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

|           | AF              |       |
|-----------|-----------------|-------|
| Frequency | EMCO<br>3160-09 | Corr. |
| MHz       | dB (1/m)        | dB    |
| 18000     | 40.2            | -23.5 |
| 18500     | 40.2            | -23.2 |
| 19000     | 40.2            | -22.0 |
| 19500     | 40.3            | -21.3 |
| 20000     | 40.3            | -20.3 |
| 20500     | 40.3            | -19.9 |
| 21000     | 40.3            | -19.1 |
| 21500     | 40.3            | -19.1 |
| 22000     | 40.3            | -18.7 |
| 22500     | 40.4            | -19.0 |
| 23000     | 40.4            | -19.5 |
| 23500     | 40.4            | -19.3 |
| 24000     | 40.4            | -19.8 |
| 24500     | 40.4            | -19.5 |
| 25000     | 40.4            | -19.3 |
| 25500     | 40.5            | -20.4 |
| 26000     | 40.5            | -21.3 |
| 26500     | 40.5            | -21.1 |

| (10 0    |        | O,       |         |           |
|----------|--------|----------|---------|-----------|
| cable    | cable  | cable    | cable   | cable     |
| loss 1   | loss 2 | loss 3   | loss 4  | loss 5    |
| (inside  | (pre-  | (inside  | (switch | (to       |
| chamber) | amp)   | chamber) | unit)   | receiver) |
| dB       | dB     | dB       | dB      | dB        |
| 0.72     | -35.85 | 6.20     | 2.81    | 2.65      |
| 0.69     | -35.71 | 6.46     | 2.76    | 2.59      |
| 0.76     | -35.44 | 6.69     | 3.15    | 2.79      |
| 0.74     | -35.07 | 7.04     | 3.11    | 2.91      |
| 0.72     | -34.49 | 7.30     | 3.07    | 3.05      |
| 0.78     | -34.46 | 7.48     | 3.12    | 3.15      |
| 0.87     | -34.07 | 7.61     | 3.20    | 3.33      |
| 0.90     | -33.96 | 7.47     | 3.28    | 3.19      |
| 0.89     | -33.57 | 7.34     | 3.35    | 3.28      |
| 0.87     | -33.66 | 7.06     | 3.75    | 2.94      |
| 0.88     | -33.75 | 6.92     | 3.77    | 2.70      |
| 0.90     | -33.35 | 6.99     | 3.52    | 2.66      |
| 0.88     | -33.99 | 6.88     | 3.88    | 2.58      |
| 0.91     | -33.89 | 7.01     | 3.93    | 2.51      |
| 0.88     | -33.00 | 6.72     | 3.96    | 2.14      |
| 0.89     | -34.07 | 6.90     | 3.66    | 2.22      |
| 0.86     | -35.11 | 7.02     | 3.69    | 2.28      |
| 0.90     | -35.20 | 7.15     | 3.91    | 2.36      |
|          | -      | -        |         |           |

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



## 7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

| Frequency | AF<br>EMCO<br>3160-10 | Corr. |
|-----------|-----------------------|-------|
| GHz       | dB (1/m)              | dB    |
| 26.5      | 43.4                  | -11.2 |
| 27.0      | 43.4                  | -11.2 |
| 28.0      | 43.4                  | -11.1 |
| 29.0      | 43.5                  | -11.0 |
| 30.0      | 43.5                  | -10.9 |
| 31.0      | 43.5                  | -10.8 |
| 32.0      | 43.5                  | -10.7 |
| 33.0      | 43.6                  | -10.7 |
| 34.0      | 43.6                  | -10.6 |
| 35.0      | 43.6                  | -10.5 |
| 36.0      | 43.6                  | -10.4 |
| 37.0      | 43.7                  | -10.3 |
| 38.0      | 43.7                  | -10.2 |
| 39.0      | 43.7                  | -10.2 |
| 40.0      | 43.8                  | -10.1 |

| cable<br>loss 1<br>(inside<br>chamber) | cable<br>loss 2<br>(outside<br>chamber) | cable<br>loss 3<br>(switch<br>unit) | cable<br>loss 4<br>(to<br>receiver) | distance<br>corr.<br>(-20 dB/<br>decade) | d <sub>Limit</sub><br>(meas.<br>distance<br>(limit) | d <sub>used</sub><br>(meas.<br>distance<br>(used) |
|----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------------------------|
| dB                                     | dB                                      | dB                                  | dB                                  | dB                                       | m                                                   | m                                                 |
| 4.4                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 4.4                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 4.5                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 4.6                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 4.7                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 4.7                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 4.8                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 4.9                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 5.0                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 5.1                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 5.1                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 5.2                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 5.3                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 5.4                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |
| 5.5                                    |                                         |                                     |                                     | -9.5                                     | 3                                                   | 1.0                                               |

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

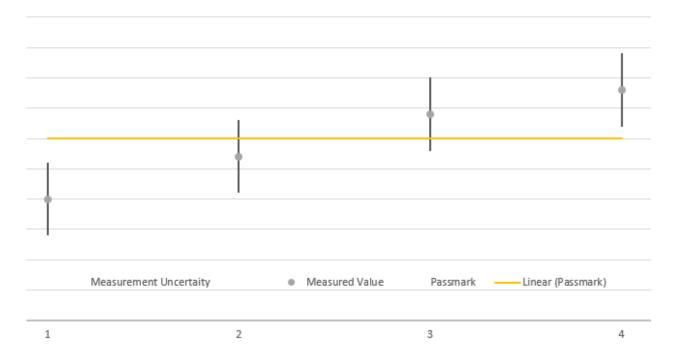
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 \* LOG ( $d_{Limit}/d_{used}$ ) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.



#### 8 MEASUREMENT UNCERTAINTIES

| Test Case                            | Parameter          | Uncertainty            |
|--------------------------------------|--------------------|------------------------|
| AC Power Line                        | Power              | ± 3.4 dB               |
| Field Strength of spurious radiation | Power              | ± 5.5 dB               |
| 6 dB / 26 dB / 99% Bandwidth         | Power<br>Frequency | ± 2.9 dB<br>± 11.2 kHz |
| Conducted Output Power               | Power              | ± 2.2 dB               |
| Band Edge Compliance                 | Power<br>Frequency | ± 2.2 dB<br>± 11.2 kHz |
| Frequency Stability                  | Frequency          | ± 25 Hz                |
| Power Spectral Density               | Power              | ± 2.2 dB               |

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.



The verdicts in this test report are given according the above diagram:

| Case | Measured Value  | Uncertainty Range | Verdict |
|------|-----------------|-------------------|---------|
| 1    | below pass mark | below pass mark   | Passed  |
| 2    | below pass mark | within pass mark  | Passed  |
| 3    | above pass mark | within pass mark  | Failed  |
| 4    | above pass mark | above pass mark   | Failed  |

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.



## 9 PHOTO REPORT

Please see separate photo report.