

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053

Fax: +86 (0) 755 2671 0594 Report No.: SZEM180400250603

Email: ee.shenzhen@sgs.com Page: 1 of 85

FCC REPORT

Application No.: SZEM1804002506RG

Applicant:Hisense International Co., Ltd.Manufacturer:Hisense Communications Co., Ltd.Factory:Hisense Communications Co., Ltd.

Product Name: Mobile Phone
Model No.(EUT): Hisense T17
Trade Mark: Hisense

FCC ID: ADOBT17

Standards: 47 CFR Part 15, Subpart C

Test Method: ANSI C63.10 (2013)

Date of Receipt: 2018-03-19

Date of Test: 2018-03-19 to 2018-03-26

Date of Issue: 2018-04-09

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derek Yang

Derde yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400250603

Page: 2 of 85

2 Version

Revision Record					
Version	Chapter	Date	Modifier	Remark	
01		2018-04-09		Original	

Authorized for issue by:		
Tested By	Mike Mu	2018-03-26
	(Mike Hu) /Project Engineer	Date
Checked By	John Hong	2018-04-09
	(Jim Huang) /Reviewer	Date

Report No.: SZEM180400250603

Page: 3 of 85

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

Report No.: SZEM180400250603

Page: 4 of 85

Model No.: Hisense T17

This test report (Ref. No.: SZEM180400250603) is only valid with the original test report (Ref. No.: SZEM180100087903).

According to the declaration from the applicant, the model in this report and model in original report was identical, with only difference on the supplier of TP/LCD/Camera is as bellowing:

Main Supply

Part Name	Model Name	supplier	Remark
ТР	Y138067F2-D-X	YUYE	
Front-facing Camera	C10910	CXTCCM	
LCD	Y87397	DIGITAL	
Rear Camera	C10911	CXTCCM	

Secondary Supply

Part Name	Model Name	supplier	Remark
TP	CCG10117-5.5	HOLITHECH	
Front-facing Camera	HEPS7543-A	HOLITHECH	
LCD	HTT055H517	HOLITHECH	
Rear Camera	HFBS7545-A	HOLITHECH	

Considering to the difference, pre-scan was performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore, in this report worse case mode of Field strength of spurious radiation on Model Hisense T17 are retested and shown the data in this report.

Report No.: SZEM180400250603

Page: 5 of 85

4 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
		EST SUMMARY	
3			
4	C	ONTENTS	5
5	G	ENERAL INFORMATION	6
	5.1	CLIENT INFORMATION	6
	5.2	GENERAL DESCRIPTION OF EUT	6
	5.3	TEST ENVIRONMENT	8
	5.4	DESCRIPTION OF SUPPORT UNITS	8
	5.5	TEST LOCATION	8
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11	EQUIPMENT LIST	10
6	TE	EST RESULTS AND MEASUREMENT DATA	13
	6.1	Antenna Requirement	13
	6.2	CONDUCTED EMISSIONS	14
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20dB Occupy Bandwidth	25
	6.5	CARRIER FREQUENCIES SEPARATION	31
	6.6	HOPPING CHANNEL NUMBER	35
	6.7	DWELL TIME	
	6.8	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.9	SPURIOUS RF CONDUCTED EMISSIONS	
	6.10	RADIATED SPURIOUS EMISSION	
	•	10.1 Radiated Emission below 1GHz	
		10.2 Transmitter Emission above 1GHz	
	6.11	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	77
7	DΙ	HOTOGRADUS - ELIT CONSTRUCTIONAL DETAILS	95

Report No.: SZEM180400250603

Page: 6 of 85

5 General Information

5.1 Client Information

Applicant:	Hisense International Co., Ltd.	
Address of Applicant:	Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China	
Manufacturer:	Hisense Communications Co., Ltd.	
Address of Manufacturer:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R. China	
Factory:	Hisense Communications Co., Ltd.	
Address of Factory:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R. China	

5.2 General Description of EUT

Product Name:	Mobile Phone
Model No.:	Hisense T17
Trade Mark:	Hisense
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.0 Dual mode
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	PIFA
Antenna Gain:	-0.3dBi
Power Supply	DC3.8V (1 x 3.8V Rechargeable battery) 2450mAh Battery: Charge by DC 5V
AC adaptor:	Model:TPA-97050100UU Input: AC100-240V 50/60Hz 0.15A Output:DC5.0V 1A

Report No.: SZEM180400250603

Page: 7 of 85

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM180400250603

Page: 8 of 85

5.3 Test Environment

Operating Environment			
Temperature: 24.0 °C			
Humidity:	55 % RH		
Atmospheric Pressure:	1005 mbar		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

Report No.: SZEM180400250603

Page: 9 of 85

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Total RF power, conducted	0.75dB
2	RF power density, conducted	2.84dB
3	Spurious emissions, conducted	0.75dB
		4.5dB (30MHz-1GHz)
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)
5	Conduct emission test	3.12 dB(9KHz- 30MHz)
6	Temperature test	1°C
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

Report No.: SZEM180400250603

Page: 10 of 85

5.11 Equipment List

	Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)				
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017/5/10	2018/5/10				
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017/10/9	2018/10/9				
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017/4/14	2018/4/14				
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017/9/28	2018/9/28				
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017/9/28	2018/9/28				
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017/9/28	2018/9/28				
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017/4/14	2018/4/14				
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9				

	RF connected test									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)				
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017/10/9	2018/10/9				
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2018/3/13	2019/3/12				
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017/4/14	2018/4/14				
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017/10/9	2018/10/9				
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017/10/9	2018/10/9				

Report No.: SZEM180400250603

Page: 11 of 85

	RE in Chamber								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017/5/10	2018/5/10			
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017/10/9	2018/10/9			
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017/11/1	2020/11/1			
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015/10/17	2018/10/17			
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017/11/24	2020/11/24			
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017/4/14	2018/4/14			
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A			
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9			
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015/5/13	2018/5/13			

	RE in Chamber								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)			
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017/5/10	2018/5/10			
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017/4/14	2018/4/14			
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/29			
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017/7/6	2018/7/6			
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015/8/14	2018/8/14			

Report No.: SZEM180400250603

Page: 12 of 85

	RE in Chamber									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)				
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017/5/10	2018/5/10				
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017/7/19	2018/7/19				
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017/11/15	2020/11/15				
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017/10/9	2018/10/9				
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015/6/14	2018/6/14				
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017/11/24	2020/11/24				
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2017/10/17	2020/10/16				
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017/10/9	2018/10/9				
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A				

Report No.: SZEM180400250603

Page: 13 of 85

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

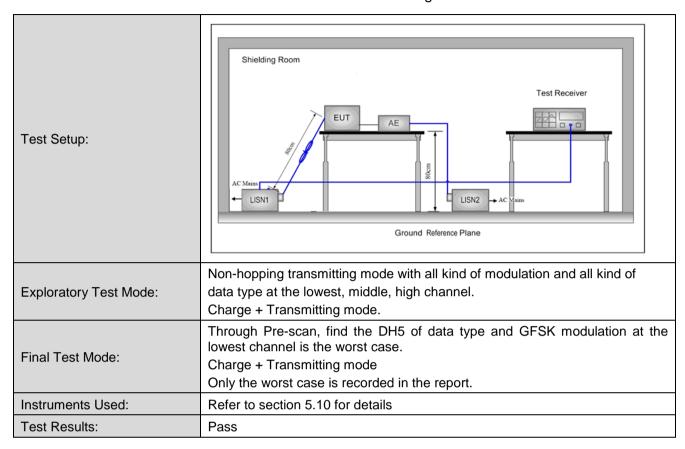
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.3dBi.

Report No.: SZEM180400250603

Page: 14 of 85

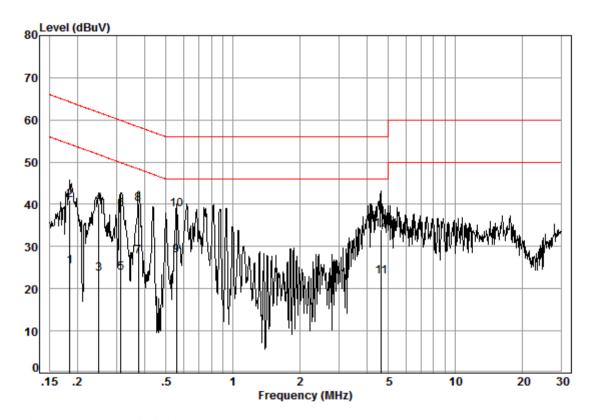

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
	Frequency range (MHz)	Limit (dBuV)			
	Trequency range (Wiriz)	Quasi-peak	Average		
Limit:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.	•		
Test Procedure:	 The mains terminal disturroom. The EUT was connected to Impedance Stabilization N impedance. The power calconnected to a second LIS reference plane in the sammeasured. A multiple sock power cables to a single Lexceeded. The tabletop EUT was placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the ground test and bonded mounted on top of the ground the EUT and associated experience plane associated experience to find the maximum equipment and all of the in ANSI C63.10: 2013 on corrected 	o AC power source thretwork) which provide bles of all other units of SN 2, which was bondene way as the LISN 1 freet outlet strip was used ISN provided the ratin ced upon a non-metall and for floor-standing a round reference plane the a vertical ground reference plane was bonded to the strip was placed 0.8 m freet to a ground reference und reference plane. To sof the LISN 1 and the quipment was at least the strip was bonded to the strip was at least the strip was at least the strip was bonded to the LISN 1 and the strip was at least the strip was bonded to the strip was at least the strip was at least the strip was bonded to the strip was at least the strip	rough a LISN 1 (Line is a 50Ω/50μH + 5Ω linear of the EUT were ed to the ground for the unit being ed to connect multiple ig of the LISN was not lic table 0.8m above the interest of the EUT was interest. The rear indicate plane. The rear indicate plane is the horizontal ground from the boundary of the interest of the plane for LISNs. This distance was interest in EUT. All other units of interest		

Report No.: SZEM180400250603

Page: 15 of 85

Report No.: SZEM180400250603


Page: 16 of 85

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

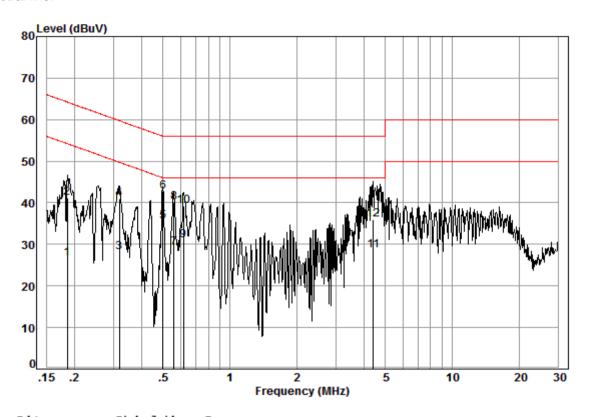
Live line:

Site : Shielding Room

Condition: Line Job No. : 00879RG

Test mode: a

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.02	9.51	15.83	25.36	54.28	-28.92	Average
2	0.18	0.02	9.51	31.44	40.97	64.28	-23.31	QP
3	0.25	0.01	9.51	14.12	23.64	51.78	-28.14	Average
4	0.25	0.01	9.51	30.60	40.12	61.78	-21.66	QP
5	0.31	0.01	9.51	14.28	23.80	49.88	-26.08	Average
6	0.31	0.01	9.51	29.38	38.90	59.88	-20.98	QP
7	0.38	0.01	9.49	18.26	27.76	48.39	-20.63	Average
8	0.38	0.01	9.49	30.65	40.15	58.39	-18.24	QP
9	0.56	0.01	9.51	18.43	27.95	46.00	-18.05	Average
10	0.56	0.01	9.51	29.33	38.85	56.00	-17.15	QP
11	4.65	0.01	9.55	13.36	22.92	46.00	-23.08	Average
12	4.65	0.01	9.55	24.42	33.98	56.00	-22.02	QP


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400250603

Page: 17 of 85

Neutral line:

Site : Shielding Room

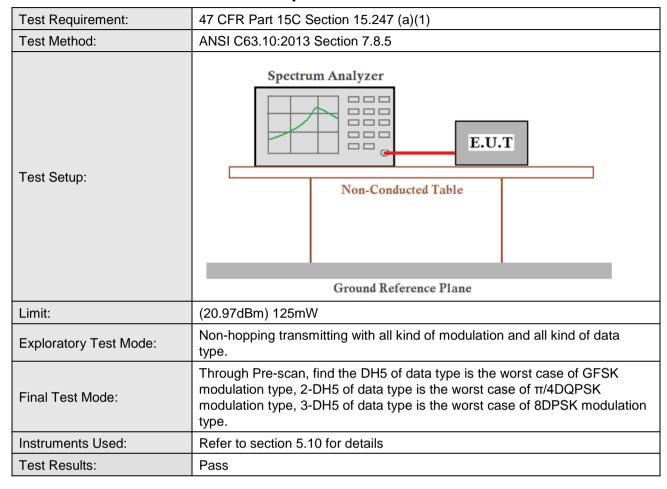
Condition: Neutral Job No. : 00879RG

Test mode: a

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19	0.02	9.58	16.91	26.51	54.24	-27.73	Average
2	0.19	0.02	9.58	31.68	41.28	64.24	-22.96	QP
3	0.32	0.01	9.58	18.53	28.12	49.75	-21.63	Average
4	0.32	0.01	9.58	31.38	40.97	59.75	-18.78	QP
5	0.50	0.01	9.60	25.99	35.60	46.01	-10.41	Average
6	0.50	0.01	9.60	33.02	42.63	56.01	-13.38	QP
7	0.56	0.01	9.61	19.69	29.31	46.00	-16.69	Average
8	0.56	0.01	9.61	30.39	40.01	56.00	-15.99	QP
9	0.62	0.02	9.62	21.32	30.96	46.00	-15.04	Average
10	0.62	0.02	9.62	29.61	39.25	56.00	-16.75	QP
11	4.43	0.01	9.68	18.78	28.47	46.00	-17.53	Average
12	4.43	0.01	9.68	26.34	36.03	56.00	-19.97	QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exponerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400250603

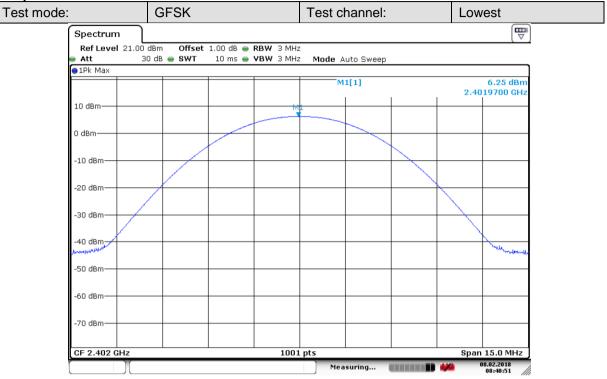
Page: 18 of 85

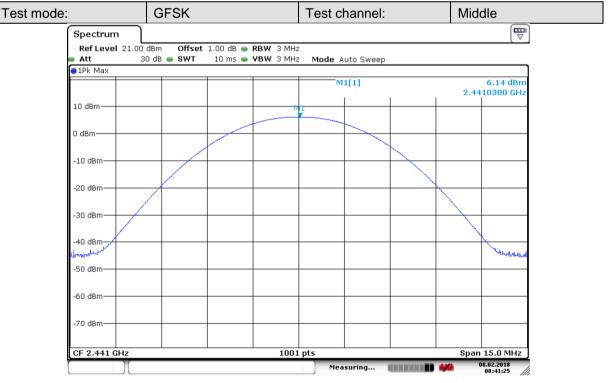
6.3 Conducted Peak Output Power

Report No.: SZEM180400250603

Page: 19 of 85

Measurement Data

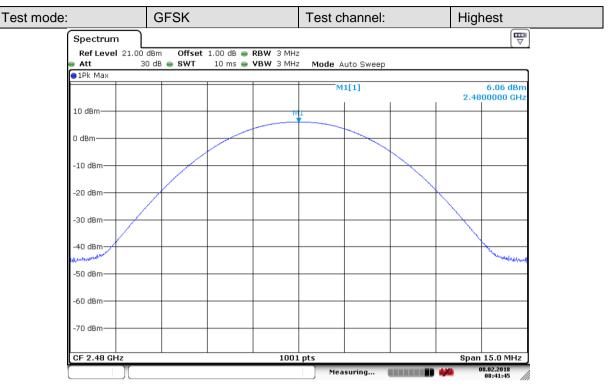

	GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	6.25	20.97	Pass				
Middle	6.14	20.97	Pass				
Highest	6.06	20.97	Pass				
	π/4DQPSK m	node					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	5.55	20.97	Pass				
Middle	5.44	20.97	Pass				
Highest	5.33	20.97	Pass				
	8DPSK mod	de					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	5.65	20.97	Pass				
Middle	5.54	20.97	Pass				
Highest	5.50	20.97	Pass				


Report No.: SZEM180400250603

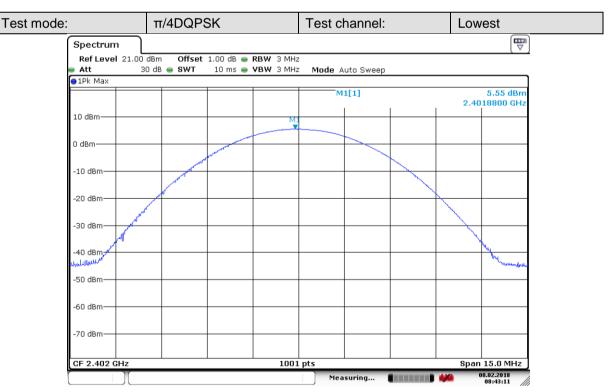
Page: 20 of 85

Test plot as follows:

Date: 8.FEB.2018 08:40:52



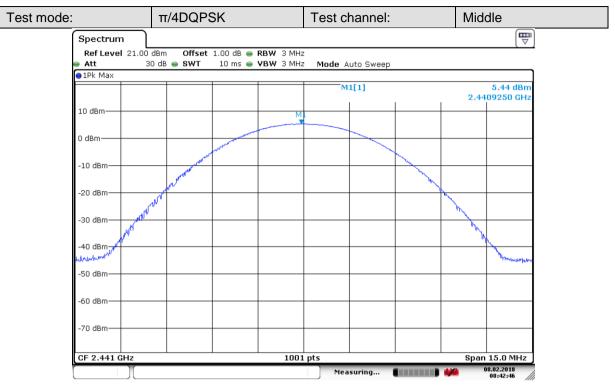
Date: 8.FEB.2018 08:41:25



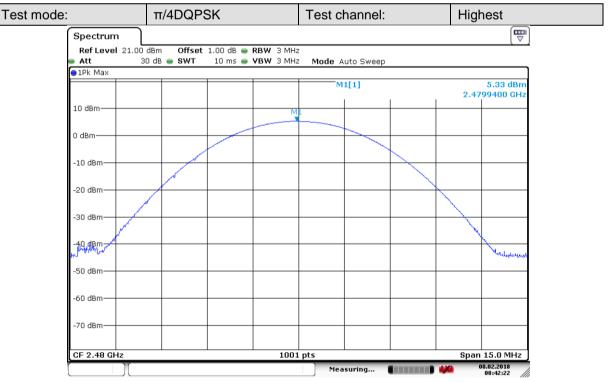
Report No.: SZEM180400250603

Page: 21 of 85

Date: 8.FEB.2018 08:41:45



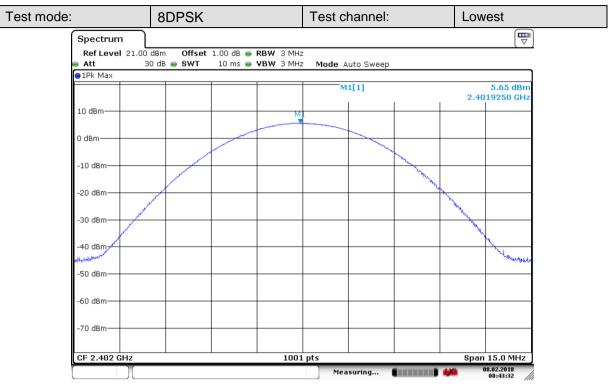
Date: 8.FEB.2018 08:43:11



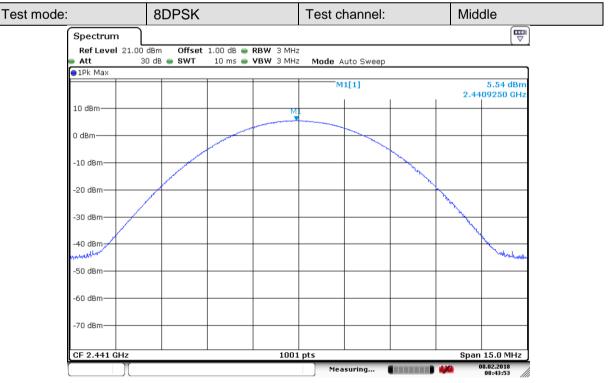
Report No.: SZEM180400250603

Page: 22 of 85

Date: 8.FEB.2018 08:42:46



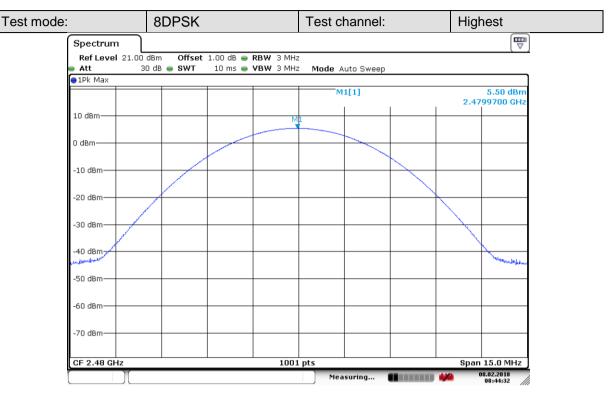
Date: 8.FEB.2018 08:42:22



Report No.: SZEM180400250603

Page: 23 of 85

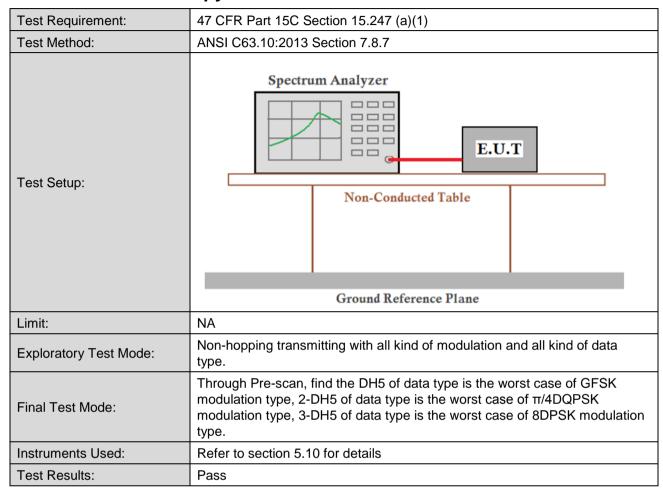
Date: 8.FEB.2018 08:43:33



Date: 8.FEB.2018 08:43:53

Report No.: SZEM180400250603

Page: 24 of 85

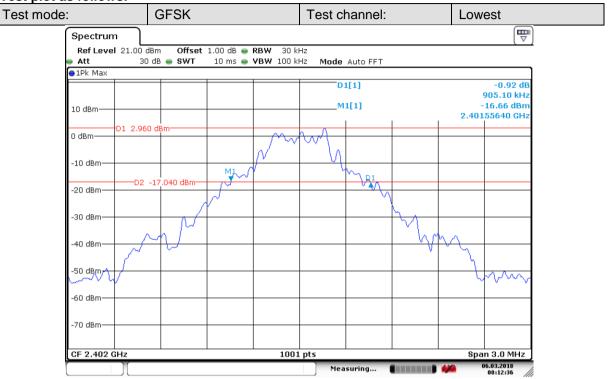

Date: 8.FEB.2018 08:44:32

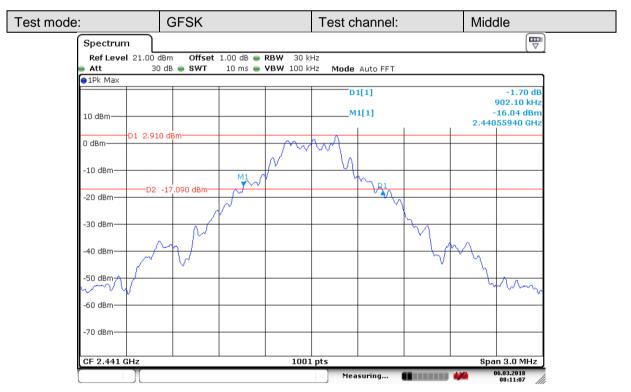
Report No.: SZEM180400250603

Page: 25 of 85

6.4 20dB Occupy Bandwidth

Measurement Data

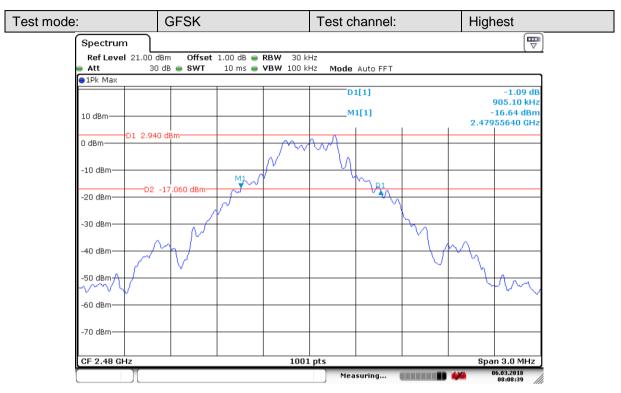

	20dB Occupy Bandwidth (kHz)				
Test channel	GFSK	π/4DQPSK	8DPSK		
Lowest	905.1	1285.7	1189.8		
Middle	902.1	1285.7	1186.8		
Highest	905.1	1285.7	1189.8		


Report No.: SZEM180400250603

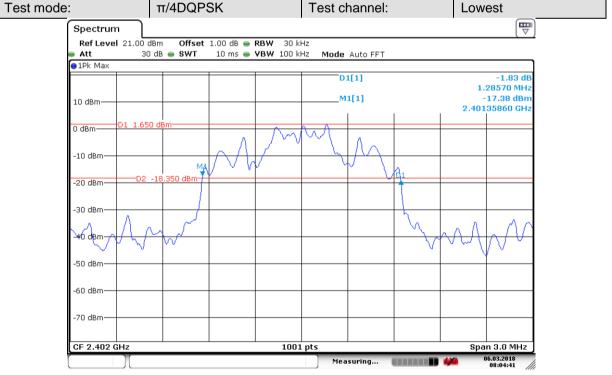
Page: 26 of 85

Test plot as follows:

Date: 6.MAR.2018 08:12:37



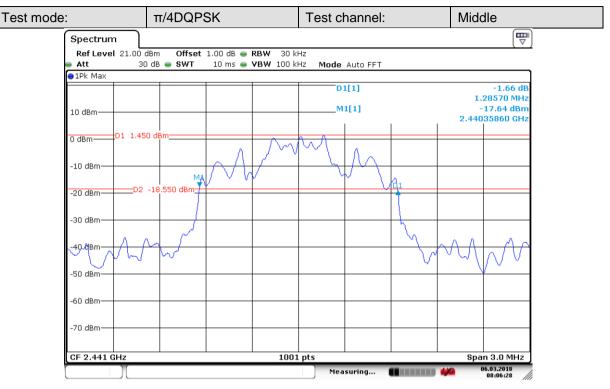
Date: 6.MAR.2018 08:11:07



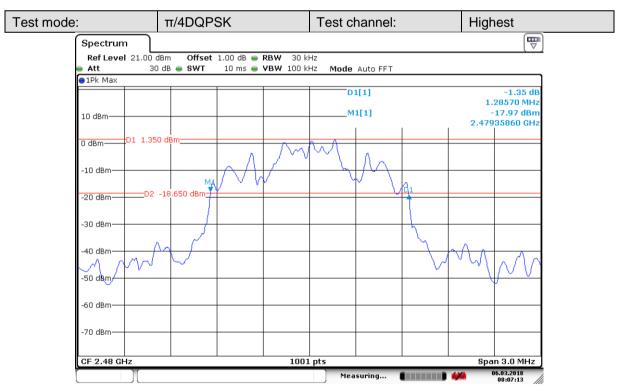
Report No.: SZEM180400250603

Page: 27 of 85

Date: 6.MAR.2018 08:08:39



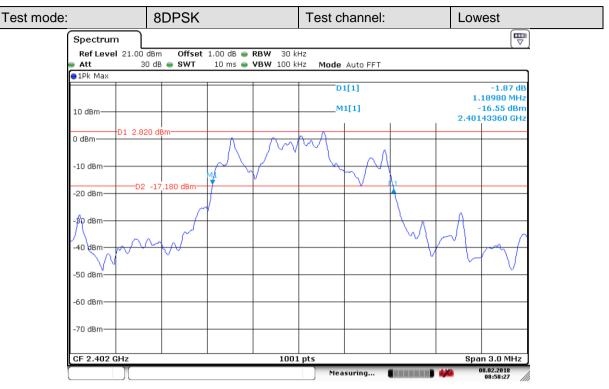
Date: 6.MAR.2018 08:04:42



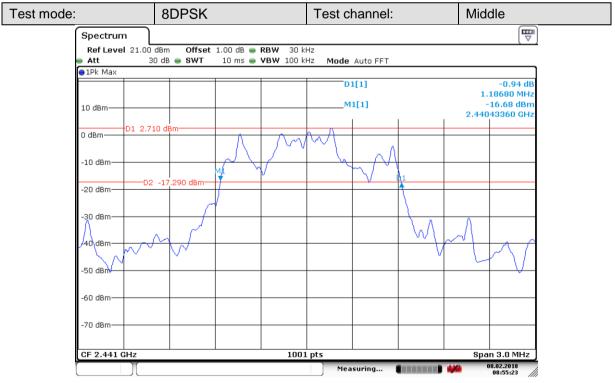
Report No.: SZEM180400250603

Page: 28 of 85

Date: 6.MAR.2018 08:06:28



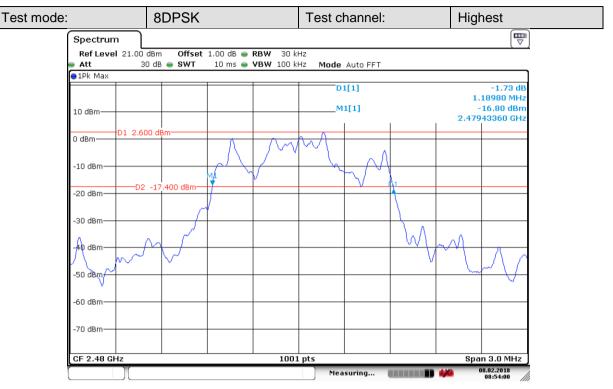
Date: 6.MAR.2018 08:07:14



Report No.: SZEM180400250603

Page: 29 of 85

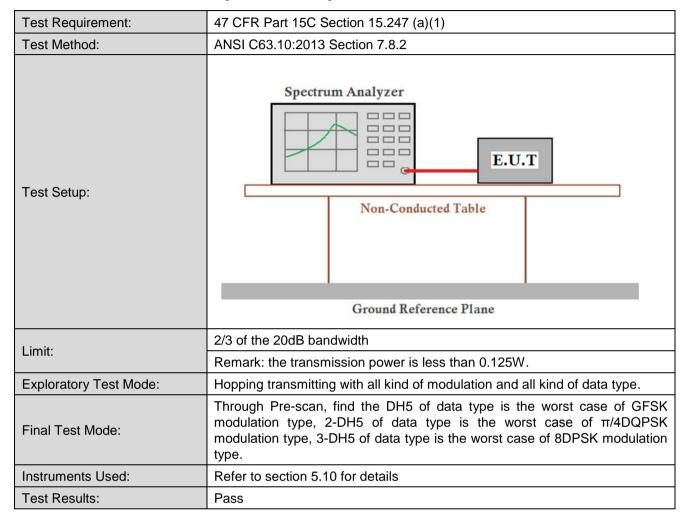
Date: 8.FEB.2018 08:58:27



Date: 8.FEB.2018 08:55:23

Report No.: SZEM180400250603

Page: 30 of 85


Date: 8.FEB.2018 08:54:01

Report No.: SZEM180400250603

Page: 31 of 85

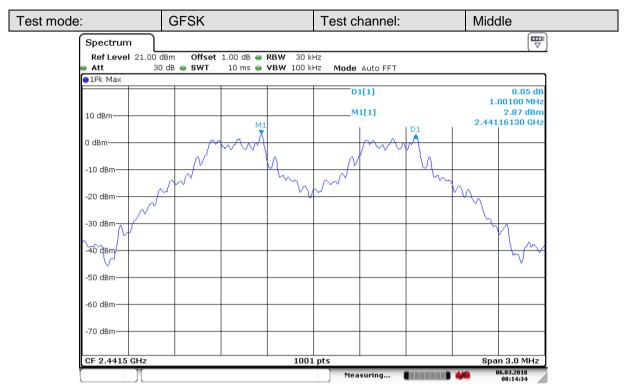
6.5 Carrier Frequencies Separation

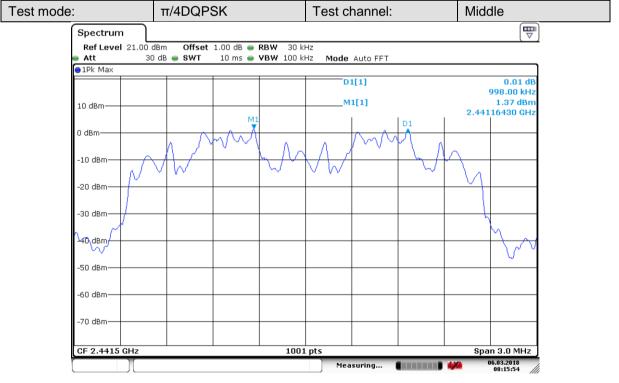
Report No.: SZEM180400250603

Page: 32 of 85

	GFSK mode							
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result					
Middle	1001	603.4	Pass					
	π/4DQPSK m	node						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result					
Middle	998	857.1	Pass					
	8DPSK mo	de						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result					
Middle	1001	1001 793.2 Pass						

Note: According to section 6.4,

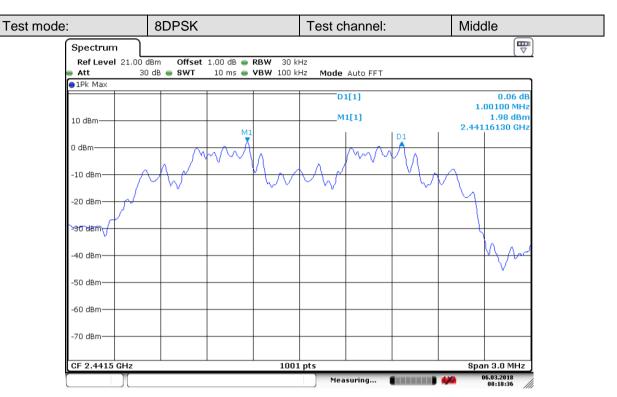

Mode	20dB bandwidth (kHz)	Limit (kHz)	
Mode	(worse case)	(Carrier Frequencies Separation)	
GFSK	905.1	603.4	
π/4DQPSK	r/4DQPSK 1285.7 857.1		
8DPSK	1189.8	793.2	


Report No.: SZEM180400250603

Page: 33 of 85

Test plot as follows:

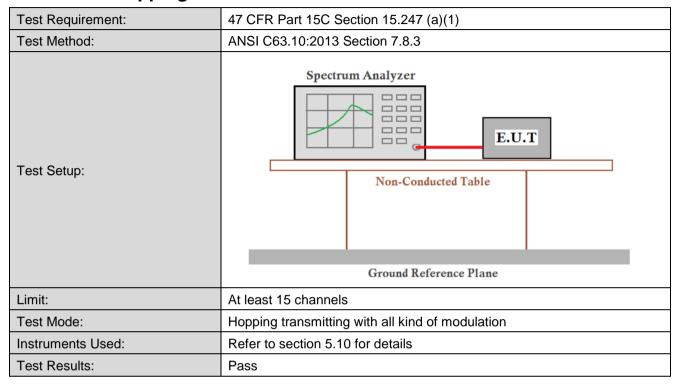
Date: 6.MAR.2018 08:14:34



Date: 6.MAR.2018 08:15:54

Report No.: SZEM180400250603

Page: 34 of 85

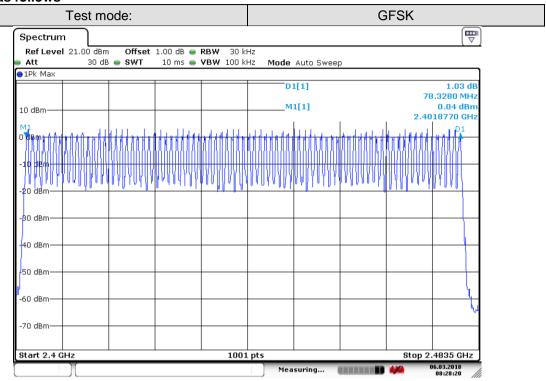

Date: 6.MAR.2018 08:18:36

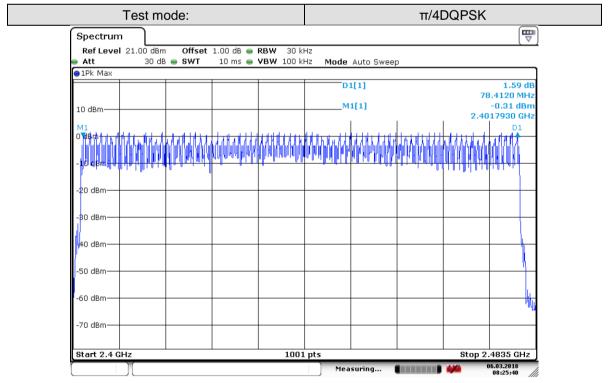
Report No.: SZEM180400250603

Page: 35 of 85

6.6 Hopping Channel Number

Measurement Data

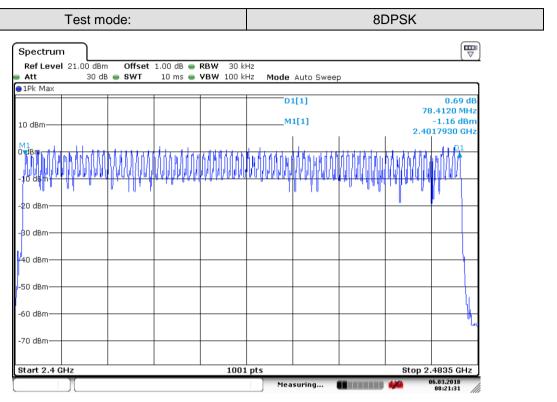

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15


Report No.: SZEM180400250603

Page: 36 of 85

Test plot as follows

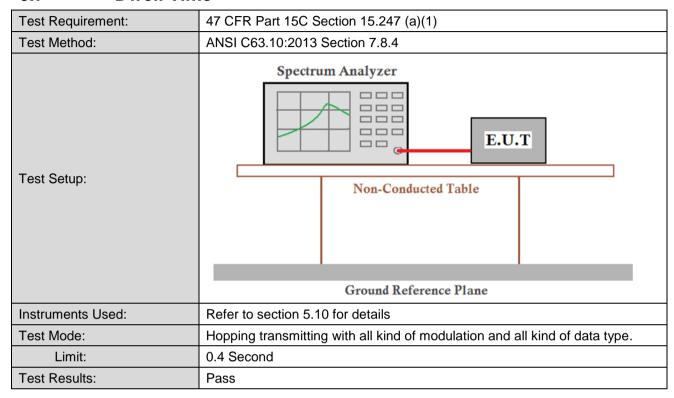
Date: 6.MAR.2018 08:28:20



Date: 6.MAR.2018 08:25:40

Report No.: SZEM180400250603

Page: 37 of 85


Date: 6.MAR.2018 08:21:31

Report No.: SZEM180400250603

Page: 38 of 85

6.7 Dwell Time

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)	
	DH1	0.115	≤0.4	
GFSK	DH3	0.279	≤0.4	
	DH5	0.232	≤0.4	
	2-DH1	0.118	≤0.4	
π/4DQPSK	2-DH3	0.299	≤0.4	
	2-DH5	0.203	≤0.4	
	3-DH1	0.118	≤0.4	
8DPSK	3-DH3	0.263	≤0.4	
	3-DH5	0.204	≤0.4	

Report No.: SZEM180400250603

Page: 39 of 85

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

On (ms)*total number=dwell time (ms)

The middle channel (2441MHz), as below:

DH1 time slot=0.384 (ms)*total number=115.20 (ms)

DH3 time slot=1.642(ms)* total number = 279.14 (ms)

DH5 time slot= 2.895 (ms)^* total number = 231.60 (ms)

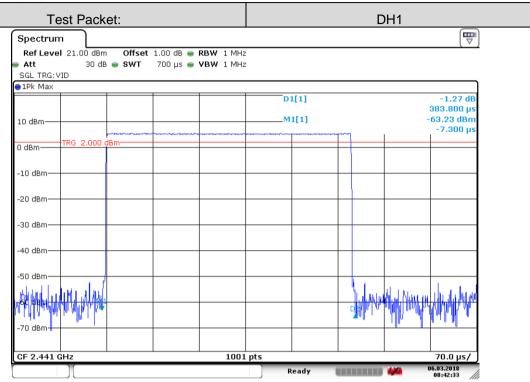
2-DH1 time slot=0.393 (ms)*total number=117.90 (ms)

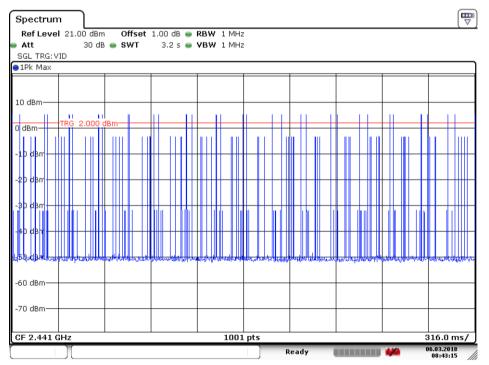
2-DH3 time slot=1.660 (ms)* total number = 298.80 (ms)

2-DH5 time slot=2.900 (ms)* total number = 203.00 (ms)

3-DH1 time slot=0.392 (ms)*total number=117.60 (ms)

3-DH3 time slot=1.642 (ms)* total number = 262.72 (ms)

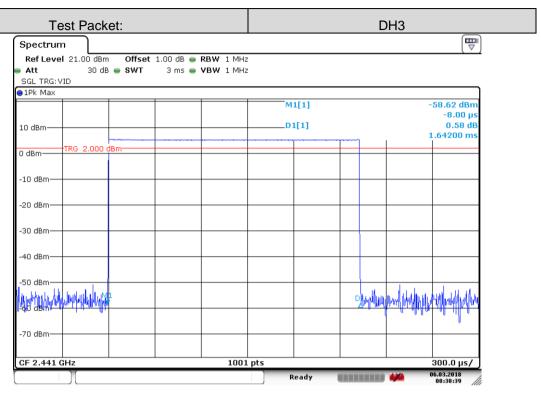

3-DH5 time slot=2.910 (ms)* total number = 203.70 (ms)


Report No.: SZEM180400250603

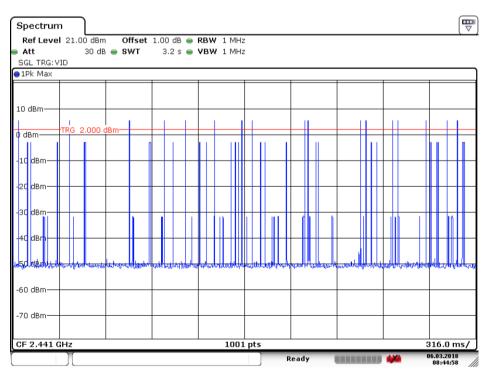
Page: 40 of 85

Test plot as follows:

Date: 6.MAR.2018 08:42:33



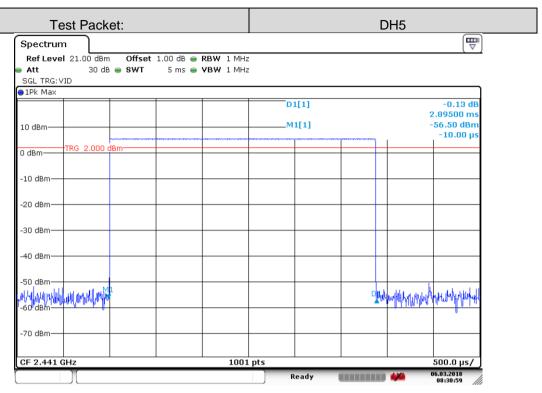
Date: 6.MAR.2018 08:43:16



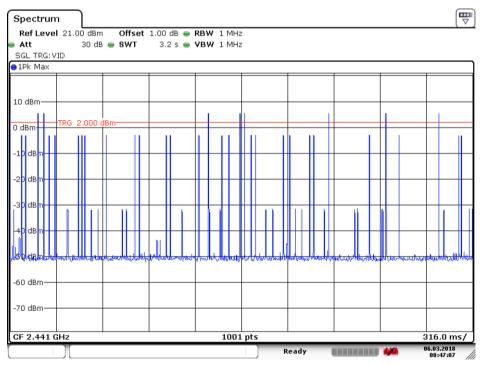
Report No.: SZEM180400250603

Page: 41 of 85

Date: 6.MAR.2018 08:38:40



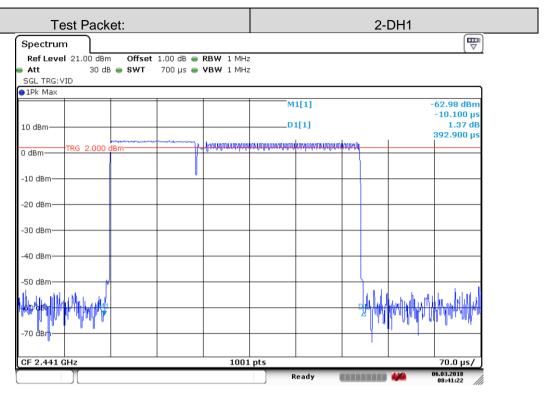
Date: 6.MAR.2018 08:44:58



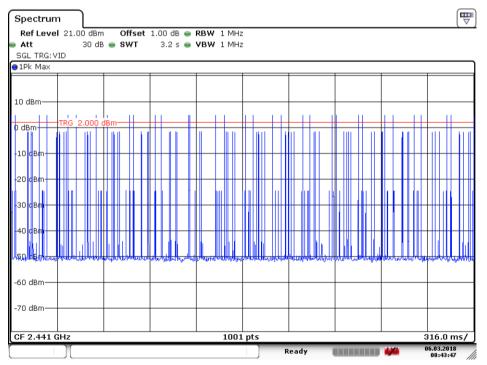
Report No.: SZEM180400250603

Page: 42 of 85

Date: 6.MAR.2018 08:30:59



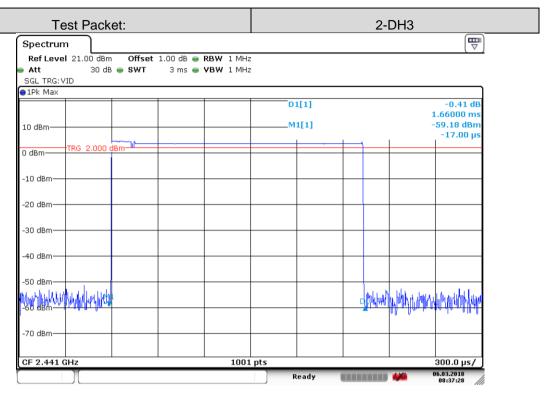
Date: 6.MAR.2018 08:47:08



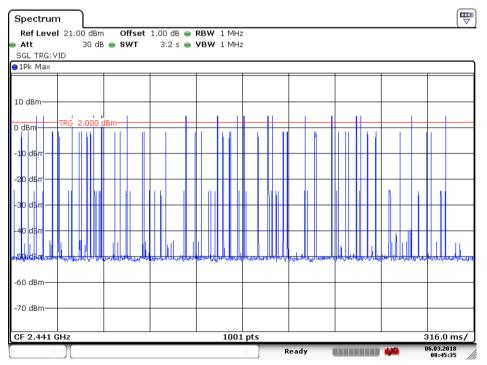
Report No.: SZEM180400250603

Page: 43 of 85

Date: 6.MAR.2018 08:41:22



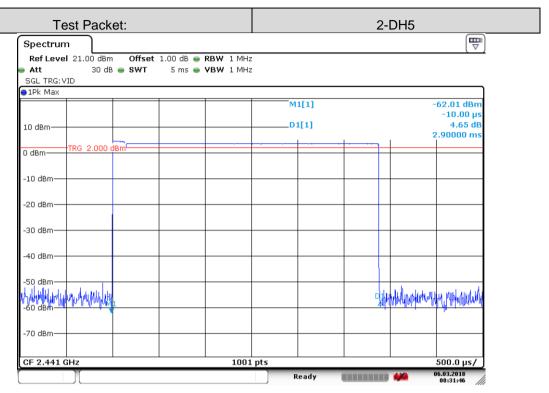
Date: 6.MAR.2018 08:43:47



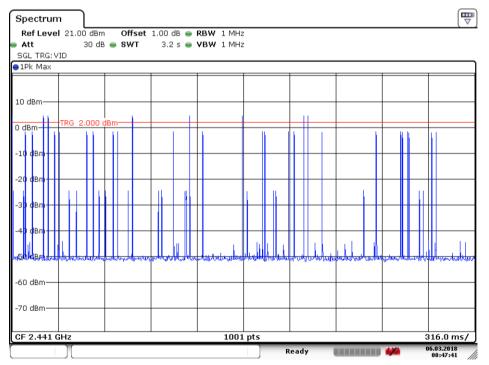
Report No.: SZEM180400250603

Page: 44 of 85

Date: 6.MAR.2018 08:37:29



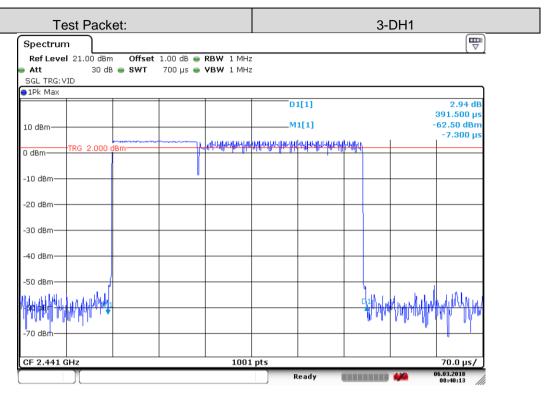
Date: 6.MAR.2018 08:45:36



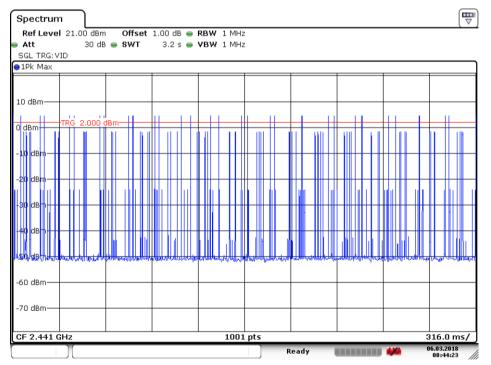
Report No.: SZEM180400250603

Page: 45 of 85

Date: 6.MAR.2018 08:31:46



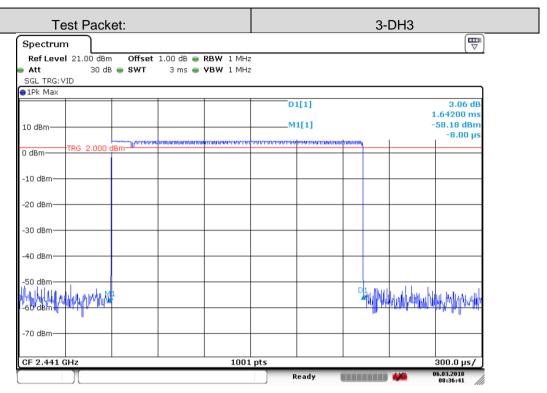
Date: 6.MAR.2018 08:47:41



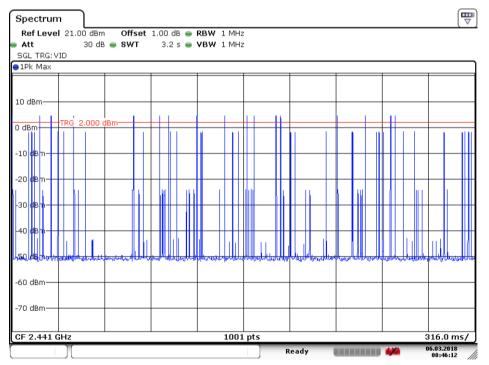
Report No.: SZEM180400250603

Page: 46 of 85

Date: 6.MAR.2018 08:40:13



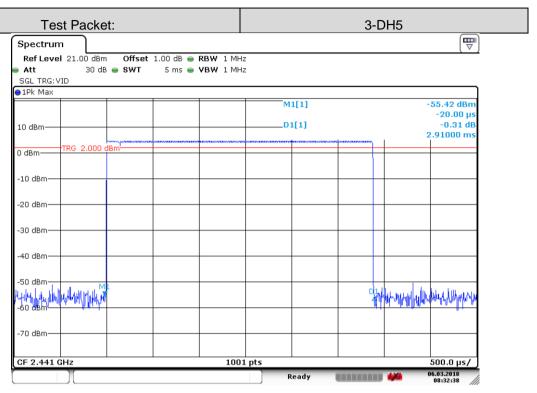
Date: 6.MAR.2018 08:44:24



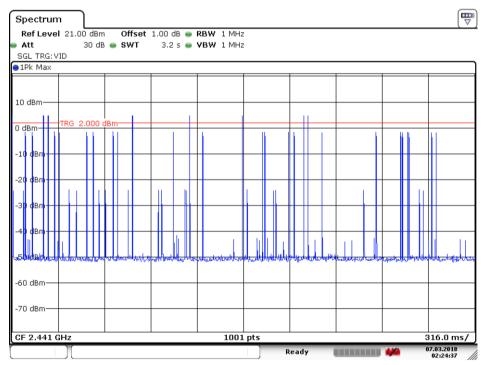
Report No.: SZEM180400250603

Page: 47 of 85

Date: 6.MAR.2018 08:36:41



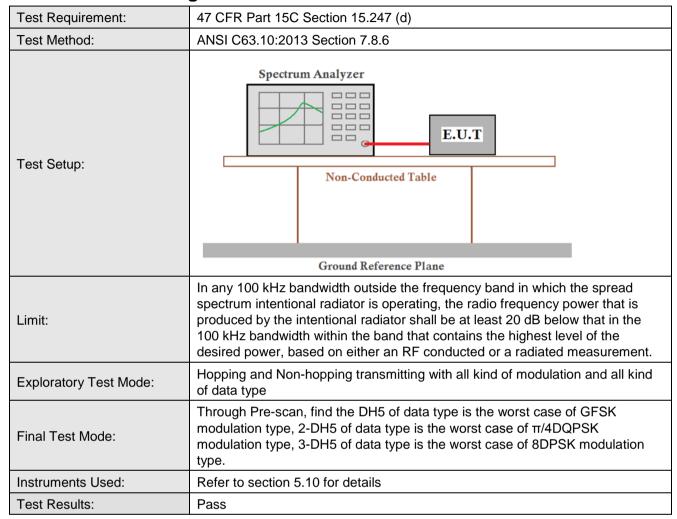
Date: 6.MAR.2018 08:46:13



Report No.: SZEM180400250603

Page: 48 of 85

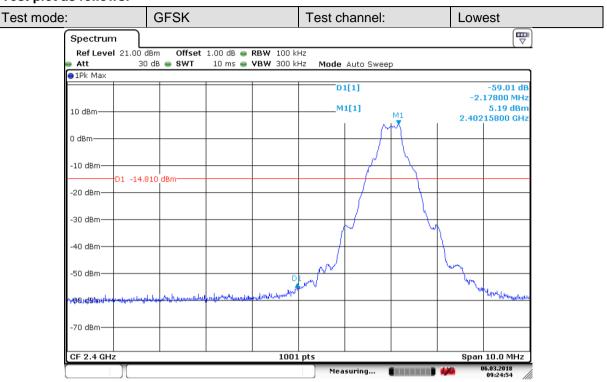
Date: 6.MAR.2018 08:32:39

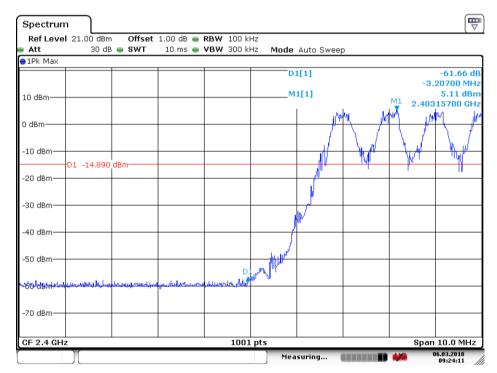

Date: 7.MAR.2018 02:24:37

Report No.: SZEM180400250603

Page: 49 of 85

6.8 Band-edge for RF Conducted Emissions

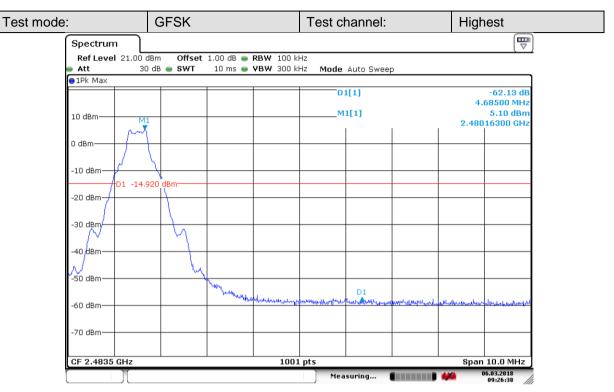



Report No.: SZEM180400250603

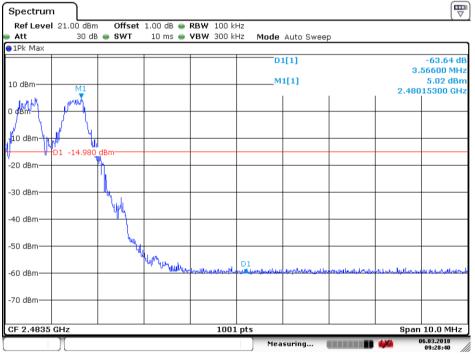
Page: 50 of 85

Test plot as follows:

Date: 6.MAR.2018 09:24:54



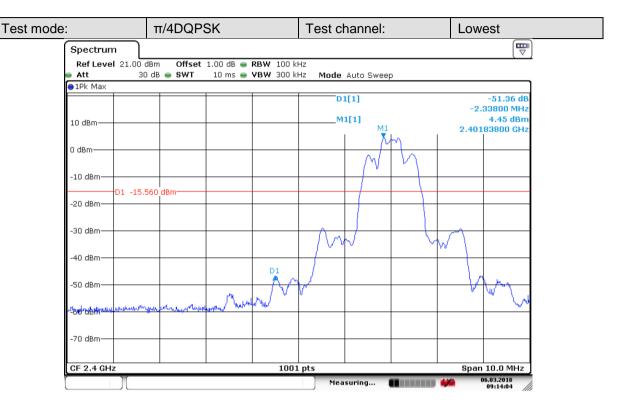
Date: 6.MAR.2018 09:24:12



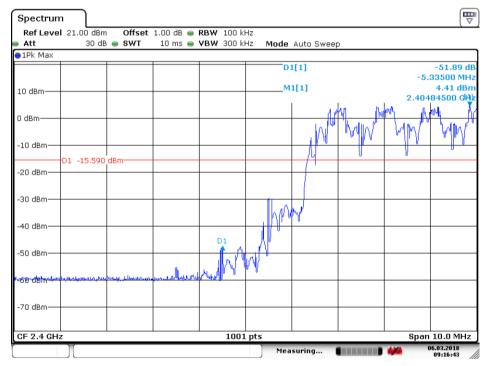
Report No.: SZEM180400250603

Page: 51 of 85

Date: 6.MAR.2018 09:26:38



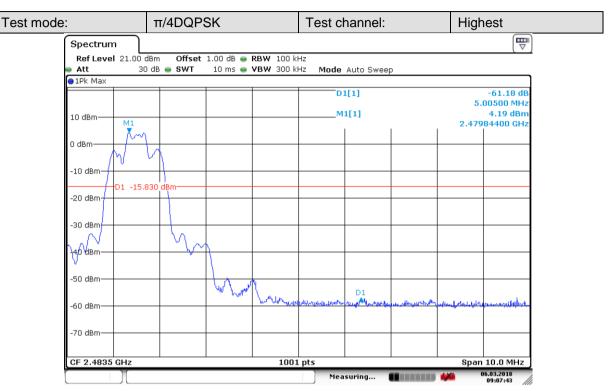
Date: 6.MAR.2018 09:28:40



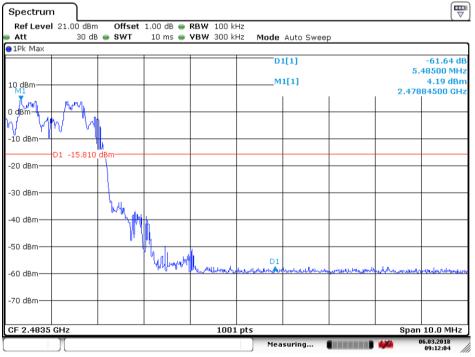
Report No.: SZEM180400250603

Page: 52 of 85

Date: 6.MAR.2018 09:14:04



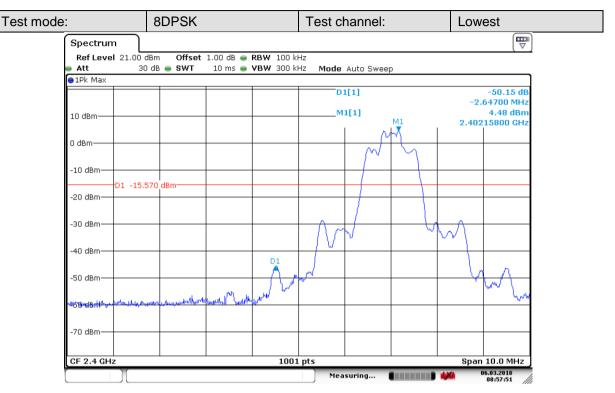
Date: 6.MAR.2018 09:16:43



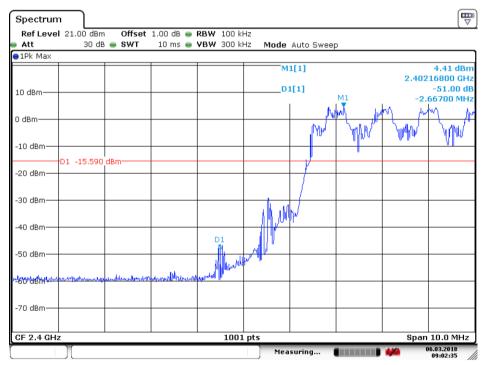
Report No.: SZEM180400250603

Page: 53 of 85

Date: 6.MAR.2018 09:07:43



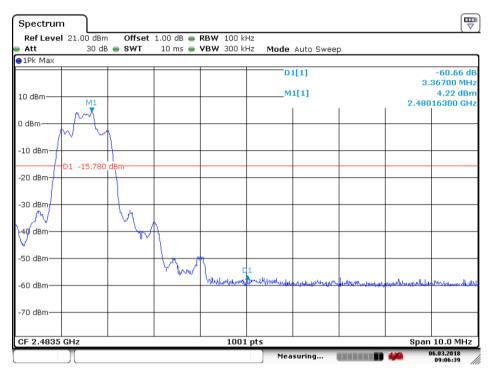
Date: 6.MAR.2018 09:12:04

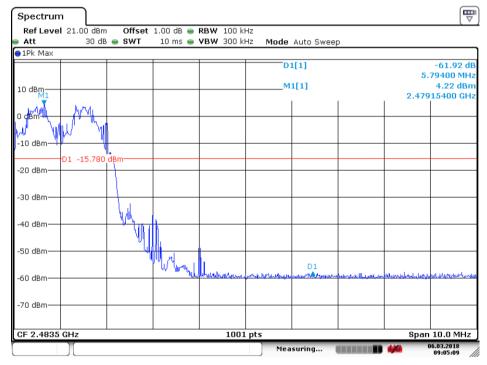


Report No.: SZEM180400250603

Page: 54 of 85

Date: 6.MAR.2018 08:57:52


Date: 6.MAR.2018 09:02:36


Report No.: SZEM180400250603

Page: 55 of 85

Test mode: 8DPSK Test channel: Highest

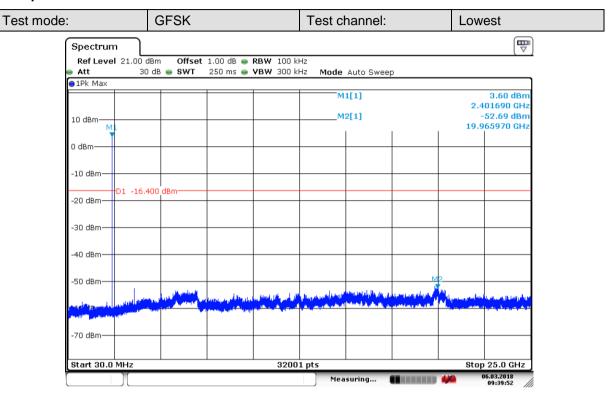
Date: 6.MAR.2018 09:06:39

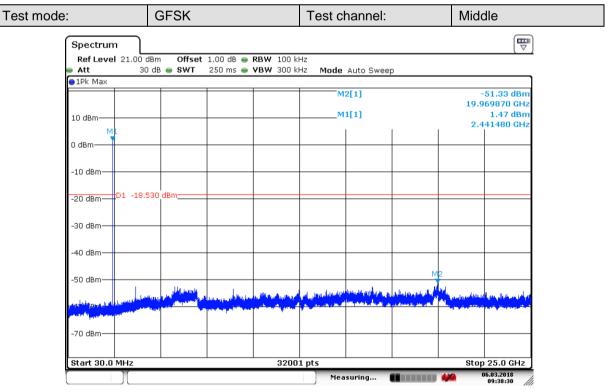
Date: 6.MAR.2018 09:05:10

Report No.: SZEM180400250603

Page: 56 of 85

6.9 Spurious RF Conducted Emissions

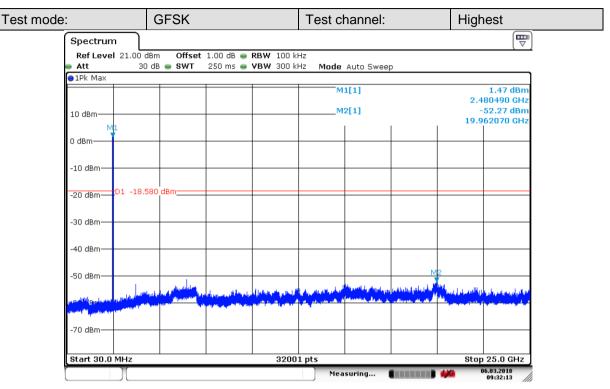

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 Section 7.8.8					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					


Report No.: SZEM180400250603

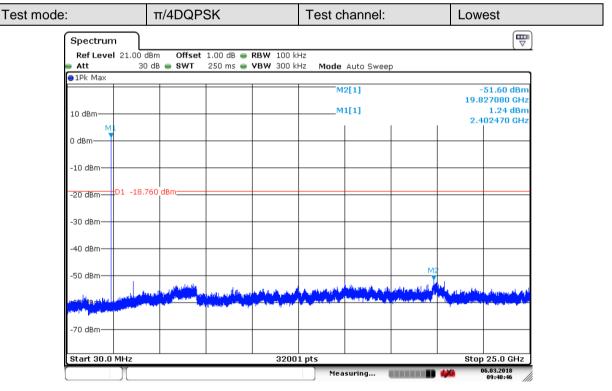
Page: 57 of 85

Test plot as follows:

Date: 6.MAR.2018 09:39:52



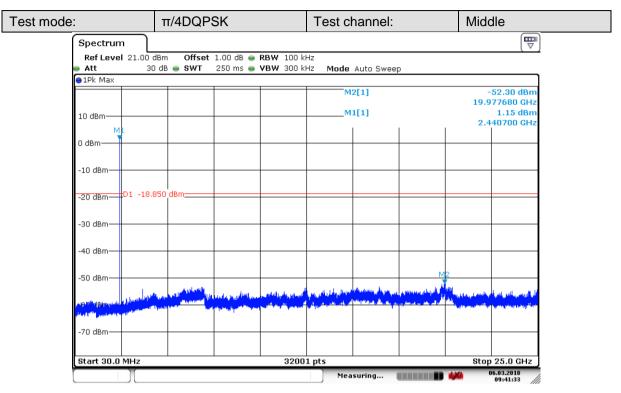
Date: 6.MAR.2018 09:38:30



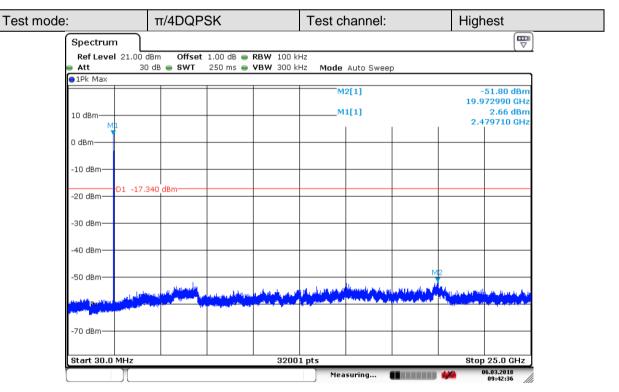
Report No.: SZEM180400250603

Page: 58 of 85

Date: 6.MAR.2018 09:32:14



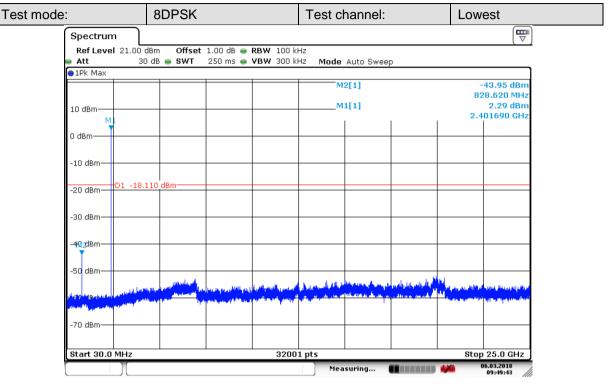
Date: 6.MAR.2018 09:40:47



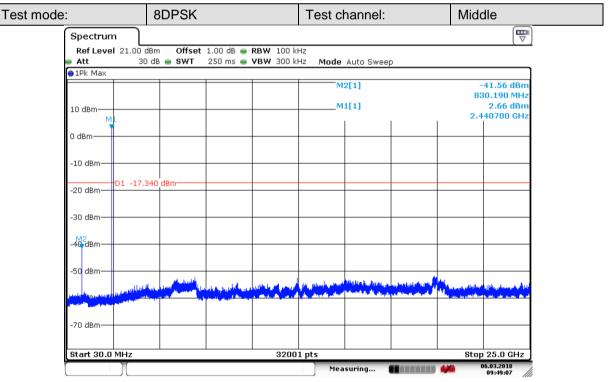
Report No.: SZEM180400250603

Page: 59 of 85

Date: 6.MAR.2018 09:41:32



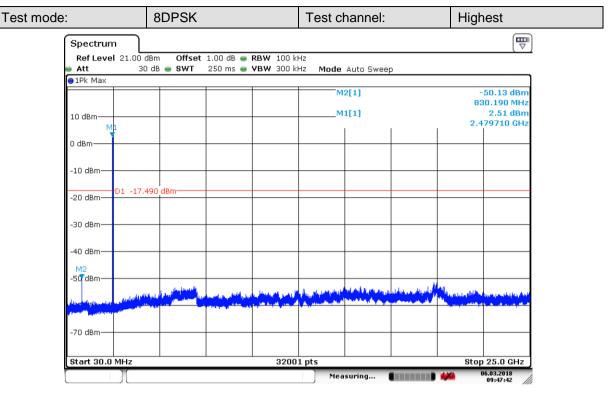
Date: 6.MAR.2018 09:42:37



Report No.: SZEM180400250603

Page: 60 of 85

Date: 6.MAR.2018 09:49:44



Date: 6.MAR.2018 09:49:07

Report No.: SZEM180400250603

Page: 61 of 85

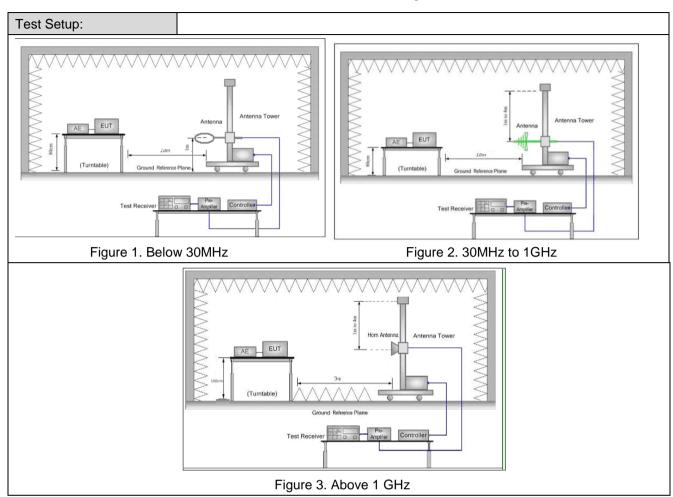
Date: 6.MAR.2018 09:47:42

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported

Report No.: SZEM180400250603

Page: 62 of 85


6.10 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Sec	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013									
Test Site:	Measurement Distance	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
	Frequency	Frequency			VBW	Remark				
	0.009MHz-0.090MH	0.009MHz-0.090MHz			30kHz	Peak				
	0.009MHz-0.090MH	0.009MHz-0.090MHz			30kHz	Average				
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak				
Receiver Setup:	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak				
Receiver Setup.	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above 19112		Peak	1MHz	10Hz	Average				
	Frequency		strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	.009MHz-0.490MHz	2400/F(kHz)		-	-	300				
	.490MHz-1.705MHz	240	000/F(kHz)	-	-	30				
	.705MHz-30MHz	30		-	-	30				
	30MHz-88MHz	100)	40.0	Quasi- peak	3				
Linite	88MHz-216MHz	150)	43.5	Quasi- peak	3				
Limit:	216MHz-960MHz	200)	46.0	Quasi- peak	3				
	960MHz-1GHz	500)	54.0	Quasi- peak	3				
	Above 1GHz	500)	54.0	Averag e	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.									

Report No.: SZEM180400250603

Page: 63 of 85

Report No.: SZEM180400250603

Page: 64 of 85

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (241MHz), the Highest channel (2402MHz), the middle channel (241MHz), the Highest channel (2402MHz), the middle channel for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at		
Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel.Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Test Procedure:	 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
Exploratory Test Mode: data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Final Test Mode: Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel.Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details		
worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Exploratory Test Mode:	data type
	Final Test Mode:	worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest
Test Results: Pass	Instruments Used:	Refer to section 5.10 for details
	Test Results:	Pass

Report No.: SZEM180400250603

Page: 65 of 85

6.10.1 Radiated Emission below 1GHz _ Main Supply

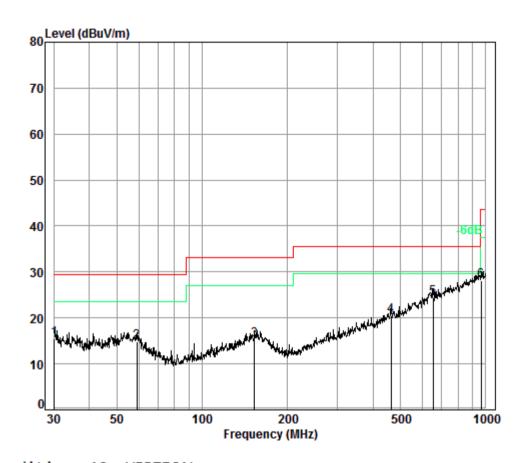
The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

Note:

L₃: Level @ 3m distance. Unit: uV/m; L₁₀: Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m
D₁₀: 10m distance. Unit: m
The level at 3m test distance is below:


Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Over Limit (dB)	Ant. Polarization
30.11	15.40	5.89	19.63	25.86	40.00	-14.14	V
59.03	14.87	5.54	18.47	25.33	40.00	-14.67	V
153.20	15.26	5.79	19.31	25.72	43.50	-17.78	V
463.97	20.54	10.64	35.47	31.00	46.00	-15.00	V
651.94	24.48	16.75	55.83	34.94	46.00	-11.06	V
962.16	28.18	25.64	85.48	38.64	54.00	-15.36	V
37.68	14.57	5.35	17.84	25.03	40.00	-14.97	Н
53.88	14.12	5.08	16.94	24.58	40.00	-15.42	Н
162.04	16.08	6.37	21.23	26.54	43.50	-16.96	Н
631.69	24.24	16.29	54.31	34.70	46.00	-11.30	Н
737.07	25.53	18.90	63.01	35.99	46.00	-10.01	Н
929.01	27.79	24.52	81.73	38.25	46.00	-7.75	Н

Report No.: SZEM180400250603

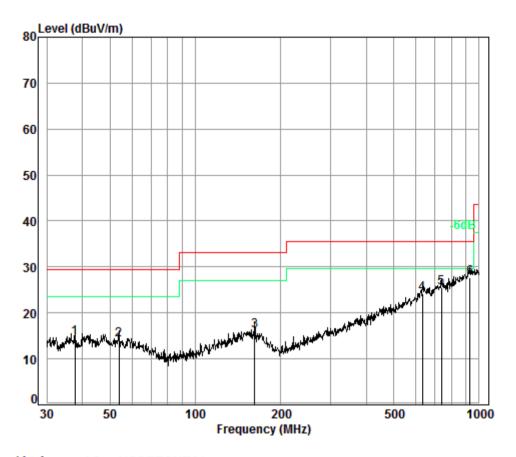
Page: 66 of 85

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m VERTICAL

Job No. : 00879RG

Test Mode: BT


	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.11	6.70	12.47	32.52	28.75	15.40	29.50	-14.10
2	59.03	7.00	12.07	32.44	28.24	14.87	29.50	-14.63
3	153.20	7.47	13.40	32.43	26.82	15.26	33.10	-17.84
4	463.97	8.46	16.33	32.30	28.05	20.54	35.60	-15.06
5 p	p 651.94	9.03	19.56	32.27	28.16	24.48	35.60	-11.12
6	962.16	9.60	22.77	30.90	26.71	28.18	43.50	-15.32

Report No.: SZEM180400250603

Page: 67 of 85

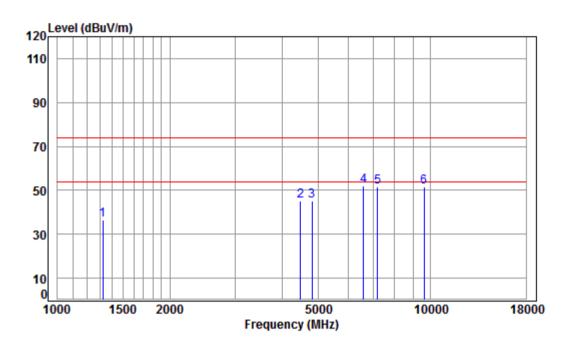
Test mode: Charge + Transmitting Horizontal

Condition: 10m HORIZONTAL

Job No. : 00879RG

Test Mode: BT

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	37.68	6.76	13.02	32.48	27.27	14.57	29.50	-14.93
2	53.88	6.98	12.46	32.43	27.11	14.12	29.50	-15.38
3	162.04	7.50	13.19	32.44	27.83	16.08	33.10	-17.02
4	631.69	8.98	19.31	32.28	28.23	24.24	35.60	-11.36
5	737.07	9.20	20.61	32.27	27.99	25.53	35.60	-10.07
6 pp	929.01	9.52	22.59	31.16	26.84	27.79	35.60	-7.81



Report No.: SZEM180400250603

Page: 68 of 85

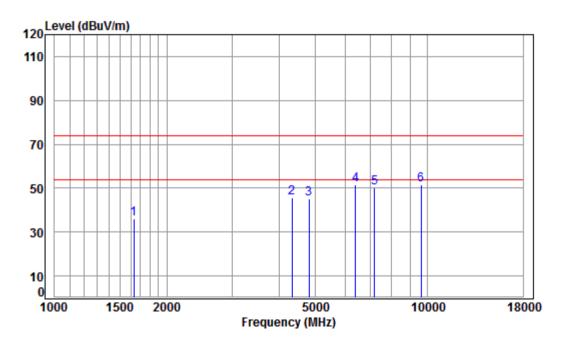
6.10.2 Transmitter Emission above 1GHz _ Main Supply

Test mode:	GFSK(DH5)	Test channel:	Lowest	Remark:	Peak	Vertical	
------------	-----------	---------------	--------	---------	------	----------	--

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2402 TX SE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1323.614	4.88	25.06	41.28	47.66	36.32	74.00	-37.68	peak
2	4482.150	7.54	33.60	42.41	46.52	45.25	74.00	-28.75	peak
3	4804.000	7.89	34.16	42.47	45.42	45.00	74.00	-29.00	peak
4 pp	6602.265	11.24	35.39	41.14	46.68	52.17	74.00	-21.83	peak
5	7206.000	10.08	36.42	40.71	45.59	51.38	74.00	-22.62	peak
6	9608.000	10.75	37.52	37.74	40.87	51.40	74.00	-22.60	peak

Report No.: SZEM180400250603

Page: 69 of 85

Test mode: GFSK(DH5) Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00879RG Mode : 2402 TX SE

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1634.543	5.31	26.40	41.49	45.99	36.21	74.00	-37.79	peak
2	4329.354	7.37	33.60	42.39	47.09	45.67	74.00	-28.33	peak
3	4804.000	7.89	34.16	42.47	45.77	45.35	74.00	-28.65	peak
4	6414.167	11.38	35.03	41.28	46.21	51.34	74.00	-22.66	peak
5	7206.000	10.08	36.42	40.71	44.41	50.20	74.00	-23.80	peak
6 pp	9608.000	10.75	37.52	37.74	41.19	51.72	74.00	-22.28	peak

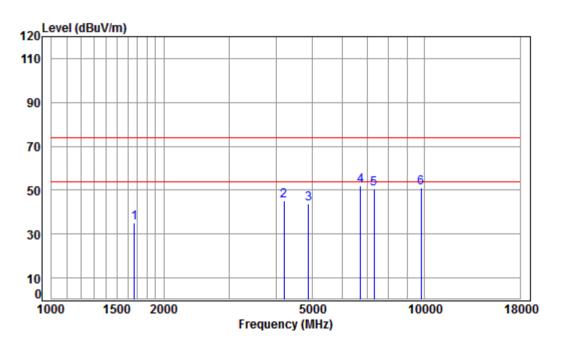
Report No.: SZEM180400250603

Page: 70 of 85

Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Vertical

Condition: 3m VERTICAL Job No : 00879RG

Mode : 2441 TX SE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1323.614	4.88	25.06	41.28	48.35	37.01	74.00	-36.99	peak
2	4206.011	7.23	33.60	42.36	47.14	45.61	74.00	-28.39	peak
3	4882.000	7.97	34.30	42.48	45.71	45.50	74.00	-28.50	peak
4 pp	6954.852	10.25	36.38	40.89	46.11	51.85	74.00	-22.15	peak
5	7323.000	10.05	36.37	40.63	44.78	50.57	74.00	-23.43	peak
6	9764.000	10.82	37.55	37.52	40.67	51.52	74.00	-22.48	peak

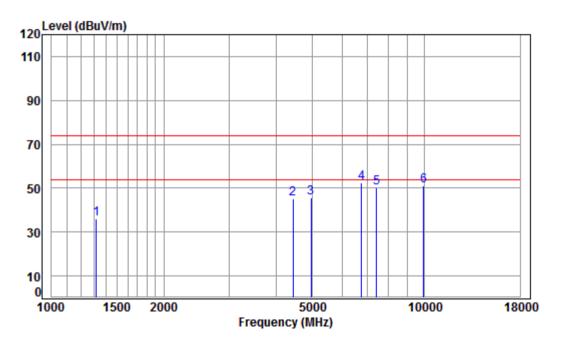
Report No.: SZEM180400250603

Page: 71 of 85

Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00879RG Mode : 2441 TX SE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1667.951	5.27	26.54	41.51	44.90	35.20	74.00	-38.80	peak
2	4193.872	7.21	33.60	42.36	46.87	45.32	74.00	-28.68	peak
3	4882.000	7.97	34.30	42.48	44.21	44.00	74.00	-30.00	peak
4 pp	6737.207	10.86	35.78	41.04	46.34	51.94	74.00	-22.06	peak
5	7323.000	10.05	36.37	40.63	44.68	50.47	74.00	-23.53	peak
6	9764.000	10.82	37.55	37.52	40.22	51.07	74.00	-22.93	peak

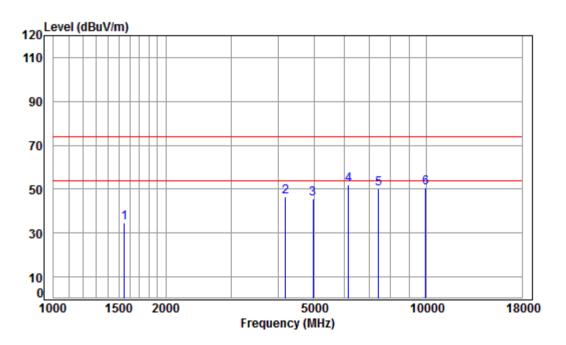
Report No.: SZEM180400250603

Page: 72 of 85

Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL Job No : 00879RG

Mode : 2480 TX SE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1319.794	4.87	25.04	41.28	47.40	36.03	74.00	-37.97	peak
2	4443.453	7.50	33.60	42.41	46.57	45.26	74.00	-28.74	peak
3	4960.000	8.05	34.43	42.49	45.83	45.82	74.00	-28.18	peak
4 pp	6776.265	10.75	35.89	41.01	46.91	52.54	74.00	-21.46	peak
5	7440.000	10.02	36.32	40.56	44.31	50.09	74.00	-23.91	peak
	9920.000								-

Report No.: SZEM180400250603

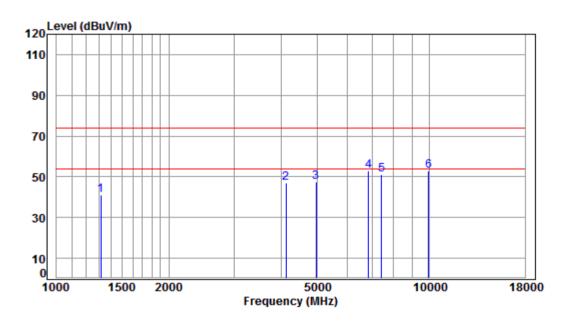
Page: 73 of 85

Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00879RG Mode : 2480 TX SE

Note :


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1547.199	5.42	26.02	41.44	44.87	34.87	74.00	-39.13	peak
2		4181.768	7.20	33.60	42.36	48.01	46.45	74.00	-27.55	peak
3		4960.000	8.05	34.43	42.49	45.70	45.69	74.00	-28.31	peak
4	pp	6177.627	10.92	34.85	41.47	47.51	51.81	74.00	-22.19	peak
5		7440.000	10.02	36.32	40.56	44.42	50.20	74.00	-23.80	peak
6		9920.000	10.90	37.58	37.31	39.60	50.77	74.00	-23.23	peak

Report No.: SZEM180400250603

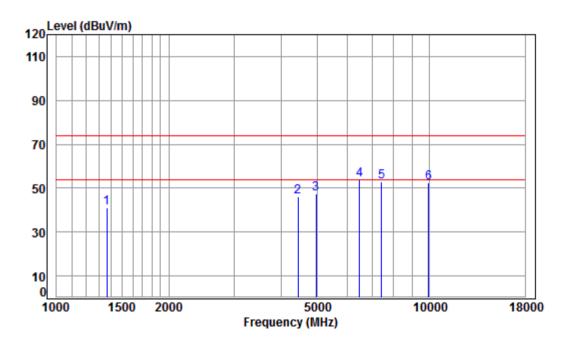
Page: 74 of 85

6.10.3 Transmitter Emission _ Secondary Supply

Condition: 3m HORIZONTAL

Job No : 00879RG Mode : 2480 TX SE

Note :


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1315.985	4.86	25.03	41.27	52.35	40.97	74.00	-33.03	peak
2	4121.768	7.13	33.60	42.35	48.79	47.17	74.00	-26.83	peak
3	4960.000	8.05	34.43	42.49	47.26	47.25	74.00	-26.75	peak
4 pp	6855.063	10.53	36.10	40.96	47.42	53.09	74.00	-20.91	peak
5	7440.000	10.02	36.32	40.56	45.43	51.21	74.00	-22.79	peak
6	9920.000	10.90	37.58	37.31	41.70	52.87	74.00	-21.13	peak

Report No.: SZEM180400250603

Page: 75 of 85

GFSK(DH5) Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL

Job No : 00879RG Mode : 2480 TX SE

Note :

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1366.374	5.04	25.25	41.31	51.88	40.86	74.00	-33.14	peak
2	4443.453	7.50	33.60	42.41	47.45	46.14	74.00	-27.86	peak
3	4960.000	8.05	34.43	42.49	47.31	47.30	74.00	-26.70	peak
4 pp	6488.754	11.52	35.09	41.22	48.55	53.94	74.00	-20.06	peak
5	7440.000	10.02	36.32	40.56	47.24	53.02	74.00	-20.98	peak
6	9920.000	10.90	37.58	37.31	41.27	52.44	74.00	-21.56	peak

Report No.: SZEM180400250603

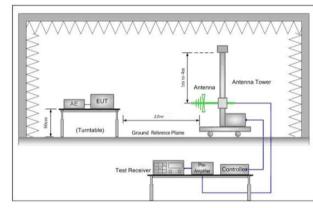
Page: 76 of 85

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 4)Only the worstest case Radiated Spurious Emissions test data of Secondary supply showed .



Report No.: SZEM180400250603

77 of 85 Page:

Restricted bands around fundamental frequency 6.11

Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013 Measurement Distance: 3m (Semi-Anechoic Chamber)								
Test Site:	Measurement Distance: 3r	n (Semi-Anechoic Chambe	er)							
	Frequency	Limit (dBuV/m @3m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak Value							
	88MHz-216MHz	43.5	Quasi-peak Value							
Limit:	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 1GHz	54.0	Average Value							
	Above IGH2	74.0	Peak Value							
Test Setup:										

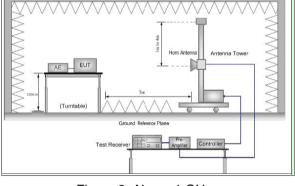


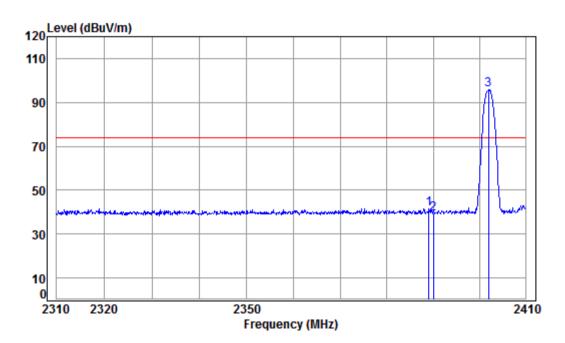
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM180400250603

Page: 78 of 85

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report.		
Exploratory Test Mode: data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Test Procedure:	 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was
the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Exploratory Test Mode:	data type
	Final Test Mode:	the worst case. Pretest the EUT at Charge + Transmitting mode,
Test Results: Pass	Instruments Used:	Refer to section 5.10 for details
	Test Results:	Pass



Report No.: SZEM180400250603

Page: 79 of 85

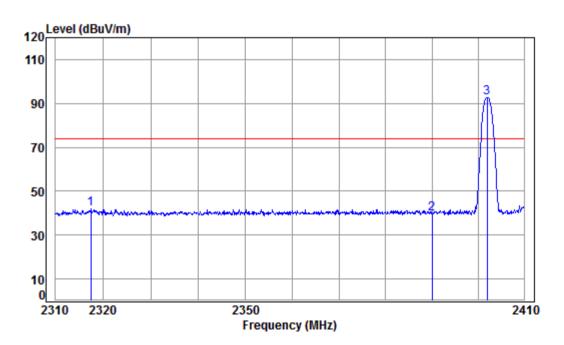
Test plot of Main supply as follows:

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2402 Band edge


_			0-						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2389.052	5.47	29.07	41.87	48.94	41.61	74.00	-32.39	peak
	2390.000	5.47	29.08	41.87	46.63	39.31	74.00	-34.69	peak
pp	2402.000	5.49	29.11	41.88	102.88	95.60	74.00	21.60	peak
		MHz 2389.052 2390.000	Freq Loss MHz dB 2389.052 5.47 2390.000 5.47	Freq Loss Factor MHz dB dB/m 2389.052 5.47 29.07 2390.000 5.47 29.08	Freq Loss Factor Factor MHz dB dB/m dB 2389.052 5.47 29.07 41.87 2390.000 5.47 29.08 41.87	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 2389.052 5.47 29.07 41.87 48.94 2390.000 5.47 29.08 41.87 46.63	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 2389.052 5.47 29.07 41.87 48.94 41.61 2390.000 5.47 29.08 41.87 46.63 39.31	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 2389.052 5.47 29.07 41.87 48.94 41.61 74.00 2390.000 5.47 29.08 41.87 46.63 39.31 74.00	Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 2389.052 5.47 29.07 41.87 48.94 41.61 74.00 -32.39 2390.000 5.47 29.08 41.87 46.63 39.31 74.00 -34.69 pp 2402.000 5.49 29.11 41.88 102.88 95.60 74.00 21.60

Report No.: SZEM180400250603

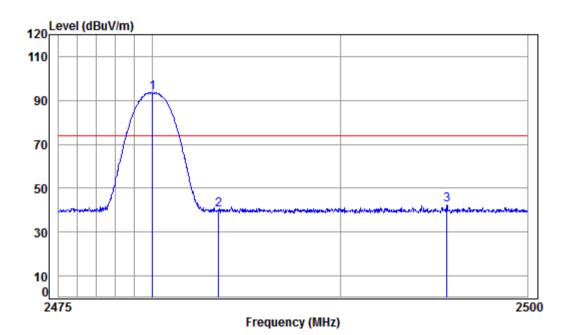
Page: 80 of 85

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2402 Band edge


		C 1.1	0-	ь.					
		Capte	Ant	Preamp	кеаа		Limit	over	
	Frea	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	4								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
			-			-			
1	2317.452	5.38	28.86	41.84	49.52	41.92	74.00	-32.08	peak
2	2390.000	5 47	29 08	41 87	47 15	39 83	74 00	-34 17	neak
_									•
3 pp	2402.000	5.49	29.11	41.88	99.90	92.62	74.00	18.62	peak

Report No.: SZEM180400250603

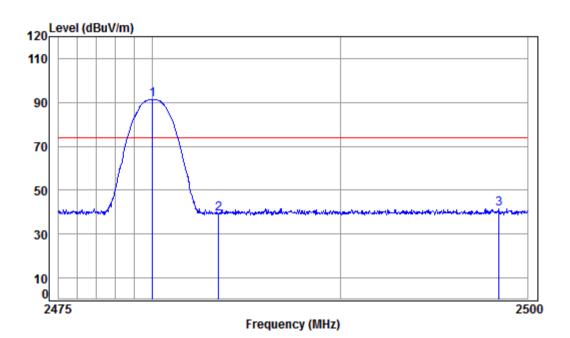
Page: 81 of 85

GFSK (DH5) Test channel: Peak Worse case mode: Highest Remark: Vertical

Condition: 3m VERTICAL Job No : 00879RG

2

Mode : 2480 Band edge


Ant Preamp Cable Read Limit 0ver Loss Factor Factor Level Level Line Limit Remark Freq MHz dΒ dB/m dB dBuV dBuV/m dBuV/m 1 pp 2480.000 5.59 29.34 41.91 100.36 93.38 74.00 19.38 peak 2483.500 5.60 29.35 41.91 47.23 40.27 74.00 -33.73 peak 2495.682 5.61 29.39 41.92 49.14 42.22 74.00 -31.78 peak

Report No.: SZEM180400250603

Page: 82 of 85

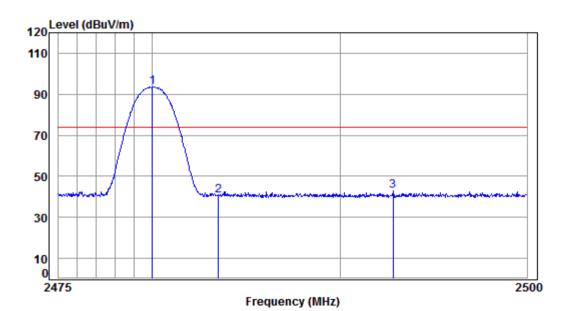
Worse case mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2480 Band edge

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 p	p 2480.000	5.59	29.34	41.91	98.33	91.35	74.00	17.35	peak
2	2483.500	5.60	29.35	41.91	46.19	39.23	74.00	-34.77	peak
3	2498.468	5.62	29.40	41.92	48.56	41.66	74.00	-32.34	peak



Report No.: SZEM180400250603

Page: 83 of 85

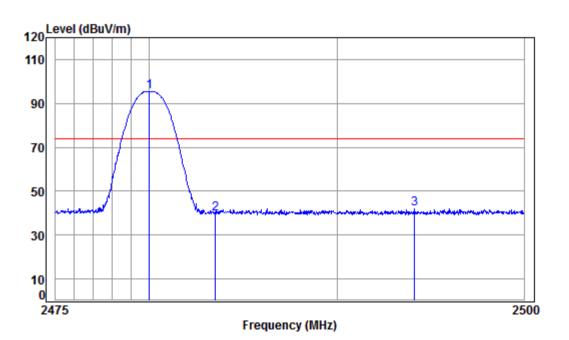
Test plot of Secondary supply as follows:

Worse case mode:	GFSK (DH5)	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2480 Band edge


loue	. 240	o banu	euge							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
1 pp	2480.000	5.59	29.34	41.91	100.34	93.36	74.00	19.36	peak	
2	2483.500	5.60	29.35	41.91	47.58	40.62	74.00	-33.38	peak	
3	2492.824	5.61	29.38	41.91	49.83	42.91	74.00	-31.09	peak	

Report No.: SZEM180400250603

Page: 84 of 85

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2480 Band edge

Juc	. 240	o Dana	Cugc							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	2480.000	5.59	29.34	41.91	102.56	95.58	74.00	21.58	peak	
2	2483.500	5.60	29.35	41.91	46.82	39.86	74.00	-34.14	peak	
3	2494.127	5.61	29.38	41.92	48.85	41.92	74.00	-32.08	peak	

Report No.: SZEM180400250603

Page: 85 of 85

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Only the worstest case Restricted bands around fundamental frequency test data of Secondary supply showed.

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1804002506RG.